An active disturbance rejection controller (ADRC) is developed for load frequency control (LFC) and voltage regulation respectively in a power system. For LFC, the ADRC is constructed on a three-area interconnecte...An active disturbance rejection controller (ADRC) is developed for load frequency control (LFC) and voltage regulation respectively in a power system. For LFC, the ADRC is constructed on a three-area interconnected power system. The control goal is to maintain the frequency at nominal value (60Hz in North America) and keep tie-line power flow at scheduled value. For voltage regulation, the ADRC is applied to a static var compensator (SVC) as a supplementary controller. It is utilized to maintain the voltages at nearby buses within the ANSI C84.1 limits (or +5% tolerance). Particularly, an alternative ADRC with smaller controller gains than classic ADRC is originally designed on the SVC system. From power generation and transmission to its distribution, both voltage and frequency regulating systems are subject to large and small disturbances caused by sudden load changes, transmission faults, and equipment loss/malfunction etc. The simulation results and theoretical analyses demonstrate the effectiveness of the ADRCs in compensating the disturbances and achieving the control goals.展开更多
Both intake volumetric flow and through-screen velocity (the velocity of water as it passes through the screen) are important variables affecting fish impingement at industrial water intake structures including thos...Both intake volumetric flow and through-screen velocity (the velocity of water as it passes through the screen) are important variables affecting fish impingement at industrial water intake structures including those at power plants. However, there are limited data available on quantitative assessments of impingement following changes in power plant operation such as reduced volumetric flow and intake velocity. Impingement studies were conducted at Bay Shore Power Plant in 2005-2006 (baseline) and again in 2013-2014 following fish protection mitigation which included reduced intake volumetric flows (from 33.5 m^3·s^-1 to 9.1 cm·s^-1), a reduced through-screen velocity (from approximately 79.2 cm·s^-1 to 11.6 cm·s^-1), modified traveling screens and installation of a fish-return system to gently and quickly remove any fish that were impinged back into the waterbody. A comparison of baseline and post-mitigation results suggested that with this mitigation in place, impingement reductions can exceed 90% for robust dominant fish species in the area.展开更多
文摘An active disturbance rejection controller (ADRC) is developed for load frequency control (LFC) and voltage regulation respectively in a power system. For LFC, the ADRC is constructed on a three-area interconnected power system. The control goal is to maintain the frequency at nominal value (60Hz in North America) and keep tie-line power flow at scheduled value. For voltage regulation, the ADRC is applied to a static var compensator (SVC) as a supplementary controller. It is utilized to maintain the voltages at nearby buses within the ANSI C84.1 limits (or +5% tolerance). Particularly, an alternative ADRC with smaller controller gains than classic ADRC is originally designed on the SVC system. From power generation and transmission to its distribution, both voltage and frequency regulating systems are subject to large and small disturbances caused by sudden load changes, transmission faults, and equipment loss/malfunction etc. The simulation results and theoretical analyses demonstrate the effectiveness of the ADRCs in compensating the disturbances and achieving the control goals.
文摘Both intake volumetric flow and through-screen velocity (the velocity of water as it passes through the screen) are important variables affecting fish impingement at industrial water intake structures including those at power plants. However, there are limited data available on quantitative assessments of impingement following changes in power plant operation such as reduced volumetric flow and intake velocity. Impingement studies were conducted at Bay Shore Power Plant in 2005-2006 (baseline) and again in 2013-2014 following fish protection mitigation which included reduced intake volumetric flows (from 33.5 m^3·s^-1 to 9.1 cm·s^-1), a reduced through-screen velocity (from approximately 79.2 cm·s^-1 to 11.6 cm·s^-1), modified traveling screens and installation of a fish-return system to gently and quickly remove any fish that were impinged back into the waterbody. A comparison of baseline and post-mitigation results suggested that with this mitigation in place, impingement reductions can exceed 90% for robust dominant fish species in the area.