The rates at which birds use energy may have profound effects on fitness, thereby influencing physiology, behavior, ecology and evolution. Comparisons of standardized metabolic rates (e.g., lower and upper limits of ...The rates at which birds use energy may have profound effects on fitness, thereby influencing physiology, behavior, ecology and evolution. Comparisons of standardized metabolic rates (e.g., lower and upper limits of metabolic power output) present a method for elucidating the effects of ecological and evolutionary factors on the interface between physiology and life history in birds. In this paper we review variation in avian metabolic rates [basal metabolic rate (BMR; minimum normothermic metabolic rate), summit metabolic rate (Msum; maximal thermoregulatory metabolic rate), and maximal metabolic rate (MMR; maximal exercise metabolic rate)], the factors associated with this variation, the evidence for functional links between these metabolic traits, and the ecological and evolutionary significance of avian metabolic diversity. Both lower and upper limits to metabolic power production are phenotypically flexible traits, and vary in association with numerous ecological and evolutionary factors. For both inter- and intraspecific comparisons, lower and upper limits to metabolic power production are generally upregulated in response to energetically demanding conditions and downregulated when energetic demands are relaxed, or under conditions of energetic scarcity. Positive correlations have been documented between BMR, Msum and MMR in some, but not all studies on birds, providing partial support for the idea of a functional link between lower and upper limits to metabolic power production, but more intraspecific studies are needed to determine the robustness of this conclusion. Correlations between BMR and field metabolic rate (or daily energy expenditure) in birds are variable, suggesting that the linkage between these traits is subject to behavioral adjustment, and studies of the relationship between field and maximal metabolic rates are lacking. Our understanding of avian metabolic diversity would benefit from future studies of: (1) the functional and mechanistic links between lower and upper limits of metabolic power output; (2) the environmental and ecological cues driving phenotypically flexible metabolic responses, and how responses to such cues might impact population responses to climate change; (3) the shapes of metabolic reaction norms and their association with environmental variability; and (4) the relationship of metabolic variation to fitness, including studies of repeatability and heritability of minimum and maximum metabolic power output [Current Zoology 56 (6): 741-758, 2010].展开更多
Background:Understanding the factors that influence the foraging behavior and perception of habitat quality by animals has long been the focus in ecology. Due to the direct effect resource acquisition has on an indivi...Background:Understanding the factors that influence the foraging behavior and perception of habitat quality by animals has long been the focus in ecology. Due to the direct effect resource acquisition has on an individual's fitness and species' survival, predation risk is considered widely to be a major driver of foraging decision. The objectives of this study were to investigate how predation risk is perceived by granivorous bird species with respect to different habitat and microhabitat types, time of day and food types in Amurum Forest Reserve, Nigeria, with a view to direct future conservation planning. Methods: For 3 months, we conducted field experiments to measure giving-up densities (GUD, the amount of food left behind in artificial patches after birds cease to forage in it) and how it differs with habitat types, microhabitats, times of day, and food types. General linear mixed-effect models (GLMMs) were fitted to investigate the differences in GUD with respect to the aforementioned variables. Model selection was done based on the Akaike's Information Criterion (AIC). Results: There was no significant difference in GUDs across habitats. However, there was a significant difference in GUDs between microhabitats. Higher food remnants were recorded in the open than in cover microhabitats, as birds exploited food patches in the cover more. Time of day influenced foraging behavior in the birds. They foraged more in the morning than afternoon across all three habitats except for the gallery forest where birds foraged less in the morning. Higher GUDs were recorded in open than cover microhabitats both in the morning and the afternoon. Birds had a preference for rice, millet, and groundnut respectively. Conclusion:The differences in GUDs were very indicative of differences in foraging behavior and perception of resource availability in response to perceived predation risk. Therefore, this study suggests that the understanding of foraging decisions can be a veritable method for assessing habitat quality as perceived by animals.展开更多
Predation is an important source of natural selection on prey species and has resulted in adaptations such as antipredator vocal signals,which can alert others to the presence of predators and solicit cooperative atta...Predation is an important source of natural selection on prey species and has resulted in adaptations such as antipredator vocal signals,which can alert others to the presence of predators and solicit cooperative attack.Although vocal alarm signals of birds have been well studied,they are poorly known in tropical African species.To address this lack of information,the antipredatory signals and responses of two lapwings(Wattled Lapwing Vanellus senegallus and Spur-winged Lapwing Vanellus spinosus)to potential predators were investigated using data collected from focal observation,distance measurements,focal recordings,and playback experiment.The lapwing calls elicited to predators were classified as alarm or mobbing calls based on whether the calls elicited alert behavior or attack from other lapwings.Discriminant linear analysis(DLA)was used to compare the time and frequency parameters of the call types measured in Raven PRO.Also,lapwings’responses to intruders,alert and start distance,time of day,and latency,as well as the effects of flock size and distance to cover were examined.About 48%of all calls was correctly classified by DLA.The best predictors of call type for the lapwings were maximum frequency and high frequency.Both alarm and mobbing calls were elicited by African Wattled Lapwings to dogs and humans.Mobbing calls were elicited to intruders by the Spur-winged Lapwings.Alert distance was positively associated with start distance,and differed between morning and evening in both lapwings.With scarce information from tropical Africa,this study put in perspective vocal and antipredator behavior of lapwing species in Africa.展开更多
Robots have primarily been developed for warfare, yet they also serve peaceful purposes. Their use in ecology is in its infancy, but they may soon become essential tools in a broad variety of ecological sub-discipline...Robots have primarily been developed for warfare, yet they also serve peaceful purposes. Their use in ecology is in its infancy, but they may soon become essential tools in a broad variety of ecological sub-disciplines. Autonomous robots, in particular drones sent to previously inaccessible areas, have revolutionized data acquisition, not only for abiotic parameters, but also for recording the behavior of undisturbed animals and collecting biological material. Robots will also play an essential role in population ecology, as they will allow for automatic census of individuals through image processing, or via detection of animals marked electronically. These new technologies will enable automated experimentation for increasingly large sample sizes, both in the laboratory and in the field. Finally, interactive robots and cyborgs are becoming major players in modern studies of animal behavior. Such rapid progress nonetheless raises ethical, environmental, and security issues.展开更多
Although nanotechnology has led to important advances in in vitro diagnostics, the development of nanosensors for in vivo detection remains very challenging. Here, we demonstrated the proof-of-principle of in vivo det...Although nanotechnology has led to important advances in in vitro diagnostics, the development of nanosensors for in vivo detection remains very challenging. Here, we demonstrated the proof-of-principle of in vivo detection of nudeic acid targets using a promising type of surface-enhanced Raman scattering (SERS) nanosensor implanted in the skin of a large animal model (pig). The in vivo nanosensor used in this study involves the "inverse molecular sentinel" detection scheme using plasmonics-active nanostars, which have tunable absorption bands in the near infrared region of the "tissue optical window", rendering them efficient as an optical sensing platform for in vivo optical detection. Ex vivo measurements were also performed using human skin grafts to demonstrate the detection of SERS nanosensors through tissue. In this stud, a new core--shell nanorattle probe with Raman reporters trapped between the core and shell was utilized as an internal standard system for self-calibration. These results illustrate the usefulness and translational potential of the SERS nanosensor for in vivo biosensing.展开更多
Pandas are endemic to iodine-poor environments and appear to be specialized for a goitrogenic staple diet.In particular,the importance of thiocyanate in bamboos might possibly have been overlooked in captive breeding ...Pandas are endemic to iodine-poor environments and appear to be specialized for a goitrogenic staple diet.In particular,the importance of thiocyanate in bamboos might possibly have been overlooked in captive breeding programs.Although excreted in urine,thiocyanate first antagonizes absorption of iodine by the thyroid(of parent,fetus and suckling juveniles)and the mammary glands.In livestock and humans,subclinical deficiency of iodine is known to result in reproductive problems(including retardation of the fetus and suckling infant)even where the mother appears to be unaffected beyond slight hyperplasia of the thyroid and subtle hypothyroidism as reflected by levels of thyroid hormones.We suggest that the possibilities of iodine deficiency or excess should be carefully considered wherever the reproductive rates of pandas are unsatisfactory.展开更多
文摘The rates at which birds use energy may have profound effects on fitness, thereby influencing physiology, behavior, ecology and evolution. Comparisons of standardized metabolic rates (e.g., lower and upper limits of metabolic power output) present a method for elucidating the effects of ecological and evolutionary factors on the interface between physiology and life history in birds. In this paper we review variation in avian metabolic rates [basal metabolic rate (BMR; minimum normothermic metabolic rate), summit metabolic rate (Msum; maximal thermoregulatory metabolic rate), and maximal metabolic rate (MMR; maximal exercise metabolic rate)], the factors associated with this variation, the evidence for functional links between these metabolic traits, and the ecological and evolutionary significance of avian metabolic diversity. Both lower and upper limits to metabolic power production are phenotypically flexible traits, and vary in association with numerous ecological and evolutionary factors. For both inter- and intraspecific comparisons, lower and upper limits to metabolic power production are generally upregulated in response to energetically demanding conditions and downregulated when energetic demands are relaxed, or under conditions of energetic scarcity. Positive correlations have been documented between BMR, Msum and MMR in some, but not all studies on birds, providing partial support for the idea of a functional link between lower and upper limits to metabolic power production, but more intraspecific studies are needed to determine the robustness of this conclusion. Correlations between BMR and field metabolic rate (or daily energy expenditure) in birds are variable, suggesting that the linkage between these traits is subject to behavioral adjustment, and studies of the relationship between field and maximal metabolic rates are lacking. Our understanding of avian metabolic diversity would benefit from future studies of: (1) the functional and mechanistic links between lower and upper limits of metabolic power output; (2) the environmental and ecological cues driving phenotypically flexible metabolic responses, and how responses to such cues might impact population responses to climate change; (3) the shapes of metabolic reaction norms and their association with environmental variability; and (4) the relationship of metabolic variation to fitness, including studies of repeatability and heritability of minimum and maximum metabolic power output [Current Zoology 56 (6): 741-758, 2010].
基金funded by the Leventis Conservation Foundation and it is publication number 148 from the A.P.Leventis Ornithological Research Institute,Jos,Nigeria
文摘Background:Understanding the factors that influence the foraging behavior and perception of habitat quality by animals has long been the focus in ecology. Due to the direct effect resource acquisition has on an individual's fitness and species' survival, predation risk is considered widely to be a major driver of foraging decision. The objectives of this study were to investigate how predation risk is perceived by granivorous bird species with respect to different habitat and microhabitat types, time of day and food types in Amurum Forest Reserve, Nigeria, with a view to direct future conservation planning. Methods: For 3 months, we conducted field experiments to measure giving-up densities (GUD, the amount of food left behind in artificial patches after birds cease to forage in it) and how it differs with habitat types, microhabitats, times of day, and food types. General linear mixed-effect models (GLMMs) were fitted to investigate the differences in GUD with respect to the aforementioned variables. Model selection was done based on the Akaike's Information Criterion (AIC). Results: There was no significant difference in GUDs across habitats. However, there was a significant difference in GUDs between microhabitats. Higher food remnants were recorded in the open than in cover microhabitats, as birds exploited food patches in the cover more. Time of day influenced foraging behavior in the birds. They foraged more in the morning than afternoon across all three habitats except for the gallery forest where birds foraged less in the morning. Higher GUDs were recorded in open than cover microhabitats both in the morning and the afternoon. Birds had a preference for rice, millet, and groundnut respectively. Conclusion:The differences in GUDs were very indicative of differences in foraging behavior and perception of resource availability in response to perceived predation risk. Therefore, this study suggests that the understanding of foraging decisions can be a veritable method for assessing habitat quality as perceived by animals.
基金funding(No.217)from the A.P.Leventis Foundation Scholarship(to F.R.J).
文摘Predation is an important source of natural selection on prey species and has resulted in adaptations such as antipredator vocal signals,which can alert others to the presence of predators and solicit cooperative attack.Although vocal alarm signals of birds have been well studied,they are poorly known in tropical African species.To address this lack of information,the antipredatory signals and responses of two lapwings(Wattled Lapwing Vanellus senegallus and Spur-winged Lapwing Vanellus spinosus)to potential predators were investigated using data collected from focal observation,distance measurements,focal recordings,and playback experiment.The lapwing calls elicited to predators were classified as alarm or mobbing calls based on whether the calls elicited alert behavior or attack from other lapwings.Discriminant linear analysis(DLA)was used to compare the time and frequency parameters of the call types measured in Raven PRO.Also,lapwings’responses to intruders,alert and start distance,time of day,and latency,as well as the effects of flock size and distance to cover were examined.About 48%of all calls was correctly classified by DLA.The best predictors of call type for the lapwings were maximum frequency and high frequency.Both alarm and mobbing calls were elicited by African Wattled Lapwings to dogs and humans.Mobbing calls were elicited to intruders by the Spur-winged Lapwings.Alert distance was positively associated with start distance,and differed between morning and evening in both lapwings.With scarce information from tropical Africa,this study put in perspective vocal and antipredator behavior of lapwing species in Africa.
基金funded by CNRS and by the French Polar Institute IPEV(Grants 137 to YLM,333 to TB and 388 to DG).
文摘Robots have primarily been developed for warfare, yet they also serve peaceful purposes. Their use in ecology is in its infancy, but they may soon become essential tools in a broad variety of ecological sub-disciplines. Autonomous robots, in particular drones sent to previously inaccessible areas, have revolutionized data acquisition, not only for abiotic parameters, but also for recording the behavior of undisturbed animals and collecting biological material. Robots will also play an essential role in population ecology, as they will allow for automatic census of individuals through image processing, or via detection of animals marked electronically. These new technologies will enable automated experimentation for increasingly large sample sizes, both in the laboratory and in the field. Finally, interactive robots and cyborgs are becoming major players in modern studies of animal behavior. Such rapid progress nonetheless raises ethical, environmental, and security issues.
文摘Although nanotechnology has led to important advances in in vitro diagnostics, the development of nanosensors for in vivo detection remains very challenging. Here, we demonstrated the proof-of-principle of in vivo detection of nudeic acid targets using a promising type of surface-enhanced Raman scattering (SERS) nanosensor implanted in the skin of a large animal model (pig). The in vivo nanosensor used in this study involves the "inverse molecular sentinel" detection scheme using plasmonics-active nanostars, which have tunable absorption bands in the near infrared region of the "tissue optical window", rendering them efficient as an optical sensing platform for in vivo optical detection. Ex vivo measurements were also performed using human skin grafts to demonstrate the detection of SERS nanosensors through tissue. In this stud, a new core--shell nanorattle probe with Raman reporters trapped between the core and shell was utilized as an internal standard system for self-calibration. These results illustrate the usefulness and translational potential of the SERS nanosensor for in vivo biosensing.
文摘Pandas are endemic to iodine-poor environments and appear to be specialized for a goitrogenic staple diet.In particular,the importance of thiocyanate in bamboos might possibly have been overlooked in captive breeding programs.Although excreted in urine,thiocyanate first antagonizes absorption of iodine by the thyroid(of parent,fetus and suckling juveniles)and the mammary glands.In livestock and humans,subclinical deficiency of iodine is known to result in reproductive problems(including retardation of the fetus and suckling infant)even where the mother appears to be unaffected beyond slight hyperplasia of the thyroid and subtle hypothyroidism as reflected by levels of thyroid hormones.We suggest that the possibilities of iodine deficiency or excess should be carefully considered wherever the reproductive rates of pandas are unsatisfactory.