Lignin is a natural biopolymer with a complex three-dimensional network, commercially obtained from wasteliquid of paper pulp and bioethanol production, and could be a candidate for preparation of environment-friendly...Lignin is a natural biopolymer with a complex three-dimensional network, commercially obtained from wasteliquid of paper pulp and bioethanol production, and could be a candidate for preparation of environment-friendlybio-based polyphenol material. In the present work, the demethylated wheat straw alkali lignin (D-Lig), preparedby demethylation of wheat straw alkali lignin (Lig) using an in-situ generated Lewis acid, was used to synthesizebio-based phenol formaldehyde resin adhesive (D-LPF) applied in plywood. Effects of synthetic process’s factors,including lignin substitution for phenol, NaOH concentration and molar ratio of formaldehyde to phenol, on thebonding strength and free formaldehyde content of D-LPF were investigated in detail, and the optimum syntheticprocess of D-LPF was obtained as following: Lignin substitution for phenol 60%, NaOH concentration 5.0% andmolar ratio of formaldehyde to phenol 2.0, and under the optimum reaction condition, the D-LPF presented lower free formaldehyde content (0.18%) and higher bonding strength (2.19 MPa), which was better than those ofcontaining-lignin phenol formaldehyde resin adhesive (LPF). Additionally, the curing behavior of the adhesivewas studied by differential scanning calorimetry (DSC) combined with gel time. It can be obtained that D-LPFresin adhesive had the shortest gel time, and fastest curing rate, compared with those of PF and L-PF resin adhesives. The curing kinetics data was fitted well by Kissinger model using non-isothermal DSC method, and theaverage activation energy value was 85.3 kJ/mol, slightly higher than that of commercial PF resin, while lowerthan that of LPF (90.2 kJ/mol). Finally, based on the analytical results of high temperature fourier transform infrared spectroscopy (FTIR), a possible curing mechanism of D-LPF was proposed.展开更多
Nanoceramic coating on the surface of Ti-based metallic implants is a clinical potential option in orthopedic surgery.Stem cells have been found to have osteogenic capabilities.It is necessary to study the influences ...Nanoceramic coating on the surface of Ti-based metallic implants is a clinical potential option in orthopedic surgery.Stem cells have been found to have osteogenic capabilities.It is necessary to study the influences of functionalized nanoceramic coatings on the differentiation and proliferation of stem cells in vitro or in vivo.In this paper,we summarized the recent advance on the modulation of stem cells behaviors through controlling the properties of nanoceramic coatings,including surface chemistry,surface roughness and microporosity.In addition,mechanotransduction pathways have also been discussed to reveal the interaction mechanisms between the stem cells and ceramic coatings on Ti-based metals.In the final part,the osteoinduction and osteoconduction of ceramic coating have been also presented when it was used as carrier of BMPs in new bone formation.展开更多
基金This work was supported by the National Natural Science Foundation of China(51473024)by University Science Research General Project of Jiangsu Province(16KJD430001)。
文摘Lignin is a natural biopolymer with a complex three-dimensional network, commercially obtained from wasteliquid of paper pulp and bioethanol production, and could be a candidate for preparation of environment-friendlybio-based polyphenol material. In the present work, the demethylated wheat straw alkali lignin (D-Lig), preparedby demethylation of wheat straw alkali lignin (Lig) using an in-situ generated Lewis acid, was used to synthesizebio-based phenol formaldehyde resin adhesive (D-LPF) applied in plywood. Effects of synthetic process’s factors,including lignin substitution for phenol, NaOH concentration and molar ratio of formaldehyde to phenol, on thebonding strength and free formaldehyde content of D-LPF were investigated in detail, and the optimum syntheticprocess of D-LPF was obtained as following: Lignin substitution for phenol 60%, NaOH concentration 5.0% andmolar ratio of formaldehyde to phenol 2.0, and under the optimum reaction condition, the D-LPF presented lower free formaldehyde content (0.18%) and higher bonding strength (2.19 MPa), which was better than those ofcontaining-lignin phenol formaldehyde resin adhesive (LPF). Additionally, the curing behavior of the adhesivewas studied by differential scanning calorimetry (DSC) combined with gel time. It can be obtained that D-LPFresin adhesive had the shortest gel time, and fastest curing rate, compared with those of PF and L-PF resin adhesives. The curing kinetics data was fitted well by Kissinger model using non-isothermal DSC method, and theaverage activation energy value was 85.3 kJ/mol, slightly higher than that of commercial PF resin, while lowerthan that of LPF (90.2 kJ/mol). Finally, based on the analytical results of high temperature fourier transform infrared spectroscopy (FTIR), a possible curing mechanism of D-LPF was proposed.
基金This work is jointly supported by Special Prophase Program for Key Basic Research of the Ministry of Science and Technology of China(973 Program)No.2014CB660809the National Natural Science Foundation of China,Nos.51422102,and 81271715Hubei Provincial Natural Science Foundation Nos.2013CFA018 and 2014CFB551.
文摘Nanoceramic coating on the surface of Ti-based metallic implants is a clinical potential option in orthopedic surgery.Stem cells have been found to have osteogenic capabilities.It is necessary to study the influences of functionalized nanoceramic coatings on the differentiation and proliferation of stem cells in vitro or in vivo.In this paper,we summarized the recent advance on the modulation of stem cells behaviors through controlling the properties of nanoceramic coatings,including surface chemistry,surface roughness and microporosity.In addition,mechanotransduction pathways have also been discussed to reveal the interaction mechanisms between the stem cells and ceramic coatings on Ti-based metals.In the final part,the osteoinduction and osteoconduction of ceramic coating have been also presented when it was used as carrier of BMPs in new bone formation.