期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Dynamic flight stability of a hovering model insect:lateral motion 被引量:17
1
作者 Yanlai Zhang Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期175-190,共16页
The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigen... The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigenvector analysis for solving the equations of motion. The main results are as following. (i) Three natural modes of motion were identified: one unstable slow divergence mode (mode 1), one stable slow oscillatory mode (mode 2), and one stable fast subsidence mode (mode 3). Modes 1 and 2 mainly consist of a rotation about the horizontal longitudinal axis (x-axis) and a side translation; mode 3 mainly consists of a rotation about the x-axis and a rotation about the vertical axis. (ii) Approximate analytical expressions of the eigenvalues are derived, which give physical insight into the genesis of the natural modes of motion. (iii) For the unstable divergence mode, td, the time for initial disturbances to double, is about 9 times the wingbeat period (the longitudinal motion of the model insect was shown to be also unstable and td of the longitudinal unstable mode is about 14 times the wingbeat period). Thus, although the flight is not dynamically stable, the instability does not grow very fast and the insect has enough time to control its wing motion to suppress the disturbances. 展开更多
关键词 INSECT Dynamic flight stability Hovering ·Lateral motion Natural modes of motion
在线阅读 下载PDF
Experimental Investigations on Leading-Edge Vortex Structures for Flow over Non-Slender Delta Wings 被引量:9
2
作者 王晋军 张旺 《Chinese Physics Letters》 SCIE CAS CSCD 2008年第7期2550-2553,共4页
The dye injection and hydrogen bubble visualization techniques are used to investigate the dual-vortex structure including its development, breakdown and the spatial location of vortex core over nonslender delta wings... The dye injection and hydrogen bubble visualization techniques are used to investigate the dual-vortex structure including its development, breakdown and the spatial location of vortex core over nonslender delta wings. It is concluded that the dual-vortex structure can be affected significantly by sweep angle and Reynolds number, and generated only at small angle of attack. The angle between the projection of outer vortex core on delta wing surface and the root chord line has nothing to do with the Reynolds Number and angle of attack, but has simple linear relation with the sweep angle of the model tested. 展开更多
关键词 the power-law exponents PRECIPITATION durative abrupt precipitation change
原文传递
The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings 被引量:13
3
作者 Guoyu Luo Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第6期531-541,共11页
The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 ... The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 at angle of attack 40℃ are investigated, using the method of computational fluid dynamics. A representative wing corrugation is considered. Wing-shape and aspect ratio (AR) of ten representative insect wings are considered; they are the wings of fruit fly, cranefly, dronefly, hoverfly, ladybird, bumblebee, honeybee, lacewing (forewing), hawkmoth and dragon- fly (forewing), respectively (AR of these wings varies greatly, from 2.84 to 5.45). The following facts are shown. (1) The corrugated and flat-plate wings produce approximately the same aerodynamic forces. This is because for a sweeping wing at large angle of attack, the length scale of the corrugation is much smaller than the size of the separated flow region or the size of the leading edge vortex (LEV). (2) The variation in wing shape can have considerable effects on the aerodynamic force; but it has only minor effects on the force coefficients when the velocity at r2 (the radius of the second :moment of wing area) is used as the reference velocity; i.e. the force coefficients are almost unaffected by the variation in wing shape. (3) The effects of AR are remarkably small: whenAR increases from 2.8 to 5.5, the force coefficients vary only slightly; flowfield results show that when AR is relatively large, the part of the LEV on the outer part of the wings sheds during the sweeping motion. As AR is increased, on one hand, the force coefficients will be increased due to the reduction of 3-dimensional flow effects; on the other hand, they will be decreased due to the shedding of part of the LEV; these two effects approximately cancel each other, resulting in only minor change of the force coefficients. 展开更多
关键词 insect flight - Sweeping wing Unsteady aerodynamics Wing corrugation Planform
在线阅读 下载PDF
Wing kinematics measurement and aerodynamics of free-flight maneuvers in drone-flies 被引量:11
4
作者 Yanlai Zhang Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第3期371-382,共12页
The time courses of wing and body kinematics of two free-flying drone-flies, as they performed saccades, were measured using 3D high-speed video, and the morpho- logical parameters of the wings and body of the insects... The time courses of wing and body kinematics of two free-flying drone-flies, as they performed saccades, were measured using 3D high-speed video, and the morpho- logical parameters of the wings and body of the insects were also measured. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces and moments acting on the insects. The main results are as following. (1) The turn is mainly a 90° change of heading. It is made in about 10 wingbeats (about 55 ms). It is of interest to note that the number of wingbeats taken to make the turn is approximately the same as and the turning time is only a little different from that of fruitflies measured recently by the same approach, even if the weight of the droneflies is more than 100 times larger than that of the fruitflies. The long axis of body is about 40° from the horizontal during the maneuver. (2) Although the body rotation is mainly about a vertical axis, a relatively large moment around the yaw axis (axis perpendicular to the long axis of body), called as yaw moment, is mainly needed for the turn, because moment of inertial of the body about the yaw axis is much larger than that about the long axis. (3) The yaw moment is mainly pro- duced by changes in wing angles of attack: in a right turn, for example, the dronefly lets its right wing to have a rather large angle of attack in the downstroke (generally larger than 50°) and a small one in the upstroke to start the turn, and lets its left wing to do so to stop the turn, unlike the fruitflies who generate the yaw moment mainly by changes in the stroke plane and stroke amplitude. 展开更多
关键词 Drone-fly - Maneuver Wing kinematicsmeasurement AERODYNAMICS Navier-Stokes simulation
在线阅读 下载PDF
The influence of the wake of a flapping wing on the production of aerodynamic forces 被引量:9
5
作者 Jianghao Wu Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期411-418,共8页
The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and... The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing “impinges” on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing. 展开更多
关键词 Insect. Flapping. Unsteady aerodynamics.Wing/wake interaction. CFD analysis
在线阅读 下载PDF
Dynamic flight stability of hovering model insects:theory versus simulation using equations of motion coupled with Navier-Stokes equations 被引量:9
6
作者 Yan-Lai Zhang Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第4期509-520,共12页
In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model ... In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects. 展开更多
关键词 Insect Hovering Dynamic flight stability Averaged model Equations-of-motion Navier-Stokes simulation
在线阅读 下载PDF
Investigation on 3Dt wake flow structures of swimming bionic fish 被引量:1
7
作者 G.-X.Shen G.-K.Tan G.-J.Lai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1494-1508,共15页
A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robo... A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support frame- work using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a trans- lational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow. 展开更多
关键词 Fish swimming 3D flow structure Unsteadyhydrodynamics DSPIV measurement - Vortex ring
在线阅读 下载PDF
A SPECIAL SOLUTION OF WAVE DISSIPATION BY FINITE POROUS PLATES
8
作者 王晋军 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第4期353-357,共5页
The reflection and transmission of water waves caused by a small amplitude incident wave through finite fine porous plates with equal spacing and permeability in an infinitely long open channel of constant water depth... The reflection and transmission of water waves caused by a small amplitude incident wave through finite fine porous plates with equal spacing and permeability in an infinitely long open channel of constant water depth and zero slope are studied. A special solution is obtained when the distance between the two neighbouring plates is an integral multiple of the half-wavelength of the incident wave. It is found that when the dimensionless porous-effect parameter G0 is equal to half the total plate number, the wave dissipation reaches a maximum, and only 50% of the incident wave energy remains in the reflected and transmitted waves. Meanwhile, the reflected and transmitted waves have the same amplitude. 展开更多
关键词 wave motion small-amplitude wave linear wave incident wave wave dissipation porous plates
在线阅读 下载PDF
Experimental investigations on separation control and flow structure around a circular cylinder with synthetic jet 被引量:9
9
作者 WANG JinJun FENG LiHao XU ChaoJun 《Science China(Technological Sciences)》 SCIE EI CAS 2007年第5期550-559,共10页
Circular cylinder separation control and flow structure influenced by the synthetic jet have been experimentally investigated in a water channel. The synthetic jet is- sues from a slot and ejects toward upstream from ... Circular cylinder separation control and flow structure influenced by the synthetic jet have been experimentally investigated in a water channel. The synthetic jet is- sues from a slot and ejects toward upstream from the front stagnation point of the cylinder. It has been found that, similar to the traditional synthetic jet which is po- sitioned near the separation point or inside the separation region, the present synthetic jet arrangement constitutes an efficient way to control flow separation of the circular cylinder, but with a different control mechanism. The present synthetic jet leads to an upstream displacement of the front stagnation point and the forma- tion of a vortex pair near both sides of the exit orifice. When ReU based on the synthetic jet average exit orifice velocity is about lower than 43, a closed envelope forms in front of the windward side of the cylinder during the blowing cycle of syn- thetic jet, which acts as an apparent modification for the cylinder configuration. When ReU is high enough, an open envelope forms upstream of the cylinder, and the flow around the cylinder becomes much energetic. Thus, regardless of ReU, the present synthetic jet can improve separation for flow around a circular cylinder. With regard to the leeward side, as ReU increases, the flow separation region be- hind the cylinder gradually disappears. The flow over cylinder may be fully attached when the open envelope forms upstream of the cylinder and ReU is greater than 344. Then, the flow past the cylinder will converge near the back stagnation point of the cylinder, where a new vortex pair shedding periodically is generated due to the high shear layer. 展开更多
关键词 FLOW control synthetic jet FLOW AROUND a cylinder VORTEX structure
原文传递
Experimental investigation on the flow structure over a simplified Papilio Ulysses model 被引量:2
10
作者 HU Ye WANG JinJun +1 位作者 ZHANG PanFeng ZHANG Cao 《Chinese Science Bulletin》 SCIE EI CAS 2009年第6期1026-1031,共6页
The aerodynamic characteristics of butterflies, especially those which can migrate overseas, have received a great deal of attention because they have larger-scale wingspans and lower flapping frequencies than other i... The aerodynamic characteristics of butterflies, especially those which can migrate overseas, have received a great deal of attention because they have larger-scale wingspans and lower flapping frequencies than other insects such as drosophilae and bees. The objective of this work is to investi-gate the flow structures over a simplified model of Papilio Ulysses, one kind of migratory butterflies, through hydrogen bubble visualizations, and leading-edge vortices, wing-tip vortices, separation bub-bles and horseshoe vortex wake are observed. Moreover, the variations of these structures with the angle of attack are discussed in detail. A new type of leading-edge vortices which resembles the inversed Chinese character "八" is observed in the experiment. 展开更多
关键词 流场结构 凤蝶 模型 实验 空气动力特性 流动结构 可视化 马蹄涡
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部