期刊文献+
共找到745篇文章
< 1 2 38 >
每页显示 20 50 100
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
1
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 Multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
Compressive mechanical behavior and microstructure evolution of Ti−5.7Al−2.9Nb−1.8Fe−1.6Mo−1.5V−1Zr alloy under extreme conditions
2
作者 Wen-fei PENG Chao-qi DONG +2 位作者 Qiao-dong HUANG Xiao-feng WANG Oleksandr MOLIAR 《Transactions of Nonferrous Metals Society of China》 2025年第10期3323-3341,共19页
Compressive mechanical behavior and microstructure evolution of Ti−5.7Al−2.9Nb−1.8Fe−1.6Mo−1.5V−1Zr alloy under extreme conditions were systematically investigated.The results show that strain rate and temperature hav... Compressive mechanical behavior and microstructure evolution of Ti−5.7Al−2.9Nb−1.8Fe−1.6Mo−1.5V−1Zr alloy under extreme conditions were systematically investigated.The results show that strain rate and temperature have a significant influence on the mechanical behavior and microstructure.The alloy exhibits a positive strain rate sensitivity and negative temperature sensitivity under all temperature and strain rate conditions.The hot-rolled alloy is composed of a bimodal structure including an equiaxed primary α_(p) phase and a transformedβphase.After compression deformation,the bimodal deformed structural features highly rely on the temperature and strain rate.At low temperature and room temperature,the volume fraction and size of α_(p) phase decrease with increasing temperature and strain rate.At high temperature,the volume fraction of the α_(p)hase is inversely correlated with temperature.A modified Johnson−Cook constitutive model is established,and the predicted results coincide well with the experimental results. 展开更多
关键词 titanium alloy extreme condition mechanical behavior microstructure modified Johnson−Cook constitutive model
在线阅读 下载PDF
The impacts of variable nonlocal,length-scale factors and surface energy on hygro-thermo-mechanical vibration and buckling behaviors of viscoelastic FGP nanosheet on viscoelastic medium
3
作者 Hong Hieu Le Van Ke Tran +1 位作者 Nhan Thinh Hoang Nguyen Ngoc My Huong 《Acta Mechanica Sinica》 2025年第5期13-32,共20页
The main goal of this paper is to present the free vibration and buckling of viscoelastic functionally graded porous(FGP)nanosheet based on nonlocal strain gradient(NSGT)and surface elasticity theories.The nanosheets ... The main goal of this paper is to present the free vibration and buckling of viscoelastic functionally graded porous(FGP)nanosheet based on nonlocal strain gradient(NSGT)and surface elasticity theories.The nanosheets are placed on a visco-Pasternak medium in a hygro-temperature environment with nonlinear rules.The viscoelastic material characteristics of nanosheets are based on Kelvin’s model.The unique point of this study is to consider the change of nonlocal and length-scale coefficients according to thickness,similar to the laws of the material properties.The Galerkin approach based on the Kirchhoff-love plate theory is applied to determine the natural frequency and critical buckling load of the viscoelastic FGP nanosheet with various boundary conditions.The accuracy of the proposed method is verified through reliable publications.The outcome of this study highlights the significant effects of the nonlocal and length-scale parameters on the vibration and buckling behaviors of viscoelastic FGP nanosheets. 展开更多
关键词 Nonlocal strain gradient hypothesis Surface elasticity Various boundary conditions Length scale Variable nonlocal coefficient
原文传递
Effect of grain boundary diffusion of terbium on mode of mechanical fracture of sintered NdFeB magnets 被引量:1
4
作者 Zexin Lu Tinghui Wang +6 位作者 Jianjun Jiang Bizhang Zheng Lijing Yang Xingqi He Anli Lin Shengzhi Dong Zhenlun Song 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第4期696-704,共9页
Grain boundary diffusion process(GBDP)is a widely used method of increasing the coercivity of sintered NdFeB magnets.In this study,the effects of the GBDP on the bending strength and microhardness of sintered NdFeB ma... Grain boundary diffusion process(GBDP)is a widely used method of increasing the coercivity of sintered NdFeB magnets.In this study,the effects of the GBDP on the bending strength and microhardness of sintered NdFeB magnets and the fracture mode were investigated.Results show that the bending strength of magnets is reduced by pickling and heat treatment and greatly recove rs after heavy rare earth element(Tb)grain boundary diffusion.The pickling and the heat treatment cause a slight decrease in microhardness.Compared with the recovery of the bending strength,the hardness decreases after the GBDP.The fracture mode of bended magnets changes from intergranular to transgranular.This study helps in further improving the mechanical and magnetic properties of sintered NdFeB magnets. 展开更多
关键词 Sintered NdFeB magnets Grain boundary diffusionprocess Bending strength Heavy rare earth element COERCIVITY
原文传递
Intelligent marine waterborne epoxy coating based on functionalized multiscale nanocomposite:Mechanical enhancement,self-reporting,and active/passive anti-corrosion 被引量:3
5
作者 Hao Li Xian-Ze Meng +6 位作者 Hao-Jie Yan Run-Chao Zheng Hui-Song Hu Bing Lei Qin-Hao Zhang Lian-Kui Wu Fa-He Cao 《Journal of Materials Science & Technology》 2025年第18期68-83,共16页
Corrosion activities and related accidents are significant issues for marine facilities,leading to considerable economic losses.Waterborne epoxy(EP)coating has been seen as one of the optimal options for corrosion pro... Corrosion activities and related accidents are significant issues for marine facilities,leading to considerable economic losses.Waterborne epoxy(EP)coating has been seen as one of the optimal options for corrosion protection due to its stable properties and eco-friendliness(0 g/L volatile organic compounds).Nevertheless,several intrinsic deficiencies require improvement,such as fragile mechanical properties and defects(macro and micro),resulting in the continuous deterioration of comprehensive coating performances.In this work,a novel nanocomposite coating with mechanical enhancement,intelligent self-reporting,and active protection is fabricated by integrating the functionalized and compatible graphene oxide/cerium based metal-organic framework multiscale structure(GO-CeMOF-P/M).Notably,the homogenous dispersion of GO-CeMOF-P/M and its chemical interaction with the polymer matrix effectively reduces the defects resulting from solution volatilizing and enhances the compactness,which boosts the tensile strength(32.1 MPa/8.5%)and dry adhesion force(5.8 MPa)of the coating.Additionally,the controllable responsiveness and release of multiscale nanocomposite within external environments endow intelligent active protection and self-reporting characteristics for the GO-CeMOF-P/M-EP coating,making it especially suitable for a variety of practical marine applications.Furthermore,following immersion of 80 d in the aggressive environment,Zf=0.01 Hz value of GO-CeMOF-P/M-EP coating is 1.2×10^(10)Ωcm^(2),which is 164.4 times larger than that of EP coating(7.3×10^(7)Ωcm^(2)),demonstrating remarkably strengthened anti-corrosion ability.Consequently,by offering an intriguing design strategy,the current work anticipates addressing the inherent deficiencies of EP coating and facilitating its practicality and feasibility in real sea environments. 展开更多
关键词 Intelligent coating Graphene oxide Metal-organic framework Active protection ANTI-CORROSION
原文传递
Galerkin-Vlasov approach for bending analysis of flexoelectric doubly-curved sandwich nanoshells with piezoelectric/FGP/piezoelectric layers using the nonlocal strain theory 被引量:1
6
作者 Tran Van Ke Do Van Thom +2 位作者 Nguyen Thai Dung Nguyen Van Chinh Phung Van Minh 《Acta Mechanica Sinica》 2025年第2期7-40,共34页
Flexoelectricity refers to the link between electrical polarization and strain gradient fields in piezoelectric materials,particularly at the nano-scale.The present investigation aims to comprehensively focus on the s... Flexoelectricity refers to the link between electrical polarization and strain gradient fields in piezoelectric materials,particularly at the nano-scale.The present investigation aims to comprehensively focus on the static bending analysis of a piezoelectric sandwich functionally graded porous(FGP)double-curved shallow nanoshell based on the flexoelectric effect and nonlocal strain gradient theory.Two coefficients that reduce or increase the stiffness of the nanoshell,including nonlocal and length-scale parameters,are considered to change along the nanoshell thickness direction,and three different porosity rules are novel points in this study.The nanoshell structure is placed on a Pasternak elastic foundation and is made up of three separate layers of material.The outermost layers consist of piezoelectric smart material with flexoelectric effects,while the core layer is composed of FGP material.Hamilton’s principle was used in conjunction with a unique refined higher-order shear deformation theory to derive general equilibrium equations that provide more precise outcomes.The Navier and Galerkin-Vlasov methodology is used to get the static bending characteristics of nanoshells that have various boundary conditions.The program’s correctness is assessed by comparison with published dependable findings in specific instances of the model described in the article.In addition,the influence of parameters such as flexoelectric effect,nonlocal and length scale parameters,elastic foundation stiffness coefficient,porosity coefficient,and boundary conditions on the static bending response of the nanoshell is detected and comprehensively studied.The findings of this study have practical implications for the efficient design and control of comparable systems,such as micro-electromechanical and nano-electromechanical devices. 展开更多
关键词 Analytical solution Flexoelectric effect Nonlocal strain gradient theory Static bending of nanoshell
原文传递
Analysis of Linear and Nonlinear Vibrations of Composite Rectangular Sandwich Plates with Lattice Cores
7
作者 Alireza Moradi Alireza Shaterzadeh 《Computers, Materials & Continua》 SCIE EI 2025年第1期223-257,共35页
For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattic... For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate. 展开更多
关键词 Free vibration composite sandwich plate lattice core galerkin method Duffing equation multiple scales method
在线阅读 下载PDF
Numerical Investigation of the Influence of a Magnetic Field on the Laminar Flow of a Yield-Stress Nanofluid over a Backward Facing Step 被引量:1
8
作者 Karim Amrani Eugenia Rossi di Schio +4 位作者 Mohamed Bouzit Abderrahim Mokhefi Abdelkader Aris Cherif Belhout Paolo Valdiserri 《Frontiers in Heat and Mass Transfer》 2025年第1期185-206,共22页
The present study focuses on the flow of a yield-stress(Bingham)nanofluid,consisting of suspended Fe3O4 nanoparticles,subjected to a magnetic field in a backward-facing step duct(BFS)configuration.The duct is equipped... The present study focuses on the flow of a yield-stress(Bingham)nanofluid,consisting of suspended Fe3O4 nanoparticles,subjected to a magnetic field in a backward-facing step duct(BFS)configuration.The duct is equipped with a cylindrical obstacle,where the lower wall is kept at a constant temperature.The yield-stress nanofluid enters this duct at a cold temperature with fully developed velocity.The aim of the present investigation is to explore the influence of flow velocity(Re=10 to 200),nanoparticle concentration(ϕ=0 to 0.1),magnetic field intensity(Ha=0 to 100),and its inclination angle(γ=0 to 90)and nanofluid yield stress(Bn=0 to 20)on the thermal and hydrodynamic efficiency inside the backward-facing step.The numerical results have been obtained by resolving the momentum and energy balance equations using the Galerkin finite element method.The obtained results have indicated that an increase in Reynolds number and nanoparticle volume fraction enhances heat transfer.In contrast,a significant reduction is observed with an increase in Hartmann and Bingham numbers,resulting in quasi-immobilization of the fluid under the magnetic influence and radical solidification of this type of fluid,accompanied by the suppression of the vortex zone downstream of the cylindrical obstacle.This study sheds light on the complexity of this magnetically influenced fluid,with potential implications in various engineering and materials science fields. 展开更多
关键词 Yield-stress nanofluid Bingham nanofluid backward-facing step BFS magnetic field heat transfer HYDRODYNAMICS
在线阅读 下载PDF
Unleashing the Potential of Unidirectional Mechanical Materials: Breakthroughs and Promising Applications
9
作者 Sunil Harripersad 《Materials Sciences and Applications》 2024年第4期66-86,共21页
The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively ... The emergence of mechanically one-way materials presents an exciting opportunity for materials science and engineering. These substances exhibit unique nonreciprocal mechanical responses, enabling them to selectively channel mechanical energy and facilitate directed sound propagation, controlled mass transport, and concentration of mechanical energy amidst random motion. This article explores the fundamentals of mechanically one-way materials, their potential applications across various industries, and the economic and environmental considerations related to their production and use. 展开更多
关键词 Mechanically One-Way Materials Nonreciprocal Mechanical Responses Directed Sound Propagation Controlled Mass Transport Energy Harvesting Structural Engineering Economic Viability Environmental Impact
在线阅读 下载PDF
Modification and experimental validation of the Forrestal-Warren perforation model for high hardness armor steel plates of intermediate thickness
10
作者 Radovan Djurovic Predrag Elek +1 位作者 Milos Markovic Dejan Jevtic 《Defence Technology(防务技术)》 2025年第4期267-284,共18页
This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectil... This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectiles,these plates tend to fail through adiabatic shear plugging which significantly reduces their ballistic resistance.To address this effect,an approach for determining effective thickness was defined and incorporated into the predictive model.Ballistic impact tests were performed to assess the modification's validity,in which ARMOX 500T steel plates were subjected to perpendicular impacts from 7.62×39 mm steel-cored rounds under various velocities.Frequent target failure by soft plugging was observed,as well as the brittle shatter of the hard steel core.Key properties of the recovered plugs including their mass,length and diameter were measured and reported along with the projectiles'residual velocities.Additionally,independent data from the open literature were included in the analysis for further validation.The original Forrestal-Warren model and the novel effective thickness modification were then used to establish the relationship between impact and residual velocities,as well as to determine the ballistic limit velocity.The comparison revealed that the proposed approach significantly improves the model's accuracy,showing a strong correlation with experimental data and reducing deviations to within a few percent.This enhancement highlights the potential of the effective thickness term,which could also be applied to other predictive models to extend their applicability range.Further exploration into other armor steels and impact conditions is recommended to assess the method's versatility. 展开更多
关键词 Terminal ballistics Penetration mechanics Predictive model High hardness armor Experimental investigation
在线阅读 下载PDF
Retrofitting Design of a Deep Drilling Rig Mud Pump Load Balancing System
11
作者 Danijel Pavkovic Pietro Kristovic +1 位作者 Mihael Cipek Dragutin Lisjak 《Energy Engineering》 2025年第5期1669-1696,共28页
In deep drilling applications,such as those for geothermal energy,there are many challenges,such as those related to efficient operation of the drilling fluid(mud)pumping system.Legacy drilling rigs often use paired,p... In deep drilling applications,such as those for geothermal energy,there are many challenges,such as those related to efficient operation of the drilling fluid(mud)pumping system.Legacy drilling rigs often use paired,parallel-connected independent-excitation direct-current(DC)motors for mud pumps,that are supplied by a single power converter.This configuration results in electrical power imbalance,thus reducing its efficiency.This paper investigates this power imbalance issue in such legacy DC mud pump drive systems and offers an innovative solution in the form of a closed-loop control system for electrical load balancing.The paper first analyzes the drilling fluid circulation and electrical drive layout to develop an analytical model that can be used for electrical load balancing and related energy efficiency improvements.Based on this analysis,a feedback control system(so-called“current mirror”control system)is designed to balance the electrical load(i.e.,armature currents)of parallel-connected DC machines by adjusting the excitation current of one of the DC machines,thus mitigating the power imbalance of the electrical drive.Theproposed control systemeffectiveness has been validated,first through simulations,followed by experimental testing on a deep drilling rig during commissioning and field tests.The results demonstrate the practical viability of the proposed“current mirror”control system that can effectively and rather quickly equalize the armature currents of both DC machines in a parallel-connected electrical drive,and thus balance both the electrical and mechanical load of individual DC machines under realistic operating conditions of the mud pump electrical drive. 展开更多
关键词 Deep drilling mud pump electrical load balancing direct current motor excitation control armature current mirroring field tests
在线阅读 下载PDF
Finite Element Modeling of Thermo-Viscoelastoplastic Behavior of Dievar Alloy under Hot Rotary Swaging
12
作者 Josef Izák Marek Benc Petr Opěla 《Computer Modeling in Engineering & Sciences》 2025年第3期3115-3133,共19页
The paper deals with the FEM(Finite Element Method)simulation of rotary swaging of Dievar alloy produced by additive manufacturing technology Selective Laser Melting and conventional process.Swaging was performed at a... The paper deals with the FEM(Finite Element Method)simulation of rotary swaging of Dievar alloy produced by additive manufacturing technology Selective Laser Melting and conventional process.Swaging was performed at a temperature of 900℃.True flow stress-strain curves were determined for 600℃–900℃and used to construct a Hensel-Spittel model for FEM simulation.The process parameters,i.e.,stress,temperature,imposed strain,and force,were investigation during the rotary swaging process.Firstly,the stresses induced during rotary swaging and the resistance of the material to deformation were investigated.The amount and distribution of imposed strain in the cross-section can serve as a valuable indicator of the reduction in porosity and the texture evolution of the material.The simulation revealed the force required to swag the Dievar alloy.It also showed the evolution of temperature,which is important for phase transformation during solidification.Furthermore,microstructure evolutionwas observed before and then after rotary swaging.Dievar alloy is a critical material in the manufacture of dies for high-pressure die casting,forging tools,and other equipment subjected to high temperatures and mechanical loads.Understanding its viscoelastoplastic behavior under rotary swaging conditions is essential to optimize its performance in these demanding industrial applications. 展开更多
关键词 FEM rotary swaging SLM selective laser melting dievar ingot casting hot work tool steel additive manufacturing
在线阅读 下载PDF
High-thermal free vibration analysis of functionally graded microplates using a new finite element formulation based on TSDT and MSCT
13
作者 Huu Trong Dang Nhan Thinh Hoang +2 位作者 Quoc Hoa Pham Trung Thanh Tran Huy Gia Luong 《Defence Technology(防务技术)》 2025年第2期131-149,共19页
Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r... Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles. 展开更多
关键词 Microplates Functionally graded material Finite element method Modified couple stress theory New TSDT High-thermal free vibration Pasternak foundation
在线阅读 下载PDF
An Analytical Approach for Simulating the Bending of Nanobeams in Thermal Environments Considering the Flexomagnetic Effect
14
作者 Do Van Thom Pham Van Hoan Nguyen Huu Phan 《Computer Modeling in Engineering & Sciences》 2025年第11期1711-1734,共24页
This research utilizes analytical solutions to investigate the issue of nonlinear static bending in nanobeams affected by the flexomagnetic effect.The nanobeams are exposed to mechanical loads and put in a temperature... This research utilizes analytical solutions to investigate the issue of nonlinear static bending in nanobeams affected by the flexomagnetic effect.The nanobeams are exposed to mechanical loads and put in a temperature environment.The equilibrium equation of the beam is formulated based on the newly developed higher-order shear deformation theory.The flexomagnetic effect is explained by the presence of the strain gradient component,which also takes into consideration the impact of small-size effects.This study has used a flexible transformation to derive the equilibrium equation for a single variable,which significantly simplifies the process of determining the precise solution to the bending issue.This highlights the originality and significance of the present study,which is based on a newly developed shear deformation theory to clarify the distinctions between the nonlinear and linear problems.This study also presents the findings of numerical simulations that investigate the impact of various geometric,material,and temperature parameters on the nonlinear behavior of nanobeams.These discoveries are significant for designers to develop nanobeams that can function efficiently in many physical conditions,including mechanical,thermal,and magnetic mediums. 展开更多
关键词 NONLINEAR BENDING nanobeam NONLOCAL THERMAL flexomagnetic
在线阅读 下载PDF
Mechanistic Analysis of Porous Iron Scaffold Degradation in Cancellous Bone Structure Subjected to Dynamic Simulated Body Fluid
15
作者 Muhammad Azfar Noordin Abdul Hakim Md Yusop +1 位作者 Ardiyansyah Syahrom Amir Putra Md Saad 《Journal of Bionic Engineering》 2025年第1期306-321,共16页
This work examines the impact of incorporating the physiological conditions of human cancellous bone,by integrating similar porosity of porous Fe with the cancellous bone under dynamic immersion test.All of the porous... This work examines the impact of incorporating the physiological conditions of human cancellous bone,by integrating similar porosity of porous Fe with the cancellous bone under dynamic immersion test.All of the porous Fe specimens with~80%porosity were immersed in Simulated Body Fluid(SBF)with a flow rate of 0.3 ml/min integrated with cancellous bone for 7,14 and 28 days.Porous Fe with the lowest surface area has the highest degradation rate despite having the lowest relative weight loss.The relationship between fluid induced shear stress and weight loss of specimens have been established. 展开更多
关键词 Dynamic immersion test Cancellous bone Physiological activities Degradation rate Porous Fe
暂未订购
Sustainable extraction of hemp seed and formulation extracts into organogels with analytical profiling of fatty acids
16
作者 Sara Karlovšek TajaŽitek Makoter +2 位作者 Teo Makoter Željko Knez Maša Knez Marevci 《Food Quality and Safety》 2025年第3期432-443,共12页
Sustainable extraction methods for natural extracts are crucial for mitigating environmental impact.Strategies that focus on waste reduction and resource efficiency contribute to long-term conservation.Hemp seeds,whic... Sustainable extraction methods for natural extracts are crucial for mitigating environmental impact.Strategies that focus on waste reduction and resource efficiency contribute to long-term conservation.Hemp seeds,which were previously treated as waste product,are now valued for their nutrition and functional properties.This study investigated sustainable extraction methods for obtaining natural extracts from hemp seeds,with a focus on reducing environmental impact through efficient resource utilization and waste reduction.The extraction methods compared included supercritical fluid extraction(SFE),Soxhlet extraction(SOX),ultrasound-assisted extraction(UAE),cold maceration(CM),and cold pressing(CP).The contents of antioxidants,total phenols,and fatty acids in the extracts were analyzed via gas chromatography-mass spectrometry(GC-MS).The extracts were subsequently formulated into organogels to evaluate the stability of the fatty acids.The results showed that SFE and CP were the most efficient and environmentally friendly methods,with SFE allowing complete separation of the solvent from the extract.CP was also found to be effective and environmentally friendly.The study confirmed that formulating extracts in organogels effectively inhibited fatty acid oxidation,although a reduction in fatty acid content was observed during gel production.Overall,the formulation of extracts in organogels increased their stability,especially in preventing fatty acid degradation. 展开更多
关键词 Supercritical fluid extraction ultrasound extraction cold pressing method fatty acids stability of formulations
原文传递
A Parametrical Comprehensive Review of Solar Assisted Humidification-Dehumidification Desalination Units
17
作者 Zahrah F.Hussein Abas Ramiar Karima E.Amori 《Frontiers in Heat and Mass Transfer》 2025年第3期765-817,共53页
The deficiency of potable water resources and energy supply is emerging as a significant and concerning obstacle to sustainable development.Solar and waste heat-powered humidification dehumidification(HDH)desalination... The deficiency of potable water resources and energy supply is emerging as a significant and concerning obstacle to sustainable development.Solar and waste heat-powered humidification dehumidification(HDH)desalination systems become essential due to the severe impacts of global warming and water shortages.This problem highlights the need to apply boosted water desalination solutions.Desalination is a capital-intensive process that demands considerable energy,predominantly sourced fromfossil fuels worldwide,posing a significant carbon footprint risk.HDH is a very efficient desalination method suitable for remote areas with moderate freshwater requirements for domestic and agricultural usage.Several operational and maintenance concerns are to blame.The flow and thermal balances of humidifiers and dehumidifiers under the right conditions are crucial for system efficiency.These systems comprise a humidifier and dehumidifier,energy foundations for space or process heating and electricity generation,fluid transfer or efficiency enhancement accessories,and measurement-control devices.All technologies that enhance the performance of HDH systems are elucidated in this work.These are utilizing efficient components,renewable energy,heat recovery via multi-effect and multi-stage processes,waste heat-powered,and accelerating humidification and dehumidification processes through pressure variation or employing heat pumps,in addition to exergy and economical analyses.According to the present work,the seawater HDH system is feasible for freshwater generation.Regarding economics and gain output ratio,humidification–dehumidification is a viable approach for decentralized small-scale freshwater production applications,but it needs significant refinement.Systemproductivity of fresh water is much higher with integrated solar water heating than with solar air heating.The HDH offers the lowest water yield cost per liter and ideal system productivity when paired with a heat pump.The suggested changes aim to enhance system and process efficiency,reducing electrical energy consumption and cost-effective,continuous,decentralized freshwater production.This thorough analysis establishes a foundation for future research on energy and exergy cycles based on humidification and dehumidification. 展开更多
关键词 DESALINATION solar desalination HUMIDIFICATION-DEHUMIDIFICATION energy EXERGY performance solar power
在线阅读 下载PDF
Reduction of losses in electric power distribution system-dynamic reconfiguration case study
18
作者 Branimir Novoselnik Drago Bago +1 位作者 Jadranko Matuško Mato Baotić 《Control Theory and Technology》 2025年第1期49-63,共15页
This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a n... This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a nonlinear model predictive control algorithm which determines the optimal switching operations of the distribution system.The goal of the control algorithm is to find the optimal radial network topology which minimizes cumulative active power losses and maximizes voltages across the network while simultaneously satisfying all system constraints.The optimization results are validated through multiple simulations(using real power demand data collected for a few characteristic days during winter and summer)which demonstrate the efficiency and usefulness of the developed control algorithm in reducing the grid losses by up to 14%. 展开更多
关键词 Nonlinear model predictive control Dynamic reconfiguration Power distribution system Mixed-integer programming Real-life case study
原文传递
Improving the Combustion Process of Biofuels for Diesel Engines to Reduce Environmental Pollution
19
作者 Tuan Duc Ho Nghia Duc Mai Trung Dinh Pham 《Journal of Environmental & Earth Sciences》 2025年第7期227-239,共13页
Limiting environmental pollution from exhaust emissions from internal combustion engines includes many measures,including encouraging biofuel use because biofuel is environmentally friendly and renewable.A mixture of ... Limiting environmental pollution from exhaust emissions from internal combustion engines includes many measures,including encouraging biofuel use because biofuel is environmentally friendly and renewable.A mixture of diesel fuel and vegetable oil is a form of biofuel.However,some properties of the mixed fuel,such as viscosity and density,are higher than those of traditional diesel fuel,affecting the injection and combustion process and reducing power and non-optimal toxic emissions,especially soot emissions.This study uses Kiva-3V software to simulate the combustion process of a diesel-vegetable oil mixture in the combustion chamber of a fishing vessel diesel engine with changes in fuel injection timing.The results show that when increasing the fuel injection timing of a diesel-vegetable oil mixture about 1–2 degrees of crankshaft rotation angle before the top dead center compared to diesel fuel injection timing,the engine power increases,and soot emissions decrease compared to no adjustment.The above simulation research results will help orient the experiments conveniently and reduce costs in the future experimental research process to quantify the fuel system adjustment of fishing vessels’diesel engines when using biofuels,including diesel-vegetable oil mixtures.Thus,the engine’s economic indicators will improve,and emissions that pollute the environment will be limited. 展开更多
关键词 Diesel Engine Injection Timing BIOFUEL SOOT KIVA-3V
在线阅读 下载PDF
Weakening of through-thickness texture gradient in tantalum plates by newly developed dynamic offsets and shear force adjustment rolling
20
作者 Kai YU Long-fei XU +3 位作者 Li WANG Gui-peng LI Xiao-dan ZHANG Yu-hui WANG 《Transactions of Nonferrous Metals Society of China》 2025年第5期1517-1531,共15页
Traditional symmetrical rolling often induces through-thickness gradient microstructures and textures.In this study,ultra-high purity(99.999 wt.%)tantalum(Ta)served as a model material to address the texture gradient ... Traditional symmetrical rolling often induces through-thickness gradient microstructures and textures.In this study,ultra-high purity(99.999 wt.%)tantalum(Ta)served as a model material to address the texture gradient issue by employing dynamic offsets and shear force adjustment rolling(DS rolling)as an advanced rolling technique.The strain and stress distributions in Ta plates for DS rolling and symmetrical rolling processes were analyzed using Deform 3D software.Through-thickness textures and microstructures were characterized via electron backscatter diffraction.The results revealed that DS rolling effectively solved the problem of texture gradient by increasing the average shear strain from 0.05 to 0.56.In turn,the shear stress reduced the energy storage orientation dependence of{100}and{111}grains.Furthermore,DS rolling refined the recrystallized grains on an average of 30.9%. 展开更多
关键词 TANTALUM texture gradient ROLLING energy storage shear stress
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部