Wastewater-based epidemiology(WBE)may be successfully used to comprehensively monitor and determine the scale and dynamics of some infections in the community.We monitored severe acute respiratory syndrome coronavirus...Wastewater-based epidemiology(WBE)may be successfully used to comprehensively monitor and determine the scale and dynamics of some infections in the community.We monitored severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)RNA in raw wastewater samples from Porto Alegre,Southern Brazil.The samples were collected and analyzed every week between May 2020 to May 2021.Meanwhile,different social restrictions were applied according to the number of hospitalized patients in the region.Weekly samples were obtained from two wastewater treatment plants(WWTP),named Navegantes and Serraria.To determine the SARS-CoV-2 RNA titers in wastewater,we performed RT-qPCR analysis targeting the N gene(N1).The highest titer of SARS-CoV-2 RNA was observed between epidemiological weeks(EWs)33-37(August),42-43(October),45-46(November),49-51(December)in 2020,and 1-3(January),7-13(February to March)in 2021,with viral loads ranging from 1-106-3-106 genomic copies/Liter.An increase in positive confirmed cases followed such high viral loads.Depending on the sampling method used,positive cases increased in 6-7 days and 15 days after the rise of viral RNA titers in wastewater,with composite sampling methods showing a lower time lag and a higher resolution on the analyses.The results showed a direct relation between strict social restrictions and the loads of detected RNA reduction in wastewater,corroborating the number of confirmed cases.Differences in viral loads between different sampling points and methods were observed,as composite samples showed more stable results during the analyzed period.Besides,viral loads obtained from samples collected at Serraria WWTP were consistently higher than the ones obtained at Navegantes WWTP,indicating differences in local dynamics of SARS-CoV-2 spread in different regions of Porto Alegre.In conclusion,wastewater sampling to monitor SARS-CoV-2 is a robust tool to evaluate the viral loads contributing to hospitalized patients’data and confirmed cases.In addition,SARS-CoV-2 detection in sewage may inform and alert the government when there are asymptomatic or nontested patients.展开更多
Footwear industries generate leather waste during the operation.Some of these wastes contain chromium,which may bring environmental concerns.This study aimed to reuse finished leather waste,the major part of these haz...Footwear industries generate leather waste during the operation.Some of these wastes contain chromium,which may bring environmental concerns.This study aimed to reuse finished leather waste,the major part of these hazard-ous wastes,via producing a composite with thermoplastic polyurethane(TPU)for shoe soles.Finished leather waste containing black dyes and pigments was used to color the TPU.The finished leather waste was fragmented,milled,micronized and blended with TPU in a ratio of 10%,15%,and 20%w/w to produce composite materials.The compos-ite materials were evaluated by morphological and thermal characterizations,physical-mechanical analysis,and envi-ronmental tests(leaching and solubilization),which presented that the physical-mechanical and thermal properties were within the standard of shoe soles,and the composites can be classified as non-hazardous.The composites enabled a new way of coloring polymeric matrices and reusing leather waste.展开更多
基金supported by CAPES(No 88887.509240/2020-00)FAPERGS(21/2551-0000069-4),ACFFSC are PQ2 CNPq fellow.
文摘Wastewater-based epidemiology(WBE)may be successfully used to comprehensively monitor and determine the scale and dynamics of some infections in the community.We monitored severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)RNA in raw wastewater samples from Porto Alegre,Southern Brazil.The samples were collected and analyzed every week between May 2020 to May 2021.Meanwhile,different social restrictions were applied according to the number of hospitalized patients in the region.Weekly samples were obtained from two wastewater treatment plants(WWTP),named Navegantes and Serraria.To determine the SARS-CoV-2 RNA titers in wastewater,we performed RT-qPCR analysis targeting the N gene(N1).The highest titer of SARS-CoV-2 RNA was observed between epidemiological weeks(EWs)33-37(August),42-43(October),45-46(November),49-51(December)in 2020,and 1-3(January),7-13(February to March)in 2021,with viral loads ranging from 1-106-3-106 genomic copies/Liter.An increase in positive confirmed cases followed such high viral loads.Depending on the sampling method used,positive cases increased in 6-7 days and 15 days after the rise of viral RNA titers in wastewater,with composite sampling methods showing a lower time lag and a higher resolution on the analyses.The results showed a direct relation between strict social restrictions and the loads of detected RNA reduction in wastewater,corroborating the number of confirmed cases.Differences in viral loads between different sampling points and methods were observed,as composite samples showed more stable results during the analyzed period.Besides,viral loads obtained from samples collected at Serraria WWTP were consistently higher than the ones obtained at Navegantes WWTP,indicating differences in local dynamics of SARS-CoV-2 spread in different regions of Porto Alegre.In conclusion,wastewater sampling to monitor SARS-CoV-2 is a robust tool to evaluate the viral loads contributing to hospitalized patients’data and confirmed cases.In addition,SARS-CoV-2 detection in sewage may inform and alert the government when there are asymptomatic or nontested patients.
文摘Footwear industries generate leather waste during the operation.Some of these wastes contain chromium,which may bring environmental concerns.This study aimed to reuse finished leather waste,the major part of these hazard-ous wastes,via producing a composite with thermoplastic polyurethane(TPU)for shoe soles.Finished leather waste containing black dyes and pigments was used to color the TPU.The finished leather waste was fragmented,milled,micronized and blended with TPU in a ratio of 10%,15%,and 20%w/w to produce composite materials.The compos-ite materials were evaluated by morphological and thermal characterizations,physical-mechanical analysis,and envi-ronmental tests(leaching and solubilization),which presented that the physical-mechanical and thermal properties were within the standard of shoe soles,and the composites can be classified as non-hazardous.The composites enabled a new way of coloring polymeric matrices and reusing leather waste.