期刊文献+
共找到245篇文章
< 1 2 13 >
每页显示 20 50 100
Secure Malicious Node Detection in Decentralized Healthcare Networks Using Cloud and Edge Computing with Blockchain-Enabled Federated Learning
1
作者 Raj Sonani Reham Alhejaili +2 位作者 Pushpalika Chatterjee Khalid Hamad Alnafisah Jehad Ali 《Computer Modeling in Engineering & Sciences》 2025年第9期3169-3189,共21页
Healthcare networks are transitioning from manual records to electronic health records,but this shift introduces vulnerabilities such as secure communication issues,privacy concerns,and the presence of malicious nodes... Healthcare networks are transitioning from manual records to electronic health records,but this shift introduces vulnerabilities such as secure communication issues,privacy concerns,and the presence of malicious nodes.Existing machine and deep learning-based anomalies detection methods often rely on centralized training,leading to reduced accuracy and potential privacy breaches.Therefore,this study proposes a Blockchain-based-Federated Learning architecture for Malicious Node Detection(BFL-MND)model.It trains models locally within healthcare clusters,sharing only model updates instead of patient data,preserving privacy and improving accuracy.Cloud and edge computing enhance the model’s scalability,while blockchain ensures secure,tamper-proof access to health data.Using the PhysioNet dataset,the proposed model achieves an accuracy of 0.95,F1 score of 0.93,precision of 0.94,and recall of 0.96,outperforming baseline models like random forest(0.88),adaptive boosting(0.90),logistic regression(0.86),perceptron(0.83),and deep neural networks(0.92). 展开更多
关键词 Authentication blockchain deep learning federated learning healthcare network machine learning wearable sensor nodes
在线阅读 下载PDF
Computational Optimization of RIS-Enhanced Backscatter and Direct Communication for 6G IoT:A DDPG-Based Approach with Physical Layer Security
2
作者 Syed Zain Ul Abideen Mian Muhammad Kamal +4 位作者 Eaman Alharbi Ashfaq Ahmad Malik Wadee Alhalabi Muhammad Shahid Anwar Liaqat Ali 《Computer Modeling in Engineering & Sciences》 2025年第3期2191-2210,共20页
The rapid evolution of wireless technologies and the advent of 6G networks present new challenges and opportunities for Internet ofThings(IoT)applications,particularly in terms of ultra-reliable,secure,and energyeffic... The rapid evolution of wireless technologies and the advent of 6G networks present new challenges and opportunities for Internet ofThings(IoT)applications,particularly in terms of ultra-reliable,secure,and energyefficient communication.This study explores the integration of Reconfigurable Intelligent Surfaces(RIS)into IoT networks to enhance communication performance.Unlike traditional passive reflector-based approaches,RIS is leveraged as an active optimization tool to improve both backscatter and direct communication modes,addressing critical IoT challenges such as energy efficiency,limited communication range,and double-fading effects in backscatter communication.We propose a novel computational framework that combines RIS functionality with Physical Layer Security(PLS)mechanisms,optimized through the algorithm known as Deep Deterministic Policy Gradient(DDPG).This framework adaptively adapts RIS configurations and transmitter beamforming to reduce key challenges,including imperfect channel state information(CSI)and hardware limitations like quantized RIS phase shifts.By optimizing both RIS settings and beamforming in real-time,our approach outperforms traditional methods by significantly increasing secrecy rates,improving spectral efficiency,and enhancing energy efficiency.Notably,this framework adapts more effectively to the dynamic nature of wireless channels compared to conventional optimization techniques,providing scalable solutions for large-scale RIS deployments.Our results demonstrate substantial improvements in communication performance setting a new benchmark for secure,efficient and scalable 6G communication.This work offers valuable insights for the future of IoT networks,with a focus on computational optimization,high spectral efficiency and energy-aware operations. 展开更多
关键词 Computational optimization reconfigurable intelligent surfaces(RIS) 6G networks IoT and DDPG physical layer security(PLS) backscatter communication
在线阅读 下载PDF
Efficient and Secure IoT Based Smart Home Automation Using Multi-Model Learning and Blockchain Technology 被引量:1
3
作者 Nazik Alturki Raed Alharthi +5 位作者 Muhammad Umer Oumaima Saidani Amal Alshardan Reemah M.Alhebshi Shtwai Alsubai Ali Kashif Bashir 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3387-3415,共29页
The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the d... The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device itself.Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features.This paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in homes.We have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT devices.Our system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing devices.We have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache server.The feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time settings.It is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation systems.Additionally,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber threats.The trial results support the proposed system and demonstrate its potential for use in everyday life. 展开更多
关键词 Blockchain Internet of Things(IoT) smart home automation CYBERSECURITY
在线阅读 下载PDF
A Deep Learning Approach for Landmines Detection Based on Airborne Magnetometry Imaging and Edge Computing
4
作者 Ahmed Barnawi Krishan Kumar +2 位作者 Neeraj Kumar Bander Alzahrani Amal Almansour 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2117-2137,共21页
Landmines continue to pose an ongoing threat in various regions around the world,with countless buried landmines affecting numerous human lives.The detonation of these landmines results in thousands of casualties repo... Landmines continue to pose an ongoing threat in various regions around the world,with countless buried landmines affecting numerous human lives.The detonation of these landmines results in thousands of casualties reported worldwide annually.Therefore,there is a pressing need to employ diverse landmine detection techniques for their removal.One effective approach for landmine detection is UAV(Unmanned Aerial Vehicle)based AirborneMagnetometry,which identifies magnetic anomalies in the local terrestrial magnetic field.It can generate a contour plot or heat map that visually represents the magnetic field strength.Despite the effectiveness of this approach,landmine removal remains a challenging and resource-intensive task,fraughtwith risks.Edge computing,on the other hand,can play a crucial role in critical drone monitoring applications like landmine detection.By processing data locally on a nearby edge server,edge computing can reduce communication latency and bandwidth requirements,allowing real-time analysis of magnetic field data.It enables faster decision-making and more efficient landmine detection,potentially saving lives and minimizing the risks involved in the process.Furthermore,edge computing can provide enhanced security and privacy by keeping sensitive data close to the source,reducing the chances of data exposure during transmission.This paper introduces the MAGnetometry Imaging based Classification System(MAGICS),a fully automated UAV-based system designed for landmine and buried object detection and localization.We have developed an efficient deep learning-based strategy for automatic image classification using magnetometry dataset traces.By simulating the proposal in various network scenarios,we have successfully detected landmine signatures present in themagnetometry images.The trained models exhibit significant performance improvements,achieving a maximum mean average precision value of 97.8%. 展开更多
关键词 CNN deep learning landmine detection MAGNETOMETER mean average precision UAV
在线阅读 下载PDF
ThyroidNet:A Deep Learning Network for Localization and Classification of Thyroid Nodules
5
作者 Lu Chen Huaqiang Chen +6 位作者 Zhikai Pan Sheng Xu Guangsheng Lai Shuwen Chen Shuihua Wang Xiaodong Gu Yudong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期361-382,共22页
Aim:This study aims to establish an artificial intelligence model,ThyroidNet,to diagnose thyroid nodules using deep learning techniques accurately.Methods:A novel method,ThyroidNet,is introduced and evaluated based on... Aim:This study aims to establish an artificial intelligence model,ThyroidNet,to diagnose thyroid nodules using deep learning techniques accurately.Methods:A novel method,ThyroidNet,is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules.First,we propose the multitask TransUnet,which combines the TransUnet encoder and decoder with multitask learning.Second,we propose the DualLoss function,tailored to the thyroid nodule localization and classification tasks.It balances the learning of the localization and classification tasks to help improve the model’s generalization ability.Third,we introduce strategies for augmenting the data.Finally,we submit a novel deep learning model,ThyroidNet,to accurately detect thyroid nodules.Results:ThyroidNet was evaluated on private datasets and was comparable to other existing methods,including U-Net and TransUnet.Experimental results show that ThyroidNet outperformed these methods in localizing and classifying thyroid nodules.It achieved improved accuracy of 3.9%and 1.5%,respectively.Conclusion:ThyroidNet significantly improves the clinical diagnosis of thyroid nodules and supports medical image analysis tasks.Future research directions include optimization of the model structure,expansion of the dataset size,reduction of computational complexity and memory requirements,and exploration of additional applications of ThyroidNet in medical image analysis. 展开更多
关键词 ThyroidNet deep learning TransUnet multitask learning medical image analysis
在线阅读 下载PDF
Computing and Implementation of a Controlled Telepresence Robot
6
作者 Ali A.Altalbe Aamir Shahzad Muhammad Nasir Khan 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1569-1585,共17页
The development of human-robot interaction has been continu-ously increasing for the last decades.Through this development,it has become simpler and safe interactions using a remotely controlled telepresence robot in ... The development of human-robot interaction has been continu-ously increasing for the last decades.Through this development,it has become simpler and safe interactions using a remotely controlled telepresence robot in an insecure and hazardous environment.The audio-video communication connection or data transmission stability has already been well handled by fast-growing technologies such as 5G and 6G.However,the design of the phys-ical parameters,e.g.,maneuverability,controllability,and stability,still needs attention.Therefore,the paper aims to present a systematic,controlled design and implementation of a telepresence mobile robot.The primary focus of this paper is to perform the computational analysis and experimental implementa-tion design with sophisticated position control,which autonomously controls the robot’s position and speed when reaching an obstacle.A system model and a position controller design are developed with root locus points.The design robot results are verified experimentally,showing the robot’s agreement and control in the desired position.The robot was tested by considering various parameters:driving straight ahead,right turn,self-localization and complex path.The results prove that the proposed approach is flexible and adaptable and gives a better alternative.The experimental results show that the proposed method significantly minimizes the obstacle hits. 展开更多
关键词 COMPUTING TELEPRESENCE healthcare system position controller mobile robot
在线阅读 下载PDF
Augmented Deep-Feature-Based Ear Recognition Using Increased Discriminatory Soft Biometrics
7
作者 Emad Sami Jaha 《Computer Modeling in Engineering & Sciences》 2025年第9期3645-3678,共34页
The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification.Among many feasible techniques for ear biometric recognition,convolutional neural network(CNN)models ... The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification.Among many feasible techniques for ear biometric recognition,convolutional neural network(CNN)models have recently offered high-performance and reliable systems.However,their performance can still be further improved using the capabilities of soft biometrics,a research question yet to be investigated.This research aims to augment the traditional CNN-based ear recognition performance by adding increased discriminatory ear soft biometric traits.It proposes a novel framework of augmented ear identification/verification using a group of discriminative categorical soft biometrics and deriving new,more perceptive,comparative soft biometrics for feature-level fusion with hard biometric deep features.It conducts several identification and verification experiments for performance evaluation,analysis,and comparison while varying ear image datasets,hard biometric deep-feature extractors,soft biometric augmentation methods,and classifiers used.The experimental work yields promising results,reaching up to 99.94%accuracy and up to 14%improvement using the AMI and AMIC datasets,along with their corresponding soft biometric label data.The results confirm the proposed augmented approaches’superiority over their standard counterparts and emphasize the robustness of the new ear comparative soft biometrics over their categorical peers. 展开更多
关键词 Ear recognition soft biometrics human identification human verification comparative labeling ranking SVM deep features feature-level fusion convolutional neural networks(CNNs) deep learning
在线阅读 下载PDF
Enhancing Heart Sound Classification with Iterative Clustering and Silhouette Analysis:An Effective Preprocessing Selective Method to Diagnose Rare and Difficult Cardiovascular Cases
8
作者 Sami Alrabie Ahmed Barnawi 《Computer Modeling in Engineering & Sciences》 2025年第8期2481-2519,共39页
In the effort to enhance cardiovascular diagnostics,deep learning-based heart sound classification presents a promising solution.This research introduces a novel preprocessing method:iterative k-means clustering combi... In the effort to enhance cardiovascular diagnostics,deep learning-based heart sound classification presents a promising solution.This research introduces a novel preprocessing method:iterative k-means clustering combined with silhouette score analysis,aimed at downsampling.This approach ensures optimal cluster formation and improves data quality for deep learning models.The process involves applying k-means clustering to the dataset,calculating the average silhouette score for each cluster,and selecting the clusterwith the highest score.We evaluated this method using 10-fold cross-validation across various transfer learningmodels fromdifferent families and architectures.The evaluation was conducted on four datasets:a binary dataset,an augmented binary dataset,amulticlass dataset,and an augmentedmulticlass dataset.All datasets were derived from the Heart Wave heart sounds dataset,a novelmulticlass dataset introduced by our research group.To increase dataset sizes and improve model training,data augmentation was performed using heartbeat cycle segmentation.Our findings highlight the significant impact of the proposed preprocessing approach on the HeartWave datasets.Across all datasets,model performance improved notably with the application of our method.In augmented multiclass classification,the MobileNetV2 model showed an average weighted F1-score improvement of 27.10%.In binary classification,ResNet50 demonstrated an average accuracy improvement of 8.70%,reaching 92.40%compared to its baseline performance.These results underscore the effectiveness of clustering with silhouette score analysis as a preprocessing step,significantly enhancing model accuracy and robustness.They also emphasize the critical role of preprocessing in addressing class imbalance and advancing precision medicine in cardiovascular diagnostics. 展开更多
关键词 Heart sound MURMURS cardiovascular diseases(CVDs) transfer learning convolutional neural network(CNN) deep learning K-means silhouette analysis
在线阅读 下载PDF
PhishNet: A Real-Time, Scalable Ensemble Framework for Smishing Attack Detection Using Transformers and LLMs
9
作者 Abeer Alhuzali Qamar Al-Qahtani +2 位作者 Asmaa Niyazi Lama Alshehri Fatemah Alharbi 《Computers, Materials & Continua》 2026年第1期2194-2212,共19页
The surge in smishing attacks underscores the urgent need for robust,real-time detection systems powered by advanced deep learning models.This paper introduces PhishNet,a novel ensemble learning framework that integra... The surge in smishing attacks underscores the urgent need for robust,real-time detection systems powered by advanced deep learning models.This paper introduces PhishNet,a novel ensemble learning framework that integrates transformer-based models(RoBERTa)and large language models(LLMs)(GPT-OSS 120B,LLaMA3.370B,and Qwen332B)to enhance smishing detection performance significantly.To mitigate class imbalance,we apply synthetic data augmentation using T5 and leverage various text preprocessing techniques.Our system employs a duallayer voting mechanism:weighted majority voting among LLMs and a final ensemble vote to classify messages as ham,spam,or smishing.Experimental results show an average accuracy improvement from 96%to 98.5%compared to the best standalone transformer,and from 93%to 98.5%when compared to LLMs across datasets.Furthermore,we present a real-time,user-friendly application to operationalize our detection model for practical use.PhishNet demonstrates superior scalability,usability,and detection accuracy,filling critical gaps in current smishing detection methodologies. 展开更多
关键词 Smishing attack detection phishing attacks ensemble learning CYBERSECURITY deep learning transformer-based models large language models
在线阅读 下载PDF
Dual-Channel Attention Deep Bidirectional Long Short Term Memory for Enhanced Malware Detection and Risk Mitigation
10
作者 Madini O.Alassafi Syed Hamid Hasan 《Computer Modeling in Engineering & Sciences》 2025年第8期2627-2645,共19页
Over the past few years,Malware attacks have become more and more widespread,posing threats to digital assets throughout the world.Although numerous methods have been developed to detect malicious attacks,these malwar... Over the past few years,Malware attacks have become more and more widespread,posing threats to digital assets throughout the world.Although numerous methods have been developed to detect malicious attacks,these malware detection techniques need to be more efficient in detecting new and progressively sophisticated variants of malware.Therefore,the development of more advanced and accurate techniques is necessary for malware detection.This paper introduces a comprehensive Dual-Channel Attention Deep Bidirectional Long Short-Term Memory(DCADBiLSTM)model for malware detection and riskmitigation.The Dual Channel Attention(DCA)mechanism improves themodel’s capability to concentrate on the features that aremost appropriate in the input data,which reduces the false favourable rates.The Bidirectional Long,Short-Term Memory framework helps capture crucial interdependence from past and future circumstances,which is essential for enhancing the model’s understanding of malware behaviour.As soon as malware is detected,the risk mitigation phase is implemented,which evaluates the severity of each threat and helps mitigate threats earlier.The outcomes of the method demonstrate better accuracy of 98.96%,which outperforms traditional models.It indicates the method detects and mitigates several kinds of malware threats,thereby providing a proactive defence mechanism against the emerging challenges in cybersecurity. 展开更多
关键词 CYBERSECURITY risk mitigation malware detection bidirectional long short-termmemory dual-channel attention
在线阅读 下载PDF
Performance vs.Complexity Comparative Analysis of Multimodal Bilinear Pooling Fusion Approaches for Deep Learning-Based Visual Arabic-Question Answering Systems
11
作者 Sarah M.Kamel Mai A.Fadel +1 位作者 Lamiaa Elrefaei Shimaa I.Hassan 《Computer Modeling in Engineering & Sciences》 2025年第4期373-411,共39页
Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate... Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate answer.In this paper,we propose a VQA system intended to answer yes/no questions about real-world images,in Arabic.To support a robust VQA system,we work in two directions:(1)Using deep neural networks to semantically represent the given image and question in a fine-grainedmanner,namely ResNet-152 and Gated Recurrent Units(GRU).(2)Studying the role of the utilizedmultimodal bilinear pooling fusion technique in the trade-o.between the model complexity and the overall model performance.Some fusion techniques could significantly increase the model complexity,which seriously limits their applicability for VQA models.So far,there is no evidence of how efficient these multimodal bilinear pooling fusion techniques are for VQA systems dedicated to yes/no questions.Hence,a comparative analysis is conducted between eight bilinear pooling fusion techniques,in terms of their ability to reduce themodel complexity and improve themodel performance in this case of VQA systems.Experiments indicate that these multimodal bilinear pooling fusion techniques have improved the VQA model’s performance,until reaching the best performance of 89.25%.Further,experiments have proven that the number of answers in the developed VQA system is a critical factor that a.ects the effectiveness of these multimodal bilinear pooling techniques in achieving their main objective of reducing the model complexity.The Multimodal Local Perception Bilinear Pooling(MLPB)technique has shown the best balance between the model complexity and its performance,for VQA systems designed to answer yes/no questions. 展开更多
关键词 Arabic-VQA deep learning-based VQA deep multimodal information fusion multimodal representation learning VQA of yes/no questions VQA model complexity VQA model performance performance-complexity trade-off
在线阅读 下载PDF
A Novel Clustered Distributed Federated Learning Architecture for Tactile Internet of Things Applications in 6G Environment
12
作者 Omar Alnajar Ahmed Barnawi 《Computer Modeling in Engineering & Sciences》 2025年第6期3861-3897,共37页
The Tactile Internet of Things(TIoT)promises transformative applications—ranging from remote surgery to industrial robotics—by incorporating haptic feedback into traditional IoT systems.Yet TIoT’s stringent require... The Tactile Internet of Things(TIoT)promises transformative applications—ranging from remote surgery to industrial robotics—by incorporating haptic feedback into traditional IoT systems.Yet TIoT’s stringent requirements for ultra-low latency,high reliability,and robust privacy present significant challenges.Conventional centralized Federated Learning(FL)architectures struggle with latency and privacy constraints,while fully distributed FL(DFL)faces scalability and non-IID data issues as client populations expand and datasets become increasingly heterogeneous.To address these limitations,we propose a Clustered Distributed Federated Learning(CDFL)architecture tailored for a 6G-enabled TIoT environment.Clients are grouped into clusters based on data similarity and/or geographical proximity,enabling local intra-cluster aggregation before inter-cluster model sharing.This hierarchical,peer-to-peer approach reduces communication overhead,mitigates non-IID effects,and eliminates single points of failure.By offloading aggregation to the network edge and leveraging dynamic clustering,CDFL enhances both computational and communication efficiency.Extensive analysis and simulation demonstrate that CDFL outperforms both centralized FL and DFL as the number of clients grows.Specifically,CDFL demonstrates up to a 30%reduction in training time under highly heterogeneous data distributions,indicating faster convergence.It also reduces communication overhead by approximately 40%compared to DFL.These improvements and enhanced network performance metrics highlight CDFL’s effectiveness for practical TIoT deployments.These results validate CDFL as a scalable,privacy-preserving solution for next-generation TIoT applications. 展开更多
关键词 Distributed federated learning Tactile Internet of Things CLUSTERING PEER-TO-PEER
在线阅读 下载PDF
Self-FAGCFN:Graph-Convolution Fusion Network Based on Feature Fusion and Self-Supervised Feature Alignment for Pneumonia and Tuberculosis Diagnosis
13
作者 Junding Sun Wenhao Tang +5 位作者 Lei Zhao Chaosheng Tang Xiaosheng Wu Zhaozhao Xu Bin Pu Yudong Zhang 《Journal of Bionic Engineering》 2025年第4期2012-2029,共18页
Feature fusion is an important technique in medical image classification that can improve diagnostic accuracy by integrating complementary information from multiple sources.Recently,Deep Learning(DL)has been widely us... Feature fusion is an important technique in medical image classification that can improve diagnostic accuracy by integrating complementary information from multiple sources.Recently,Deep Learning(DL)has been widely used in pulmonary disease diagnosis,such as pneumonia and tuberculosis.However,traditional feature fusion methods often suffer from feature disparity,information loss,redundancy,and increased complexity,hindering the further extension of DL algorithms.To solve this problem,we propose a Graph-Convolution Fusion Network with Self-Supervised Feature Alignment(Self-FAGCFN)to address the limitations of traditional feature fusion methods in deep learning-based medical image classification for respiratory diseases such as pneumonia and tuberculosis.The network integrates Convolutional Neural Networks(CNNs)for robust feature extraction from two-dimensional grid structures and Graph Convolutional Networks(GCNs)within a Graph Neural Network branch to capture features based on graph structure,focusing on significant node representations.Additionally,an Attention-Embedding Ensemble Block is included to capture critical features from GCN outputs.To ensure effective feature alignment between pre-and post-fusion stages,we introduce a feature alignment loss that minimizes disparities.Moreover,to address the limitations of proposed methods,such as inappropriate centroid discrepancies during feature alignment and class imbalance in the dataset,we develop a Feature-Centroid Fusion(FCF)strategy and a Multi-Level Feature-Centroid Update(MLFCU)algorithm,respectively.Extensive experiments on public datasets LungVision and Chest-Xray demonstrate that the Self-FAGCFN model significantly outperforms existing methods in diagnosing pneumonia and tuberculosis,highlighting its potential for practical medical applications. 展开更多
关键词 Feature fusion Self-supervised feature alignment Convolutional neural networks Graph convolutional networks Class imbalance Feature-centroid fusion
在线阅读 下载PDF
Hybrid HRNet-Swin Transformer:Multi-Scale Feature Fusion for Aerial Segmentation and Classification
14
作者 Asaad Algarni Aysha Naseer +3 位作者 Mohammed Alshehri Yahya AlQahtani Abdulmonem Alshahrani Jeongmin Park 《Computers, Materials & Continua》 2025年第10期1981-1998,共18页
Remote sensing plays a pivotal role in environmental monitoring,disaster relief,and urban planning,where accurate scene classification of aerial images is essential.However,conventional convolutional neural networks(C... Remote sensing plays a pivotal role in environmental monitoring,disaster relief,and urban planning,where accurate scene classification of aerial images is essential.However,conventional convolutional neural networks(CNNs)struggle with long-range dependencies and preserving high-resolution features,limiting their effectiveness in complex aerial image analysis.To address these challenges,we propose a Hybrid HRNet-Swin Transformer model that synergizes the strengths of HRNet-W48 for high-resolution segmentation and the Swin Transformer for global feature extraction.This hybrid architecture ensures robust multi-scale feature fusion,capturing fine-grained details and broader contextual relationships in aerial imagery.Our methodology begins with preprocessing steps,including normalization,histogram equalization,and noise reduction,to enhance input data quality.The HRNet-W48 backbone maintains high-resolution feature maps throughout the network,enabling precise segmentation,while the Swin Transformer leverages hierarchical self-attention to model long-range dependencies efficiently.By integrating these components,our model achieves superior performance in segmentation and classification tasks compared to traditional CNNs and standalone transformer models.We evaluate our approach on two benchmark datasets:UC Merced and WHU-RS19.Experimental results demonstrate that the proposed hybrid model outperforms existing methods,achieving state-of-the-art accuracy while maintaining computational efficiency.Specifically,it excels in preserving fine spatial details and contextual understanding,critical for applications like land-use classification and disaster assessment. 展开更多
关键词 Remote sensing computer vision aerial imagery scene classification feature extraction TRANSFORMER
在线阅读 下载PDF
Improving Fashion Sentiment Detection on X through Hybrid Transformers and RNNs
15
作者 Bandar Alotaibi Aljawhara Almutarie +1 位作者 Shuaa Alotaibi Munif Alotaibi 《Computers, Materials & Continua》 2025年第9期4451-4467,共17页
X(formerly known as Twitter)is one of the most prominent social media platforms,enabling users to share short messages(tweets)with the public or their followers.It serves various purposes,from real-time news dissemina... X(formerly known as Twitter)is one of the most prominent social media platforms,enabling users to share short messages(tweets)with the public or their followers.It serves various purposes,from real-time news dissemination and political discourse to trend spotting and consumer engagement.X has emerged as a key space for understanding shifting brand perceptions,consumer preferences,and product-related sentiment in the fashion industry.However,the platform’s informal,dynamic,and context-dependent language poses substantial challenges for sentiment analysis,mainly when attempting to detect sarcasm,slang,and nuanced emotional tones.This study introduces a hybrid deep learning framework that integrates Transformer encoders,recurrent neural networks(i.e.,Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU)),and attention mechanisms to improve the accuracy of fashion-related sentiment classification.These methods were selected due to their proven strength in capturing both contextual dependencies and sequential structures,which are essential for interpreting short-form text.Our model was evaluated on a dataset of 20,000 fashion tweets.The experimental results demonstrate a classification accuracy of 92.25%,outperforming conventional models such as Logistic Regression,Linear Support Vector Machine(SVM),and even standalone LSTM by a margin of up to 8%.This improvement highlights the importance of hybrid architectures in handling noisy,informal social media data.This study’s findings offer strong implications for digital marketing and brand management,where timely sentiment detection is critical.Despite the promising results,challenges remain regarding the precise identification of negative sentiments,indicating that further work is needed to detect subtle and contextually embedded expressions. 展开更多
关键词 Sentiment analysis deep learning natural language processing TRANSFORMERS recurrent neural networks
在线阅读 下载PDF
YOLOCSP-PEST for Crops Pest Localization and Classification
16
作者 Farooq Ali Huma Qayyum +2 位作者 Kashif Saleem Iftikhar Ahmad Muhammad Javed Iqbal 《Computers, Materials & Continua》 2025年第2期2373-2388,共16页
Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome... Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome the issue of pest detection on crops. We have developed the YOLOCSP-PEST model for Pest localization and classification. With the Cross Stage Partial Network (CSPNET) backbone, the proposed model is a modified version of You Only Look Once Version 7 (YOLOv7) that is intended primarily for pest localization and classification. Our proposed model gives exceptionally good results under conditions that are very challenging for any other comparable models especially conditions where we have issues with the luminance and the orientation of the images. It helps farmers working out on their crops in distant areas to determine any infestation quickly and accurately on their crops which helps in the quality and quantity of the production yield. The model has been trained and tested on 2 datasets namely the IP102 data set and a local crop data set on both of which it has shown exceptional results. It gave us a mean average precision (mAP) of 88.40% along with a precision of 85.55% and a recall of 84.25% on the IP102 dataset meanwhile giving a mAP of 97.18% on the local data set along with a recall of 94.88% and a precision of 97.50%. These findings demonstrate that the proposed model is very effective in detecting real-life scenarios and can help in the production of crops improving the yield quality and quantity at the same time. 展开更多
关键词 Deep learning classification of pests YOLOCSP-PEST pest detection
在线阅读 下载PDF
Drone-Based Public Surveillance Using 3D Point Clouds and Neuro-Fuzzy Classifier
17
作者 Yawar Abbas Aisha Ahmed Alarfaj +3 位作者 Ebtisam Abdullah Alabdulqader Asaad Algarni Ahmad Jalal Hui Liu 《Computers, Materials & Continua》 2025年第3期4759-4776,共18页
Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions f... Human Activity Recognition(HAR)in drone-captured videos has become popular because of the interest in various fields such as video surveillance,sports analysis,and human-robot interaction.However,recognizing actions from such videos poses the following challenges:variations of human motion,the complexity of backdrops,motion blurs,occlusions,and restricted camera angles.This research presents a human activity recognition system to address these challenges by working with drones’red-green-blue(RGB)videos.The first step in the proposed system involves partitioning videos into frames and then using bilateral filtering to improve the quality of object foregrounds while reducing background interference before converting from RGB to grayscale images.The YOLO(You Only Look Once)algorithm detects and extracts humans from each frame,obtaining their skeletons for further processing.The joint angles,displacement and velocity,histogram of oriented gradients(HOG),3D points,and geodesic Distance are included.These features are optimized using Quadratic Discriminant Analysis(QDA)and utilized in a Neuro-Fuzzy Classifier(NFC)for activity classification.Real-world evaluations on the Drone-Action,Unmanned Aerial Vehicle(UAV)-Gesture,and Okutama-Action datasets substantiate the proposed system’s superiority in accuracy rates over existing methods.In particular,the system obtains recognition rates of 93%for drone action,97%for UAV gestures,and 81%for Okutama-action,demonstrating the system’s reliability and ability to learn human activity from drone videos. 展开更多
关键词 Activity recognition geodesic distance pattern recognition neuro fuzzy classifier
在线阅读 下载PDF
Prioritizing Network-On-Chip Routers for Countermeasure Techniques against Flooding Denial-of-Service Attacks:A Fuzzy Multi-Criteria Decision-Making Approach
18
作者 Ahmed Abbas Jasim Al-Hchaimi Yousif Raad Muhsen +4 位作者 Wisam Hazim Gwad Entisar Soliman Alkayal Riyadh Rahef Nuiaa Al Ogaili Zaid Abdi Alkareem Alyasseri Alhamzah Alnoor 《Computer Modeling in Engineering & Sciences》 2025年第3期2661-2689,共29页
The implementation of Countermeasure Techniques(CTs)in the context of Network-On-Chip(NoC)based Multiprocessor System-On-Chip(MPSoC)routers against the Flooding Denial-of-Service Attack(F-DoSA)falls under Multi-Criter... The implementation of Countermeasure Techniques(CTs)in the context of Network-On-Chip(NoC)based Multiprocessor System-On-Chip(MPSoC)routers against the Flooding Denial-of-Service Attack(F-DoSA)falls under Multi-Criteria Decision-Making(MCDM)due to the three main concerns,called:traffic variations,multiple evaluation criteria-based traffic features,and prioritization NoC routers as an alternative.In this study,we propose a comprehensive evaluation of various NoC traffic features to identify the most efficient routers under the F-DoSA scenarios.Consequently,an MCDM approach is essential to address these emerging challenges.While the recent MCDM approach has some issues,such as uncertainty,this study utilizes Fuzzy-Weighted Zero-Inconsistency(FWZIC)to estimate the criteria weight values and Fuzzy Decision by Opinion Score Method(FDOSM)for ranking the routers with fuzzy Single-valued Neutrosophic under names(SvN-FWZIC and SvN-FDOSM)to overcome the ambiguity.The results obtained by using the SvN-FWZIC method indicate that the Max packet count has the highest importance among the evaluated criteria,with a weighted score of 0.1946.In contrast,the Hop count is identified as the least significant criterion,with a weighted score of 0.1090.The remaining criteria fall within a range of intermediate importance,with enqueue time scoring 0.1845,packet count decremented and traversal index scoring 0.1262,packet count incremented scoring 0.1124,and packet count index scoring 0.1472.In terms of ranking,SvN-FDOSM has two approaches:individual and group.Both the individual and group ranking processes show that(Router 4)is the most effective router,while(Router 3)is the lowest router under F-DoSA.The sensitivity analysis provides a high stability in ranking among all 10 scenarios.This approach offers essential feedback in making proper decisions in the design of countermeasure techniques in the domain of NoC-based MPSoC. 展开更多
关键词 NoC-based MPSoC security flooding DoS attack MCDM FDOSM FWZIC fuzzy set
在线阅读 下载PDF
Bat algorithm based on kinetic adaptation and elite communication for engineering problems
19
作者 Chong Yuan Dong Zhao +4 位作者 Ali Asghar Heidari Lei Liu Shuihua Wang Huiling Chen Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第4期1174-1200,共27页
The Bat algorithm,a metaheuristic optimization technique inspired by the foraging behaviour of bats,has been employed to tackle optimization problems.Known for its ease of implementation,parameter tunability,and stron... The Bat algorithm,a metaheuristic optimization technique inspired by the foraging behaviour of bats,has been employed to tackle optimization problems.Known for its ease of implementation,parameter tunability,and strong global search capabilities,this algorithm finds application across diverse optimization problem domains.However,in the face of increasingly complex optimization challenges,the Bat algorithm encounters certain limitations,such as slow convergence and sensitivity to initial solutions.In order to tackle these challenges,the present study incorporates a range of optimization compo-nents into the Bat algorithm,thereby proposing a variant called PKEBA.A projection screening strategy is implemented to mitigate its sensitivity to initial solutions,thereby enhancing the quality of the initial solution set.A kinetic adaptation strategy reforms exploration patterns,while an elite communication strategy enhances group interaction,to avoid algorithm from local optima.Subsequently,the effectiveness of the proposed PKEBA is rigorously evaluated.Testing encompasses 30 benchmark functions from IEEE CEC2014,featuring ablation experiments and comparative assessments against classical algorithms and their variants.Moreover,real-world engineering problems are employed as further validation.The results conclusively demonstrate that PKEBA ex-hibits superior convergence and precision compared to existing algorithms. 展开更多
关键词 Bat algorithm engineering optimization global optimization metaheuristic algorithms
在线阅读 下载PDF
Integrating Blockchain Technology into Healthcare Through an Intelligent Computing Technique 被引量:5
20
作者 Asif Irshad Khan Abdullah Saad Al-Malaise ALGhamdi +6 位作者 Fawaz Jaber Alsolami Yoosef B.Abushark Abdulmohsen Almalawi Abdullah Marish Ali Alka Agrawal Rajeev Kumar Raees Ahmad Khan 《Computers, Materials & Continua》 SCIE EI 2022年第2期2835-2860,共26页
The blockchain technology plays a significant role in the present era of information technology.In the last few years,this technology has been used effectively in several domains.It has already made significant differ... The blockchain technology plays a significant role in the present era of information technology.In the last few years,this technology has been used effectively in several domains.It has already made significant differences in human life,as well as is intended to have noticeable impact in many other domains in the forthcoming years.The rapid growth in blockchain technology has created numerous new possibilities for use,especially for healthcare applications.The digital healthcare services require highly effective security methodologies that can integrate data security with the availablemanagement strategies.To test and understand this goal of security management in Saudi Arabian perspective,the authors performed a numerical analysis and simulation through a multi criteria decision making approach in this study.The authors adopted the fuzzy Analytical Hierarchy Process(AHP)for evaluating the effectiveness and then applied the fuzzy Technique forOrder of Preference by Similarity to Ideal Solution(TOPSIS)technique to simulate the validation of results.For eliciting highly corroborative and conclusive results,the study referred to a real time project of diabetes patients’management application of Kingdom of Saudi Arabia(KSA).The results discussed in this paper are scientifically proven and validated through various analysis approaches.Hence the present study can be a credible basis for other similar endeavours being undertaken in the domain of blockchain research. 展开更多
关键词 Blockchain technology data management fuzzy logic AHP TOPSIS
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部