In this numerical model for simulating the Kuroshio intrusion into the East and South China Seas,vertically averaged marine hydrodynamic equations governing ocean currents and long-period waves areapproximated by a se...In this numerical model for simulating the Kuroshio intrusion into the East and South China Seas,vertically averaged marine hydrodynamic equations governing ocean currents and long-period waves areapproximated by a set of two-time-level semi-implicit finite difference equations. The major terms in-cluding the local acceleration, sea-surface slope, Coriolis force and the bottom friction are approxi-mated with the Crank-Nicholson scheme, which is of second order accuracy. The advection terms are app-roximated with the Leith scheme. The difference equations are split into two sets of alternating directionimplicit quations, each of which has a tridiagonal matrix and can be easily solved. The model reproduces a major Kuroshio intrusion north of Luzon Island, one north of Taiwan Island, andone west of the Tokara Strait. The model shows a current system running from the Luzon Strait to the coastof Vietnam and Hainan Island, through the Taiwan Strait and then into the Tsushima Strait. The summerand winter展开更多
The sedimentary environment and ecological system in the South Yellow Sea (SYS) changed dramatically due to sea level change caused by glacial-interglacial cycles. The authors report the use of marine biomarkers (bras...The sedimentary environment and ecological system in the South Yellow Sea (SYS) changed dramatically due to sea level change caused by glacial-interglacial cycles. The authors report the use of marine biomarkers (brassicasterol, dinosterol and C37 alkenones) and terrigenous biomarkers (C28+C30+C32 nalkanols) in core DLC70-3 from the SYS to reconstruct the variation in the phytoplankton productivity and community structure and possible mechanisms during the middle Pleistocene. The results show that the primary productivity and that of single algae presented a consistent trend for the whole core during the middle Pleistocene, which was high during interglacial periods and low during glacial periods, with the highest being in marine isotope stage (MIS) 5–9 and MIS 19–21. The main reason is that the Yellow Sea Warm Current (YSWC) carried much of high temperature, high salinity water into the SYS, causing upwelling and vertical mixing and stirring, which increased the nutrient supply in the photosynthetic layer. The phytoplankton community structure mainly showed an increase in the relative content of haptophytes in MIS 5–9 and MIS 19–21, while the relative content of diatoms and dinoflagellates decreased;there was no evidence for a haptophyte content in other stages. The results reveal a shift from a coccolitho-phoriddominated community during MIS 5 –9 and MIS 19 –21 to a diatom-dominated community during the other stages, mainly as a result of surface salinity variation, attributed to the invasion of the YSWC during high sea level periods.展开更多
基金Project supported by the National Natural Science Foundation of China.
文摘In this numerical model for simulating the Kuroshio intrusion into the East and South China Seas,vertically averaged marine hydrodynamic equations governing ocean currents and long-period waves areapproximated by a set of two-time-level semi-implicit finite difference equations. The major terms in-cluding the local acceleration, sea-surface slope, Coriolis force and the bottom friction are approxi-mated with the Crank-Nicholson scheme, which is of second order accuracy. The advection terms are app-roximated with the Leith scheme. The difference equations are split into two sets of alternating directionimplicit quations, each of which has a tridiagonal matrix and can be easily solved. The model reproduces a major Kuroshio intrusion north of Luzon Island, one north of Taiwan Island, andone west of the Tokara Strait. The model shows a current system running from the Luzon Strait to the coastof Vietnam and Hainan Island, through the Taiwan Strait and then into the Tsushima Strait. The summerand winter
基金The authors are grateful to the crew of the R/V Kan 407 for their assistance with sample collection. Special thanks are also extended to Prof. Zhao Meixun and Dr. Xing Lei for help with biomarker measurements and advice,to the anonymous reviewers and the Executive Editor-in-Chief Dr. Yang Yan for their comments and suggestions,which significantly improved the quality of the manuscript. The work was jointly supported by the China Geological Survey (DD20160137,DD20190208)the National Natural Science Foundation of China (No.41502175).
文摘The sedimentary environment and ecological system in the South Yellow Sea (SYS) changed dramatically due to sea level change caused by glacial-interglacial cycles. The authors report the use of marine biomarkers (brassicasterol, dinosterol and C37 alkenones) and terrigenous biomarkers (C28+C30+C32 nalkanols) in core DLC70-3 from the SYS to reconstruct the variation in the phytoplankton productivity and community structure and possible mechanisms during the middle Pleistocene. The results show that the primary productivity and that of single algae presented a consistent trend for the whole core during the middle Pleistocene, which was high during interglacial periods and low during glacial periods, with the highest being in marine isotope stage (MIS) 5–9 and MIS 19–21. The main reason is that the Yellow Sea Warm Current (YSWC) carried much of high temperature, high salinity water into the SYS, causing upwelling and vertical mixing and stirring, which increased the nutrient supply in the photosynthetic layer. The phytoplankton community structure mainly showed an increase in the relative content of haptophytes in MIS 5–9 and MIS 19–21, while the relative content of diatoms and dinoflagellates decreased;there was no evidence for a haptophyte content in other stages. The results reveal a shift from a coccolitho-phoriddominated community during MIS 5 –9 and MIS 19 –21 to a diatom-dominated community during the other stages, mainly as a result of surface salinity variation, attributed to the invasion of the YSWC during high sea level periods.