期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Design Strategies and Emerging Applicationsof Perovskite‐Based Sensors
1
作者 Yingchun Li Yarong Ding +11 位作者 Jiachun Sun Shaozhe Tan Yufeng Li Xiaodong Wang Jun Cai Jianbin Bai Xinmeng Lv Wenhui Guo Yue Hao Yannan Liu Zhenhua Lin Jingjing Chang 《SmartMat》 2025年第3期26-66,共41页
Perovskite materials,with their outstanding optoelectronic properties,low cost,solution‐processability,and scalability,haveemerged as promising candidates in the field of sensors.Despite extensive exploration into th... Perovskite materials,with their outstanding optoelectronic properties,low cost,solution‐processability,and scalability,haveemerged as promising candidates in the field of sensors.Despite extensive exploration into the photoelectric properties andtraditional applications(e.g.,gas sensing)of perovskite sensors,there has been limited focus on the fabrication processes thatdominate their performance and emerging application directions.The flourishing development of perovskite sensors shouldcomprehend the challenges in fabrication processes(e.g.,stability,uniformity,and scale‐up production)of perovskite sensorsand further improve the sensing performance in conjunction with the working principles,extending their application fields.Herein,a comprehensive overview primarily focuses on the significant challenges faced by perovskite sensors in emergingapplication fields,including performance enhancement and process optimization.The key performance parameters andworking principles of perovskite sensor are analyzed first.Then we review the effective design strategies and solutions proposedin recent research,while providing insights into optimizing sensor design to enhance sensing performance for precise detection.Moreover,some emerging applications of perovskite sensors,such as smart biomedical diagnosis,wearable devices,andartificial intelligence,are explored.Current challenges and future trends are also addressed,emphasizing the growing potentialof perovskite sensors in advancing sensor technology innovation and interdisciplinary applications. 展开更多
关键词 artificial intelligence design strategy fabrication method perovskite sensor wearable device
原文传递
A new electromagnetic oscillation phenomenon on vanadium-compensationsemi-insulating 4H-SiC PCSS
2
作者 Lin Zhouyang Chen Zhipeng +7 位作者 Sun Qian Zheng Zhong Xu Kun Jiang Shuqing Zhang Yuming Wang Yutian Hu Yanfei Guo Hui 《强激光与粒子束》 北大核心 2025年第5期112-118,共7页
Constructing a photoconductive semiconductor switch (PCSS)-metal coil structure, we discovered anew phenomenon of electromagnetic oscillation in vanadium-compensation semi-insulating (VCSI) PCSS. Here thePCSS responds... Constructing a photoconductive semiconductor switch (PCSS)-metal coil structure, we discovered anew phenomenon of electromagnetic oscillation in vanadium-compensation semi-insulating (VCSI) PCSS. Here thePCSS responds to laser pulse and high-voltage signal while the metal coil generates an oscillating voltage pulseenvelope signal. The generation of this oscillating signal is not related to the input bias voltage of the PCSS, the pulsecircuit components, or the electrode structure of the PCSS, rather it is related to the output characteristic of the PCSS.This physical phenomenon can be explained using the current surge model in photoconducting antenna. Preparingohmic contact electrode on the silicon carbide material forms the PCSS, which generates a large number ofphotogenerated carriers when ultra-fast laser pulses irradiate the surface of the material and Simultaneously applies abias voltage signal between the electrode. At this time inside the PCSS the electric field causes the transient current,radiating electromagnetic wave to the metal coil to generate oscillating signal. 展开更多
关键词 VCSI 4H-SiC PCSS electromagnetic oscillation current surge model
在线阅读 下载PDF
Recess-free enhancement-mode AlGaN/GaN RF HEMTs on Si substrate
3
作者 Tiantian Luan Sen Huang +12 位作者 Guanjun Jing Jie Fan Haibo Yin Xinguo Gao Sheng Zhang Ke Wei Yankui Li Qimeng Jiang Xinhua Wang Bin Hou Ling Yang Xiaohua Ma Xinyu Liu 《Journal of Semiconductors》 EI CAS CSCD 2024年第6期81-86,共6页
Enhancement-mode(E-mode)GaN-on-Si radio-frequency(RF)high-electron-mobility transistors(HEMTs)were fabri-cated on an ultrathin-barrier(UTB)AlGaN(<6 nm)/GaN heterostructure featuring a naturally depleted 2-D electro... Enhancement-mode(E-mode)GaN-on-Si radio-frequency(RF)high-electron-mobility transistors(HEMTs)were fabri-cated on an ultrathin-barrier(UTB)AlGaN(<6 nm)/GaN heterostructure featuring a naturally depleted 2-D electron gas(2DEG)channel.The fabricated E-mode HEMTs exhibit a relatively high threshold voltage(VTH)of+1.1 V with good uniformity.A maxi-mum current/power gain cut-off frequency(fT/fMAX)of 31.3/99.6 GHz with a power added efficiency(PAE)of 52.47%and an out-put power density(Pout)of 1.0 W/mm at 3.5 GHz were achieved on the fabricated E-mode HEMTs with 1-μm gate and Au-free ohmic contact. 展开更多
关键词 AlGaN/GaN heterostructure ultrathin-barrier ENHANCEMENT-MODE RADIO-FREQUENCY power added efficiency silicon substrate
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部