期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
P_(ARF):An Adaptive Abstraction-Strategy Tuner for Static Analysis
1
作者 Zhong-Yi Wang Ming-Shuai Chen +6 位作者 Teng-Jie Lin Lin-Yu Yang Jun-Hao Zhuo Qiu-Ye Wang Sheng-Chao Qin Xiao Yi Jian-Wei Yin 《Journal of Computer Science & Technology》 2025年第4期993-1005,共13页
We launch P_(ARF)—a toolkit for adaptively tuning abstraction strategies of static program analyzers in a fully automated manner.P_(ARF) models various types of external parameters(encoding abstraction strategies)as ... We launch P_(ARF)—a toolkit for adaptively tuning abstraction strategies of static program analyzers in a fully automated manner.P_(ARF) models various types of external parameters(encoding abstraction strategies)as random variables subject to probability distributions over latticed parameter spaces.It incrementally refines the probability distributions based on accumulated intermediate results generated by repeatedly sampling and analyzing,thereby ultimately yielding a set of highly accurate abstraction strategies.P_(ARF) is implemented on top of F_(RAMA)-C/E_(VA)—an off-the-shelf open-source static analyzer for C programs.P_(ARF) provides a web-based user interface facilitating the intuitive configuration of static analyzers and visualization of dynamic distribution refinement of the abstraction strategies.It further supports the identification of dominant parameters in F_(RAMA)-C/E_(VA) analysis.Benchmark experiments and a case study demonstrate the competitive performance of P_(ARF) for analyzing complex,large-scale real-world programs. 展开更多
关键词 automatic parameter tuning F_(RAMA)-C/E_(VA) program verification static analysis abstraction strategy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部