Soil water content(SWC)and meteorological conditions,as key environmental variables influencing tree water use,vary highly within the growing season,hindering a better understanding of environmental control mechanisms...Soil water content(SWC)and meteorological conditions,as key environmental variables influencing tree water use,vary highly within the growing season,hindering a better understanding of environmental control mechanisms on canopy transpiration(Ec).Disentangling the effects of these variables on Ec across growing-season stages is crucial for Ec estimation and forest management.In this study,43-year-old Pinus tabuliformis Carr.and 31-yearold Platycladus orientalis(L.)Franco plantations in the semiarid Chinese Loess Plateau were monitored for Ec during the growing season of 2015-2020.The contributions of environmental factors to Ec were assessed using the boosted regression tree(BRT)model.Results showed that the contributions of SWC to Ec were greater at the early(May-June)and late(September)stages,while the contributions of vapor pressure deficit(VPD)and total solar radiation(Rs)to Ec increased at the middle(July-August)stage due to high soil water availability.Overall,Ec in both plantations was dominated by SWC(20.4%≤contributions≤48.8%)and Rs(22.7%≤contributions≤35.8%).Both species exhibited strong stomatal regulation of Ec.Specifically,stomatal opening was significantly inhibited by VPD at the early stage and strongly affected by SWC at the late stage.This study highlights that soil water conditions in artificial forests should be adjusted according to changes in influencing factors on Ec.Particularly during the early and late stages,measures(e.g.,land preparation,thinning,and pruning)can be implemented to improve soil moisture in such dryland forests.展开更多
Tibetan Plateau,as one of the most carbon intensive regions in China,is crucial in the carbon cycle,and accurately estimating its vegetation carbon density(C_(VEG))is essential for assessing regional and national carb...Tibetan Plateau,as one of the most carbon intensive regions in China,is crucial in the carbon cycle,and accurately estimating its vegetation carbon density(C_(VEG))is essential for assessing regional and national carbon balance.However,the spatial distribution of regional C_(VEG)is not available remains highly uncertain due to lack of systematic research,especially for different organs.Here,we investigated the spatial distribution patterns and driving factors of C_(VEG)among different plant organs(leaf,branch,trunk and root)by systematically field grid-sampling 2040 field-plots of plant communities over the Tibetan Plateau from 2019 to 2020.The results showed that the carbon content of plant organs ranged from 255.53 to 515.58 g kg^(-1),with the highest in branches and the lowest in roots.Among the different plant functional groups,the highest C_(VEG)was found in evergreen coniferous forests,and the lowest in desert grasslands,with an average C_(VEG)of 1603.98 g m^(-2).C_(VEG)increased spatially from northwest to southeast over the Tibetan Plateau,with MAP being the dominant factor.Furthermore,the total vegetation carbon stock on the Tibetan Plateau was estimated to be 1965.62 Tg for all vegetation types.Based on the comprehensive field survey dataset,the Random Forest model effectively predicted and mapped the spatial distribution of C_(VEG)(including aboveground,belowground,and the total biomass carbon density)over the Tibetan Plateau with notable accuracy(validation R2 values were 71%,56%,and 64%for C_(AGB),C_(BGB),and C_(VEG),respectively)at a spatial resolution of 1 km×1 km.Our findings can help improve the accuracy of regional carbon stock estimations and provide parameters for carbon cycle model optimization and remote sensing calibration in the future.展开更多
A variational technique (VT) is applied to estimate surface sensible and latent heat fluxes based on observations of air temperature, wind speed, and humidity, respectively, at three heights (1 m, 4 m, and 10 m), and ...A variational technique (VT) is applied to estimate surface sensible and latent heat fluxes based on observations of air temperature, wind speed, and humidity, respectively, at three heights (1 m, 4 m, and 10 m), and the surface energy and radiation budgets by the surface energy and radiation system (SERBS). The method fully uses all information provided by the measurements of air temperature, wind, and humidity profiles, the surface energy budget, and the similarity profile formulae as well. Data collected at Feixi experiment station installed by the China Heavy Rain Experiment and Study (HeRES) Program are used to test the method. Results show that the proposed technique can overcome the well-known unstablility problem that occurs when the Bowen method becomes singular; in comparison with the profile method, it reduces both the sensitivities of latent heat fluxes to observational errors in humidity and those of sensible heat fluxes to observational errors in temperature, while the estimated heat fluxes approximately satisfy the surface energy budget. Therefore, the variational technique is more reliable and stable than the two conventional methods in estimating surface sensible and latent heat fluxes.展开更多
This paper analyzed the variations of latent heat flux (LHF) over the tropical Pacific in the period 1978-1988 by using COADS (Comprehensive Ocean and Atmospheric Data Set). It has been founded that the interannual va...This paper analyzed the variations of latent heat flux (LHF) over the tropical Pacific in the period 1978-1988 by using COADS (Comprehensive Ocean and Atmospheric Data Set). It has been founded that the interannual variabili ty of LHF exhibits strong ENSO signal, with the significant increasing LHF during the recent two warm events, i.e., 1982 / 83 and 1986 / 87 and decreasing LHF in the cold episodes. However the longitudinal distribution of the LHF departures varies from event to event. In the eastern Pacific, the specific humidity difference at air-sea interface (qs -qa) makes a dominant contribution to the interannual variability of LHF ( r = 0.73 ), while in the western Pacific the surface wind speed, W and the qs - qa make nearly equal contribution to that of LHF.展开更多
The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a re...The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.展开更多
In this paper, using the daily grid data (2.5 × 2.5) of the ECMWF / WMO, we have computed respectively the three-dimensional wave activity flux in the stages of pre-onset, prevailing and post ending of Meiyu from...In this paper, using the daily grid data (2.5 × 2.5) of the ECMWF / WMO, we have computed respectively the three-dimensional wave activity flux in the stages of pre-onset, prevailing and post ending of Meiyu from 1 to 31 July 1982. The potential vorticity field is taken as the physical quantity relating the wave activity flux to the variation of the subtropical high over the Western Pacific. It is found that the three-dimensional wave activity flux is a powerful means for diagnosis of the variation of the subtropical high over the Western Pacific: The region of the subtropical high is just the confluence area of wave energy, whose changes in intensity and range decide the variation of the subtropical high. The confluence of wave energy comes from the monsoon flow in low latitudes, the Meiyu rain belts in middle latitudes and the heating fields on the eastern side of the Qinghai-Xizang Plateau. The relation between these sources and the subtropical high displays the self-adjusting mechanism among members of East-Asia summer monsoon.展开更多
The global demand for renewable energy has resulted in a rapid expansion of offshore wind farms(OWFs)and increased attention to the ecological impacts of OWFs on the marine ecosystem.Previous reviews mainly focused on...The global demand for renewable energy has resulted in a rapid expansion of offshore wind farms(OWFs)and increased attention to the ecological impacts of OWFs on the marine ecosystem.Previous reviews mainly focused on the OWFs’impacts on individual species like birds,bats,or mammals.This review collected numerous field-measured data and simulated results to summarize the ecological impacts on phytoplankton,zooplankton,zoobenthos,fishes,and mammals from each trophic level and also analyze their interactions in the marine food chain.Phytoplankton and zooplankton are positively or adversely affected by the‘wave effect’,‘shading effect’,oxygen depletion and predation pressure,leading to a ±10% fluctuation of primary production.Although zoobenthos are threatened transiently by habitat destruction with a reduction of around 60% in biomass in the construction stage,their abundance exhibited an over 90% increase,dominated by sessile species,due to the‘reef effect’in the operation stage.Marine fishes and mammals are to endure the interferences of noise and electromagnetic,but they are also aggregated around OWFs by the‘reef effect’and‘reserve effect’.Furthermore,the complexity of marine ecosystem would increase with a promotion of the total system biomass by 40% through trophic cascade effects strengthen and resource partitioning alternation triggered by the proliferation of filter-feeders.The suitable site selection,long-term monitoring,and life-cycle-assessment of ecological impacts of OWFs that are lacking in current literature have been described in this review,as well as the carbon emission and deposition.展开更多
Anaerobic digestion(AD)of waste activated sludge(WAS)is usually limited by the low generation efficiency of methane.Fe(Ⅲ)-loaded chitosan composite(CTS-Fe)have been reported to effectively enhanced the digestion of W...Anaerobic digestion(AD)of waste activated sludge(WAS)is usually limited by the low generation efficiency of methane.Fe(Ⅲ)-loaded chitosan composite(CTS-Fe)have been reported to effectively enhanced the digestion of WAS,but its role in promoting anaerobic sludge digestion remains unclear.In present study,the effects of CTS-Fe on the hydrolysis and methanogenesis stages of WAS anaerobic digestion were investigated.The addition of CTSFe increased methane production potential by 8%-23%under the tested conditions with the addition of 5-20 g/L CTS-Fe.Besides,the results demonstrate that the addition of CTS-Fe could effectively promote the hydrolysis of WAS,evidenced by lower protein or polysaccharides concentration,higher soluble organic carbon in rector adding CTS-Fe,as well as the increased activity of extracellular hydrolase with higher CTS-Fe concentration.Meanwhile,the enrichment of Clostridia abundance(iron-reducing bacteria(IRBs))was observed in CTS-Fe adding reactor(8.9%-13.8%),which was higher than that in the control reactor(7.9%).The observation further suggesting the acceleration of hydrolysis through dissimilatory iron reduction(DIR)process,thus providing abundant substrates for methanogenesis.However,the presence of CTS-Fe was inhibited the acetoclastic and hydrogenotrophic methanogenesis process,which could be ascribed to the Fe(Ⅲ)act as electron acceptor coupled to methane for anaerobic oxidation.Furthermore,coenzyme F420 activity in the CTS-Fe added reactor was 34.9% lower than in the blank,also abundance of microorganisms involved in hydrogenotrophic methanogenesis was decreased.Results from this study could provide theoretical support for the practical applications of CTS-Fe.展开更多
Riverine material flux is fundamental to understanding substance cycling in aquatic ecosystems.It comprehensively characterizes the transport intensity of energy and all materials,including abiotic components(water,se...Riverine material flux is fundamental to understanding substance cycling in aquatic ecosystems.It comprehensively characterizes the transport intensity of energy and all materials,including abiotic components(water,sediment,nutrients,pollutants)and biotic components that coexist and interact within specific river reaches.These fluxes sustain river ecosystem health and multifunctionality,encompassing nutrient regulation,flood control,power generation,irrigation,and broader socioeconomic services.展开更多
Peracetic acid(PAA)-based system is becoming an emerging advanced oxidation process(AOP)for effective removal of organic contaminants from water.Various approaches have been tested to activate PAA,while no previous re...Peracetic acid(PAA)-based system is becoming an emerging advanced oxidation process(AOP)for effective removal of organic contaminants from water.Various approaches have been tested to activate PAA,while no previous researches reported the application of metal-organic frameworks(MOFs)materials for PAA activation.In this study,zeolitic imidazole framework(ZIF)-67,a representative MOFs,was facile synthesized via direct-mixing method at room temperature,and tested for PAA activation and sulfachloropyridazine(SCP)degradation.The as-synthesized ZIF-67 exhibited excellent performance for PAA activation and SCP degradation with 100%of SCP degraded within 3 min,owing to the specific MOFs structure and abundant Co^(2+) sites.The pseudo-first-order kinetic model was applied to fit the kinetic data,with rate constant k_(1) of ZIF-67 activated PAA system 34.2 and 156.5 times higher than those of conventional Co_(3)O_(4)activated PAA and direct oxidation by PAA.Radical quenching experiments and electron paramagnetic resonance(EPR)analysis indicated that CH_(3)C(O)OO^(·)played a major role in this PAA activation system.Then,the Fukui index based on density functional theory(DFT)calculation was used to predict the possible reaction sites of SCP for electrophilic attack by CH_(3)C(O)OO^(·).In addition,the degradation pathway of SCP was proposed based on Fukui index values and intermediates detection,which mainly included the S-N bond cleavage and SO_(2)extrusion and followed by further oxidation,dechlorination,and hydroxylation.Therefore,ZIF-67 activated PAA is a novel strategy and holds strong potential for the removal of emerging organic contaminants(EOCs)from water.展开更多
Background Disturbed circadian rhythm is a potential cause of delirium and is linked to disorganisation of the circadian rhythmicity. Dynamic light (DL) could reset the circadian rhythm by activation of the suprachi...Background Disturbed circadian rhythm is a potential cause of delirium and is linked to disorganisation of the circadian rhythmicity. Dynamic light (DL) could reset the circadian rhythm by activation of the suprachiasmatic nucleus to prevent delirium. Evidence regarding the effects of light therapy is predominantly focused on psychiatric disorders and circadian rhythm sleep disorders. In this study, we investi- gated the effect of DL on the total hospital length of stay (LOS) and occurrence of delirium in patients admitted to the Coronary Care Unit (CCU). Methods This was a retrospective cohort study. Patients older than 18 years, who were hospitalized longer than 12 h at the CCU and had a total hospital LOS for at least 24 h, were included. Patients were assigned to a room with DL (n = 369) or regular lighting condi- tions (n = 379). DL was administered at the CCU by two ceiling-mounted light panels delivering light with a colour temperature between 2700 and 6500 degrees Kelvin. Reported outcome data were: total hospital LOS, delirium incidence, consultation of a geriatrician and the amount of prescripted antipsychotics. Results Between May 2015 and May 2016, data from 748 patients were collected. Baseline charac- teristics, including risk factors provoking delirium, were equal in both groups. Median total hospital LOS in the DL group was 100.5 (70.8-186.0) and 101.0 (73.0-176.4) h in the control group (P = 0.935). The incidence of delirium in the DL and control group was 5.4% (20/369) and 5.0% (19/379), respectively (P = 0.802). No significant differences between the DL and control group were observed in secon- dary endpoints. Subgroup analysis based on age and CCU LOS also showed no differences. Conclusion Our study suggests exposure to DL as an early single approach does not result in a reduction of total hospital LOS or reduced incidence of delirium. When delirium was diagnosed, it was associated with poor hospital outcome.展开更多
Agriculture consumes huge amounts of water in China and is profoundly affected by climate change.This study projects the agricultural water use towards 2030 under the climate change mitigation target at the provincial...Agriculture consumes huge amounts of water in China and is profoundly affected by climate change.This study projects the agricultural water use towards 2030 under the climate change mitigation target at the provincial level in China by linking a computable general equilibrium(CGE)model and a regression model.By solving the endogeneities amongst agricultural water use,output and climate factors,we explore how these variables affect water use and further predict future trends through soft-link with the IMED|CGE model.It is found that sunshine duration has a slightly positive impact on water use.Furthermore,agricultural output will significantly drive agricultural water use based on historical data of the past 16 years.Results also show that carbon reduction would have a trade-offor co-benefit effect on water use due to regional disparity.Provinces with increasing agricultural exports,such as Xinjiang and Ningxia,would anticipate considerable growth in agricultural water use induced by carbon reduction.The soft-link method proposed by this study could be applied for future studies that aim to incorporate natural and geographical factors into human activities,and vice versa,for assessing sustainable development policies in an integrated way.展开更多
Terracing greatly affects soil properties,ecosystem services,human welfare and geographical sustainability.The purpose of this article is to determine the influence of terracing on soil properties across diverse regio...Terracing greatly affects soil properties,ecosystem services,human welfare and geographical sustainability.The purpose of this article is to determine the influence of terracing on soil properties across diverse regions in China.Three representative terrace types,including dryland loess terraces,dry-stone terraces,and paddy terraces,were selected as case study areas.Soil sampling was stratified according to thickness of soil layers in each terraced area.Based on field investigations and soil sampling,combined with the means of variance,correlation,redundancy and regression analysis,we analyzed the characteristics of soil properties in the terraces across three areas.Results showed that:(1)alterations of soil physicochemical properties mainly depend on differences between soil parent materials in such regions;(2)Due to the existence of“four-element isomorphism”in the ecosystem and reasonable human activities,paddy terraces had the greatest impact on soil properties which is mainly reflected in decreasing soil pH and increasing SOC,TN,and TK;(3)The content of SOC and TN in different areas was higher in terraced fields than in the sloped lands and decreased with soil deepening;(4)To maintain sufficient supply of soil nutrients and support the sustainability of agricultural terraces,it is necessary to apply manure to improve soil fertility and accelerate its aggregation in the terraces.For example,an increase in the application of nitrogen fertilizer in terraced fields in Hebei and Gansu provinces,which have a serious deficiency in soil available phosphorus(AP),is necessary to get greater amounts of P fertilization.The present study offers a theoretical foundation for the sustainability of terraced ecosystems through efficient crop production,which is the basis for strengthening the ecological security of terraced areas and promoting regional sustainability in those fragile mountains.展开更多
Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The...Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.展开更多
Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa....Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa. Compared to pure components, both binary and ternary mixtures showed lower heat transfer coefficients.This deterioration was more pronounced as heat flux was increased. Experimental data were compared with some empirical and semi-empirical correlations available in literature. For binary mixture, the accuracy of the correlations varied considerably with mixtures and the heat flux. Experimental data for HFC-32/134a/125 were also compared with available correlated equation obtained by Thome. For ternary mixture, the boiling range of binary mixture composed by the pure fluids with the lowest and the medium boiling points, and their concentration difference had important effects on boiling heat transfer coefficients.展开更多
Acetaminophen(ACE)is commonly used in analgesic and antipyretic drug,which is hardly removed by traditional wastewater treatment processes.Herein,amorphous Co(OH)_(2)nanocages were explored as peroxymonosulfate(PMS)ac...Acetaminophen(ACE)is commonly used in analgesic and antipyretic drug,which is hardly removed by traditional wastewater treatment processes.Herein,amorphous Co(OH)_(2)nanocages were explored as peroxymonosulfate(PMS)activator for efficient degradation of ACE.In the presence of amorphous Co(OH)_(2)nanocages,100%of ACE removal was reached within 2 min with a reaction rate constant k_(1)=3.68 min 1 at optimum pH 5,which was much better than that of crystallineβ-Co(OH)_(2)and Co_(3)O_(4).Amorphous materials(disorder atom arrangement)with hollow structures possess large specific surface area,more reactive sites,and abundant vacancies structures,which could efficiently facilitate the catalytic redox reactions.The radicals quenching experiment demonstrated that SO_(4)^(·-)radicals dominated the ACE degradation rather than^(·)OH radicals.The mechanism of ACE degradation was elucidated by the an alysis of degradation in termediates and theoretical calculation,indicating that the electrophilic SO_(4)^(·-)and^(·)OH tend to attack the atoms of ACE with high Fukui index(f).Our finding highlights the remarkable advantages of amorphous materials as heterogeneous catalysts in sulfate radicals-based AOPs and sheds new lights on water treatment for the degradation of emerging organic contaminants.展开更多
Coupled ocean-atmospheric general circulation models are the only tools to quantitatively simulate the climate system. Since the end of the 1980s, a group of scientists in the State Key Laboratory of Numerical Modelin...Coupled ocean-atmospheric general circulation models are the only tools to quantitatively simulate the climate system. Since the end of the 1980s, a group of scientists in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), have been working to develop a global OGCM and a global coupled ocean-atmosphere general circulation modei (CGCM). Prom the original flux anomaly-coupling modei developed in the beginning of the 1990s to the latest directly-coupling modei, LASG scientists have developed four global coupled GCMs. This study summarizes the development history of these models and describes the third and fourth coupled GCMs and selected applications. Strengths and weaknesses of these models are highlighted.展开更多
The progresses of marine meteorology studies achieved in China during the four year period from 1999 to 2002 are summarized in six directions: air-sea flux, marine meteorology in high latitudes, marine disasters, conn...The progresses of marine meteorology studies achieved in China during the four year period from 1999 to 2002 are summarized in six directions: air-sea flux, marine meteorology in high latitudes, marine disasters, connection between ocean and weather/climate in China, remote sensing applications and new methodologies in marine meteorology. Compared to the previous ones, these studies adopted much more first-hand datasets, and more scientific issues were involved. As an exciting remark, there were so many contributions done by the young scientists. A brief statement about the research strategy of marine meteorology in China for the coming years is also given.展开更多
Isotopic signature is a powerful tool to discriminate methane(CH_(4)) source types and constrain regional and global scale CH_(4) budgets.Peatlands on the Qinghai-Tibetan Plateau are poorly understood about the isotop...Isotopic signature is a powerful tool to discriminate methane(CH_(4)) source types and constrain regional and global scale CH_(4) budgets.Peatlands on the Qinghai-Tibetan Plateau are poorly understood about the isotopic signature of CH_(4) due to the limited experimental conditions.In this study,three campaigns of diurnal air samples spacing 2-3 h were taken from an alpine peatland on the eastern Qinghai-Tibetan Plateau to investigate its source signal characteristics.Both CH_(4) concentration and its stable carbon isotope(δ^(13)C-CH_(4)) were measured to derive the carbon isotopic signature of the CH_(4) source using the Keeling plot technique.Diurnal variation patterns in CH_(4) concentration and δ^(13)C-CH_(4) were observed during summertime,with depleted δ^(13)C-CH_(4) signals and high CH_(4) concentration appearing at nighttime.The δ^(13)C-CH4 signature during summer was calculated to be-71 % ± 1.3%,which falls within the range of other wetland studies and close to high-latitude peatlands.The boundary layer dynamic and CH_(4) source were supposed to influence the measured CH_(4) concentration and δ^(13)C-CH_(4.)Further investigations of CH_(4) isotopic signals into the nongrowing season are still needed to constrain the δ^(13)C-CH_(4) signature and its environmental controls in this region.展开更多
The Simplified Simple Biosphere model (SSiB) is validated in off-line simulations against field measurements in the summer of 2001 from the China Heavy Rainfall Experiment and Study (CHeRES) over a grassland site loca...The Simplified Simple Biosphere model (SSiB) is validated in off-line simulations against field measurements in the summer of 2001 from the China Heavy Rainfall Experiment and Study (CHeRES) over a grassland site located in the lower reaches of the Yangtze River. When initialized and driven by the observed atmospheric forcing, the model reproduced the observed surface heat fluxes and surface skin temperature realistically. The model was also able to well simulate the variation of soil water content. The sensitivity experiments found that the leaf reflectance was the most significant parameter in improving the estimation of surface albedo during both wet and dry periods. This study suggests that the model is capable of simulating the physical processes and of assessing the impact of biophysical parameters that relate to land-atmosphere interactions over the eastern Asian monsoon regions, which is crucial for mesoscale atmospheric models.展开更多
基金supported by the National Key Research&Development Project of China(No.2022YFF1300403)the National Natural Science Foundation of China(Nos.U21A2011,41971129,and 32401663)the Open Fund of the State Key Laboratory of Loess Science(No.SKLLQG2423).
文摘Soil water content(SWC)and meteorological conditions,as key environmental variables influencing tree water use,vary highly within the growing season,hindering a better understanding of environmental control mechanisms on canopy transpiration(Ec).Disentangling the effects of these variables on Ec across growing-season stages is crucial for Ec estimation and forest management.In this study,43-year-old Pinus tabuliformis Carr.and 31-yearold Platycladus orientalis(L.)Franco plantations in the semiarid Chinese Loess Plateau were monitored for Ec during the growing season of 2015-2020.The contributions of environmental factors to Ec were assessed using the boosted regression tree(BRT)model.Results showed that the contributions of SWC to Ec were greater at the early(May-June)and late(September)stages,while the contributions of vapor pressure deficit(VPD)and total solar radiation(Rs)to Ec increased at the middle(July-August)stage due to high soil water availability.Overall,Ec in both plantations was dominated by SWC(20.4%≤contributions≤48.8%)and Rs(22.7%≤contributions≤35.8%).Both species exhibited strong stomatal regulation of Ec.Specifically,stomatal opening was significantly inhibited by VPD at the early stage and strongly affected by SWC at the late stage.This study highlights that soil water conditions in artificial forests should be adjusted according to changes in influencing factors on Ec.Particularly during the early and late stages,measures(e.g.,land preparation,thinning,and pruning)can be implemented to improve soil moisture in such dryland forests.
基金supported by CAS Project for Young Scientists in Basic Research(YSBR-037)the National Natural Science Foundation of China(42141004,32430067)by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,2019QZKK060602).
文摘Tibetan Plateau,as one of the most carbon intensive regions in China,is crucial in the carbon cycle,and accurately estimating its vegetation carbon density(C_(VEG))is essential for assessing regional and national carbon balance.However,the spatial distribution of regional C_(VEG)is not available remains highly uncertain due to lack of systematic research,especially for different organs.Here,we investigated the spatial distribution patterns and driving factors of C_(VEG)among different plant organs(leaf,branch,trunk and root)by systematically field grid-sampling 2040 field-plots of plant communities over the Tibetan Plateau from 2019 to 2020.The results showed that the carbon content of plant organs ranged from 255.53 to 515.58 g kg^(-1),with the highest in branches and the lowest in roots.Among the different plant functional groups,the highest C_(VEG)was found in evergreen coniferous forests,and the lowest in desert grasslands,with an average C_(VEG)of 1603.98 g m^(-2).C_(VEG)increased spatially from northwest to southeast over the Tibetan Plateau,with MAP being the dominant factor.Furthermore,the total vegetation carbon stock on the Tibetan Plateau was estimated to be 1965.62 Tg for all vegetation types.Based on the comprehensive field survey dataset,the Random Forest model effectively predicted and mapped the spatial distribution of C_(VEG)(including aboveground,belowground,and the total biomass carbon density)over the Tibetan Plateau with notable accuracy(validation R2 values were 71%,56%,and 64%for C_(AGB),C_(BGB),and C_(VEG),respectively)at a spatial resolution of 1 km×1 km.Our findings can help improve the accuracy of regional carbon stock estimations and provide parameters for carbon cycle model optimization and remote sensing calibration in the future.
基金This work was supported by the National Natural Science Foundation of China under Grant No.E-D0119-90202014the National Key Programme for Developing Basic Sciences of China under Great No.G1998040902.
文摘A variational technique (VT) is applied to estimate surface sensible and latent heat fluxes based on observations of air temperature, wind speed, and humidity, respectively, at three heights (1 m, 4 m, and 10 m), and the surface energy and radiation budgets by the surface energy and radiation system (SERBS). The method fully uses all information provided by the measurements of air temperature, wind, and humidity profiles, the surface energy budget, and the similarity profile formulae as well. Data collected at Feixi experiment station installed by the China Heavy Rain Experiment and Study (HeRES) Program are used to test the method. Results show that the proposed technique can overcome the well-known unstablility problem that occurs when the Bowen method becomes singular; in comparison with the profile method, it reduces both the sensitivities of latent heat fluxes to observational errors in humidity and those of sensible heat fluxes to observational errors in temperature, while the estimated heat fluxes approximately satisfy the surface energy budget. Therefore, the variational technique is more reliable and stable than the two conventional methods in estimating surface sensible and latent heat fluxes.
文摘This paper analyzed the variations of latent heat flux (LHF) over the tropical Pacific in the period 1978-1988 by using COADS (Comprehensive Ocean and Atmospheric Data Set). It has been founded that the interannual variabili ty of LHF exhibits strong ENSO signal, with the significant increasing LHF during the recent two warm events, i.e., 1982 / 83 and 1986 / 87 and decreasing LHF in the cold episodes. However the longitudinal distribution of the LHF departures varies from event to event. In the eastern Pacific, the specific humidity difference at air-sea interface (qs -qa) makes a dominant contribution to the interannual variability of LHF ( r = 0.73 ), while in the western Pacific the surface wind speed, W and the qs - qa make nearly equal contribution to that of LHF.
文摘The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.
文摘In this paper, using the daily grid data (2.5 × 2.5) of the ECMWF / WMO, we have computed respectively the three-dimensional wave activity flux in the stages of pre-onset, prevailing and post ending of Meiyu from 1 to 31 July 1982. The potential vorticity field is taken as the physical quantity relating the wave activity flux to the variation of the subtropical high over the Western Pacific. It is found that the three-dimensional wave activity flux is a powerful means for diagnosis of the variation of the subtropical high over the Western Pacific: The region of the subtropical high is just the confluence area of wave energy, whose changes in intensity and range decide the variation of the subtropical high. The confluence of wave energy comes from the monsoon flow in low latitudes, the Meiyu rain belts in middle latitudes and the heating fields on the eastern side of the Qinghai-Xizang Plateau. The relation between these sources and the subtropical high displays the self-adjusting mechanism among members of East-Asia summer monsoon.
基金supported by the National Key R&D Program of China(No.2022YFE0209500)the Industry-Academy cooperation project(No.E2021000435)+2 种基金the National Natural Science Foundation of China(No.41877310)the Network Information Security and Information Special Application Demonstration Project(Cultivation Project)of Chinese Academy of Sciences(No.CAS-WX2023PY-0103)the Innovative practice training program for college students of Chinese Academy of Sciences(No.117900M002)。
文摘The global demand for renewable energy has resulted in a rapid expansion of offshore wind farms(OWFs)and increased attention to the ecological impacts of OWFs on the marine ecosystem.Previous reviews mainly focused on the OWFs’impacts on individual species like birds,bats,or mammals.This review collected numerous field-measured data and simulated results to summarize the ecological impacts on phytoplankton,zooplankton,zoobenthos,fishes,and mammals from each trophic level and also analyze their interactions in the marine food chain.Phytoplankton and zooplankton are positively or adversely affected by the‘wave effect’,‘shading effect’,oxygen depletion and predation pressure,leading to a ±10% fluctuation of primary production.Although zoobenthos are threatened transiently by habitat destruction with a reduction of around 60% in biomass in the construction stage,their abundance exhibited an over 90% increase,dominated by sessile species,due to the‘reef effect’in the operation stage.Marine fishes and mammals are to endure the interferences of noise and electromagnetic,but they are also aggregated around OWFs by the‘reef effect’and‘reserve effect’.Furthermore,the complexity of marine ecosystem would increase with a promotion of the total system biomass by 40% through trophic cascade effects strengthen and resource partitioning alternation triggered by the proliferation of filter-feeders.The suitable site selection,long-term monitoring,and life-cycle-assessment of ecological impacts of OWFs that are lacking in current literature have been described in this review,as well as the carbon emission and deposition.
基金supported by the National Natural Science Foundation of China(No.52200031)。
文摘Anaerobic digestion(AD)of waste activated sludge(WAS)is usually limited by the low generation efficiency of methane.Fe(Ⅲ)-loaded chitosan composite(CTS-Fe)have been reported to effectively enhanced the digestion of WAS,but its role in promoting anaerobic sludge digestion remains unclear.In present study,the effects of CTS-Fe on the hydrolysis and methanogenesis stages of WAS anaerobic digestion were investigated.The addition of CTSFe increased methane production potential by 8%-23%under the tested conditions with the addition of 5-20 g/L CTS-Fe.Besides,the results demonstrate that the addition of CTS-Fe could effectively promote the hydrolysis of WAS,evidenced by lower protein or polysaccharides concentration,higher soluble organic carbon in rector adding CTS-Fe,as well as the increased activity of extracellular hydrolase with higher CTS-Fe concentration.Meanwhile,the enrichment of Clostridia abundance(iron-reducing bacteria(IRBs))was observed in CTS-Fe adding reactor(8.9%-13.8%),which was higher than that in the control reactor(7.9%).The observation further suggesting the acceleration of hydrolysis through dissimilatory iron reduction(DIR)process,thus providing abundant substrates for methanogenesis.However,the presence of CTS-Fe was inhibited the acetoclastic and hydrogenotrophic methanogenesis process,which could be ascribed to the Fe(Ⅲ)act as electron acceptor coupled to methane for anaerobic oxidation.Furthermore,coenzyme F420 activity in the CTS-Fe added reactor was 34.9% lower than in the blank,also abundance of microorganisms involved in hydrogenotrophic methanogenesis was decreased.Results from this study could provide theoretical support for the practical applications of CTS-Fe.
文摘Riverine material flux is fundamental to understanding substance cycling in aquatic ecosystems.It comprehensively characterizes the transport intensity of energy and all materials,including abiotic components(water,sediment,nutrients,pollutants)and biotic components that coexist and interact within specific river reaches.These fluxes sustain river ecosystem health and multifunctionality,encompassing nutrient regulation,flood control,power generation,irrigation,and broader socioeconomic services.
基金the National Natural Science Foundation of China(Nos.21906001 and 52100069)the National Key Research and Development Program of China(No.2021YFA1202500)+2 种基金Beijing Nova Program(No.Z191100001119054)the Fundamental Research Funds for the Central Universities(No.BFUKF202118)China Postdoctoral Science Foundation(No.2021M690208)。
文摘Peracetic acid(PAA)-based system is becoming an emerging advanced oxidation process(AOP)for effective removal of organic contaminants from water.Various approaches have been tested to activate PAA,while no previous researches reported the application of metal-organic frameworks(MOFs)materials for PAA activation.In this study,zeolitic imidazole framework(ZIF)-67,a representative MOFs,was facile synthesized via direct-mixing method at room temperature,and tested for PAA activation and sulfachloropyridazine(SCP)degradation.The as-synthesized ZIF-67 exhibited excellent performance for PAA activation and SCP degradation with 100%of SCP degraded within 3 min,owing to the specific MOFs structure and abundant Co^(2+) sites.The pseudo-first-order kinetic model was applied to fit the kinetic data,with rate constant k_(1) of ZIF-67 activated PAA system 34.2 and 156.5 times higher than those of conventional Co_(3)O_(4)activated PAA and direct oxidation by PAA.Radical quenching experiments and electron paramagnetic resonance(EPR)analysis indicated that CH_(3)C(O)OO^(·)played a major role in this PAA activation system.Then,the Fukui index based on density functional theory(DFT)calculation was used to predict the possible reaction sites of SCP for electrophilic attack by CH_(3)C(O)OO^(·).In addition,the degradation pathway of SCP was proposed based on Fukui index values and intermediates detection,which mainly included the S-N bond cleavage and SO_(2)extrusion and followed by further oxidation,dechlorination,and hydroxylation.Therefore,ZIF-67 activated PAA is a novel strategy and holds strong potential for the removal of emerging organic contaminants(EOCs)from water.
文摘Background Disturbed circadian rhythm is a potential cause of delirium and is linked to disorganisation of the circadian rhythmicity. Dynamic light (DL) could reset the circadian rhythm by activation of the suprachiasmatic nucleus to prevent delirium. Evidence regarding the effects of light therapy is predominantly focused on psychiatric disorders and circadian rhythm sleep disorders. In this study, we investi- gated the effect of DL on the total hospital length of stay (LOS) and occurrence of delirium in patients admitted to the Coronary Care Unit (CCU). Methods This was a retrospective cohort study. Patients older than 18 years, who were hospitalized longer than 12 h at the CCU and had a total hospital LOS for at least 24 h, were included. Patients were assigned to a room with DL (n = 369) or regular lighting condi- tions (n = 379). DL was administered at the CCU by two ceiling-mounted light panels delivering light with a colour temperature between 2700 and 6500 degrees Kelvin. Reported outcome data were: total hospital LOS, delirium incidence, consultation of a geriatrician and the amount of prescripted antipsychotics. Results Between May 2015 and May 2016, data from 748 patients were collected. Baseline charac- teristics, including risk factors provoking delirium, were equal in both groups. Median total hospital LOS in the DL group was 100.5 (70.8-186.0) and 101.0 (73.0-176.4) h in the control group (P = 0.935). The incidence of delirium in the DL and control group was 5.4% (20/369) and 5.0% (19/379), respectively (P = 0.802). No significant differences between the DL and control group were observed in secon- dary endpoints. Subgroup analysis based on age and CCU LOS also showed no differences. Conclusion Our study suggests exposure to DL as an early single approach does not result in a reduction of total hospital LOS or reduced incidence of delirium. When delirium was diagnosed, it was associated with poor hospital outcome.
基金the Natural Science Foundation of China(Grant No.51861135102,71704005,71810107001)the Key Projects of National Key Research and Development Program of the Min-istry of Science and Technology of China(Grant No.2017YFC0213000).
文摘Agriculture consumes huge amounts of water in China and is profoundly affected by climate change.This study projects the agricultural water use towards 2030 under the climate change mitigation target at the provincial level in China by linking a computable general equilibrium(CGE)model and a regression model.By solving the endogeneities amongst agricultural water use,output and climate factors,we explore how these variables affect water use and further predict future trends through soft-link with the IMED|CGE model.It is found that sunshine duration has a slightly positive impact on water use.Furthermore,agricultural output will significantly drive agricultural water use based on historical data of the past 16 years.Results also show that carbon reduction would have a trade-offor co-benefit effect on water use due to regional disparity.Provinces with increasing agricultural exports,such as Xinjiang and Ningxia,would anticipate considerable growth in agricultural water use induced by carbon reduction.The soft-link method proposed by this study could be applied for future studies that aim to incorporate natural and geographical factors into human activities,and vice versa,for assessing sustainable development policies in an integrated way.
基金This research was funded by the National Natural Science Foun-dation of China(Grant No.41971129,42991233)the National Key Research and Development Program of China(Grant No.2016YFC0501701)the fellowship of China Postdoctoral Science Foun-dation(Grant No.2020M680699)and the Distinguished Membership Project of the Youth Innovation Promotion Association of Chinese Academy of Sciences.
文摘Terracing greatly affects soil properties,ecosystem services,human welfare and geographical sustainability.The purpose of this article is to determine the influence of terracing on soil properties across diverse regions in China.Three representative terrace types,including dryland loess terraces,dry-stone terraces,and paddy terraces,were selected as case study areas.Soil sampling was stratified according to thickness of soil layers in each terraced area.Based on field investigations and soil sampling,combined with the means of variance,correlation,redundancy and regression analysis,we analyzed the characteristics of soil properties in the terraces across three areas.Results showed that:(1)alterations of soil physicochemical properties mainly depend on differences between soil parent materials in such regions;(2)Due to the existence of“four-element isomorphism”in the ecosystem and reasonable human activities,paddy terraces had the greatest impact on soil properties which is mainly reflected in decreasing soil pH and increasing SOC,TN,and TK;(3)The content of SOC and TN in different areas was higher in terraced fields than in the sloped lands and decreased with soil deepening;(4)To maintain sufficient supply of soil nutrients and support the sustainability of agricultural terraces,it is necessary to apply manure to improve soil fertility and accelerate its aggregation in the terraces.For example,an increase in the application of nitrogen fertilizer in terraced fields in Hebei and Gansu provinces,which have a serious deficiency in soil available phosphorus(AP),is necessary to get greater amounts of P fertilization.The present study offers a theoretical foundation for the sustainability of terraced ecosystems through efficient crop production,which is the basis for strengthening the ecological security of terraced areas and promoting regional sustainability in those fragile mountains.
基金The research was supported by the National Natural Science Foundation of China under Grant Nos.40333027 and 40075004.
文摘Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.
基金Century Programme of Chinese Academy of Sciences.
文摘Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa. Compared to pure components, both binary and ternary mixtures showed lower heat transfer coefficients.This deterioration was more pronounced as heat flux was increased. Experimental data were compared with some empirical and semi-empirical correlations available in literature. For binary mixture, the accuracy of the correlations varied considerably with mixtures and the heat flux. Experimental data for HFC-32/134a/125 were also compared with available correlated equation obtained by Thome. For ternary mixture, the boiling range of binary mixture composed by the pure fluids with the lowest and the medium boiling points, and their concentration difference had important effects on boiling heat transfer coefficients.
基金Financial supports from China Postdoctoral Science Foundation (Nos.2019M650007 and 2020M670088)National NaturalScience Foundation of China (Nos.21906001,51721006)the Beijing Nova Program (No. Z19111000110000)
文摘Acetaminophen(ACE)is commonly used in analgesic and antipyretic drug,which is hardly removed by traditional wastewater treatment processes.Herein,amorphous Co(OH)_(2)nanocages were explored as peroxymonosulfate(PMS)activator for efficient degradation of ACE.In the presence of amorphous Co(OH)_(2)nanocages,100%of ACE removal was reached within 2 min with a reaction rate constant k_(1)=3.68 min 1 at optimum pH 5,which was much better than that of crystallineβ-Co(OH)_(2)and Co_(3)O_(4).Amorphous materials(disorder atom arrangement)with hollow structures possess large specific surface area,more reactive sites,and abundant vacancies structures,which could efficiently facilitate the catalytic redox reactions.The radicals quenching experiment demonstrated that SO_(4)^(·-)radicals dominated the ACE degradation rather than^(·)OH radicals.The mechanism of ACE degradation was elucidated by the an alysis of degradation in termediates and theoretical calculation,indicating that the electrophilic SO_(4)^(·-)and^(·)OH tend to attack the atoms of ACE with high Fukui index(f).Our finding highlights the remarkable advantages of amorphous materials as heterogeneous catalysts in sulfate radicals-based AOPs and sheds new lights on water treatment for the degradation of emerging organic contaminants.
基金supported by the Chinese Academy of Sciences(CAS)“Innovation Program”(ZKCX2-SW-210)State Key Project(G2000078502)the National Natural Science Foundation of China(Nos.40231004,40221503,and 40023001).
文摘Coupled ocean-atmospheric general circulation models are the only tools to quantitatively simulate the climate system. Since the end of the 1980s, a group of scientists in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), have been working to develop a global OGCM and a global coupled ocean-atmosphere general circulation modei (CGCM). Prom the original flux anomaly-coupling modei developed in the beginning of the 1990s to the latest directly-coupling modei, LASG scientists have developed four global coupled GCMs. This study summarizes the development history of these models and describes the third and fourth coupled GCMs and selected applications. Strengths and weaknesses of these models are highlighted.
基金supported by the National Natural Science Foundation of China(Grant No.40136010)the Ministry of Science and Technology of China(No.2001DIA50041)the Chinese Academy of Sciences(Grant No.KZCX-2-205).
文摘The progresses of marine meteorology studies achieved in China during the four year period from 1999 to 2002 are summarized in six directions: air-sea flux, marine meteorology in high latitudes, marine disasters, connection between ocean and weather/climate in China, remote sensing applications and new methodologies in marine meteorology. Compared to the previous ones, these studies adopted much more first-hand datasets, and more scientific issues were involved. As an exciting remark, there were so many contributions done by the young scientists. A brief statement about the research strategy of marine meteorology in China for the coming years is also given.
基金financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB40010000)the National Natural Science Foundation of China (Grant Nos.41907288,41673119,and 41773140)+1 种基金the Science and Technology Foundation of Guizhou Province (Grant Nos.[2019]1317 and [2020]1Y193)supported by the“Light of West China”Program and the CAS Scholarship。
文摘Isotopic signature is a powerful tool to discriminate methane(CH_(4)) source types and constrain regional and global scale CH_(4) budgets.Peatlands on the Qinghai-Tibetan Plateau are poorly understood about the isotopic signature of CH_(4) due to the limited experimental conditions.In this study,three campaigns of diurnal air samples spacing 2-3 h were taken from an alpine peatland on the eastern Qinghai-Tibetan Plateau to investigate its source signal characteristics.Both CH_(4) concentration and its stable carbon isotope(δ^(13)C-CH_(4)) were measured to derive the carbon isotopic signature of the CH_(4) source using the Keeling plot technique.Diurnal variation patterns in CH_(4) concentration and δ^(13)C-CH_(4) were observed during summertime,with depleted δ^(13)C-CH_(4) signals and high CH_(4) concentration appearing at nighttime.The δ^(13)C-CH4 signature during summer was calculated to be-71 % ± 1.3%,which falls within the range of other wetland studies and close to high-latitude peatlands.The boundary layer dynamic and CH_(4) source were supposed to influence the measured CH_(4) concentration and δ^(13)C-CH_(4.)Further investigations of CH_(4) isotopic signals into the nongrowing season are still needed to constrain the δ^(13)C-CH_(4) signature and its environmental controls in this region.
基金This work was conducted under support from the Ministry of Science and Technology of China through the“973”project of“Research on the Formation Mechanism and Prediction Theory of Hazardous Weather over China”under Grant No.G1998040911.
文摘The Simplified Simple Biosphere model (SSiB) is validated in off-line simulations against field measurements in the summer of 2001 from the China Heavy Rainfall Experiment and Study (CHeRES) over a grassland site located in the lower reaches of the Yangtze River. When initialized and driven by the observed atmospheric forcing, the model reproduced the observed surface heat fluxes and surface skin temperature realistically. The model was also able to well simulate the variation of soil water content. The sensitivity experiments found that the leaf reflectance was the most significant parameter in improving the estimation of surface albedo during both wet and dry periods. This study suggests that the model is capable of simulating the physical processes and of assessing the impact of biophysical parameters that relate to land-atmosphere interactions over the eastern Asian monsoon regions, which is crucial for mesoscale atmospheric models.