In this work,a novel microwave absorbing material(MAM)made of a pseudo-binary of Sr_(2)TiMoO_(6)-Al_(2)O_(3)(STM)is proposed first.The MAMs labeled as STM X(X=60,70,80 and 100,respectively),in which X is the initial w...In this work,a novel microwave absorbing material(MAM)made of a pseudo-binary of Sr_(2)TiMoO_(6)-Al_(2)O_(3)(STM)is proposed first.The MAMs labeled as STM X(X=60,70,80 and 100,respectively),in which X is the initial weight percent of Sr_(2)TiMoO_(6),were synthesized using the solid-state reaction method.Compared with STM100,some equilibrium phases,including SrTiO_(3),Mo,Sr_(8)(Al1_(2)O_(24))(MoO_(4))_(2)and a few undefined ones,are presented in the composites as evidenced by X-ray diffraction results and scanning electron microscopy due to the chemical reaction between Sr_(2)TiMoO_(6)and Al_(2)O_(3)component.Besides conductance loss,heterogeneous interfaces between various equilibrium phases introduce interfacial polarization,which causes an enhancement of dissipation for the incident electromagnetic wave.Among the synthesized samples,STM80 presents the best microwave absorbing properties.It has a minimum reflection loss(RLmin)of-26 dB and an effective absorbing bandwidth up to 2.7 GHz when the thickness is only 1 mm.This indicates that STM80 is a new type of microwave absorbing material with strong absorption and ultrathin thickness.展开更多
Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-te...Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-temperature phase stability limits its further application.In this work,four sets of TBCs high-entropy ceramics,(Sm_(1/5)Dy_(1/5)Ho_(1/5)Er_(1/5)Yb_(1/5))(Nb_(1/2)Ta_(1/2))O_(4)(5NbTa),(Sm_(1/6)Dy_(1/6)Ho_(1/6)Er_(1/6)Yb_(1/6)Lu_(1/6))(Nb_(1/2)Ta_(1/2))O_(4)(6NbTa),(Sm_(1/7)Gd_(1/7)Dy_(1/7)Ho_(1/7)Er_(1/7)Yb_(1/7)Lu_(1/7))(Nb_(1/2)Ta_(1/2))O_(4)(7NbTa),(Sm_(1/8)Gd_(1/8)Dy_(1/8)Ho_(1/8)Er_(1/8)Tm_(1/8)Yb_(1/8)Lu_(1/8))(Nb_(1/2)Ta_(1/2))O_(4)(8NbTa)are synthesized using a solid-state reaction method at 1650℃for 6 h.Firstly,the X-ray diffractometer(XRD)patterns display that the samples are all single-phase solid solution structures(space group C 2/c).Differential scanning calorimetry(DSC)and the high-temperature XRD of 8NbTa cross-check that the addition of Ta element in 8HERN increases the phase transition temperature above 1400℃,which can be attributed to that the Ta/Nb co-doping at B site introduces the fluctuation of the bond strength of Ta-O and Nb-O.Secondly,compared to high-entropy rare-earth niobates,the introduction of Ta atoms at B site substantially reduce thermal conductivity(re-duced by 44%,800℃)with the seven components high entropy ceramic as an example.The low thermal conductivity means strong phonon scattering,which may originate from the softening acoustic mode and flattened phonon dispersion in 5–8 principal element high entropy rare earth niobium tantalates(5–8NbTa)revealed by the first-principles calculations.Thirdly,the Ta/Nb co-doping in 5–8NbTa systems can further optimize the insulation performance of oxygen ions.The oxygen-ion conductivity of 8NbTa(3.31×10^(−6)S cm^(−1),900℃)is about 5 times lower than that of 8HERN(15.8×10^(−6)S cm^(−1),900℃)because of the sluggish diffusion effect,providing better oxygen barrier capacity in 5–8NbTa systems to inhibit the overgrowth of the thermal growth oxide(TGO)of TBCs.In addition,influenced by lattice dis-tortion and solid solution strengthening,the samples possess higher hardness(7.51–8.15 GPa)and TECs(9.78×10^(−6)K−1^(-1)0.78×10^(−6)K^(−1),1500℃)than the single rare-earth niobates and tantalates.Based on their excellent overall properties,it is considered that 5–8NbTa can be used as auspicious TBCs.展开更多
The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of po...The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of poly(ethylene oxide)(PEO)droplets using a gold nanoparticle tracer,where the heterogeneous flow field in different regions was illustrated.This demonstrates that the gold nanoparticles at either the center or the edge regions of the droplet exhibit anisotropic kinematic behavior.At early stage,Marangoni backflow causes gold nanoparticles to move towards the edge firstly,and the circles back towards the droplet center after arriving the contact line with a sudden increase in z axis for 10.4μm,indicating the scale of the upward-moving microscopic flow vortices.This phenomenon does not occur in water droplets in the absence of polymers.The gold nanoparticles underwent Brownian-like motion at the center of the PEO droplet or water droplet owing to the low perturbation of the flow field.At the late stage of pinning of the PEO droplets,the motion showed multiple reverses in the direction of the gold nanoparticles,indicating the complexity of the flow field.This study enhances the understanding of the drying dynamics of polymer solution droplets and offers valuable insights into the fabrication of surface materials.展开更多
The construction of intermetallic compounds(IMCs)connection layers with special compositions by adding small amounts of alloying elements has been proven to be an effective strategy for improving the reliability of el...The construction of intermetallic compounds(IMCs)connection layers with special compositions by adding small amounts of alloying elements has been proven to be an effective strategy for improving the reliability of electronic component interconnect.However,the synergistic effect mechanism of multi-component alloy compositions on the growth behavior of IMCs is not clear.Herein,we successfully prepared a new quaternary alloy solder with a composition of Sn-0.7Cu-0.175Pt-0.025Al(wt%)using the high-throughput screening(HTS)method.The results showed that it possesses excellent welding performance with an inhibition rate over 40%on the growth of IMCs layers.For Cu_(6)Sn_(5),the co-doping of Al and Pt not only greatly improves its thermodynamic stability,but also effectively suppresses the phase transition.Meanwhile,the co-doping of Al and Pt also significantly delays the generation time of Kirkendall defects.The substitution sites of Al and Pt in Cu_(6)Sn_(5)have been explored using atomic resolution imaging and advanced data informatics,indicating that Al and Pt preferentially substitute Sn and Cu atoms,respectively,to generate(Cu,Pt)_(6)(Sn,Al)_(5).A one-dimensional(1D)kinetic model of the IMCs layer growth at the Sn solder/Cu substrate interface was derived and validated,and the results showed that the error of the derived mathematical model is less than 5%.Finally,the synergistic mechanism of Al and Pt co-doping on the growth rate of Cu_(6)Sn_(5)was further elucidated.This work provides a feasible route for the design and development of multi-component alloy solders.展开更多
As one of the alloy-type lithium-ion electrodes,Bi has outstanding application prospects for large volume capacity(3800 mAh·cm^(-3))and high electronic conductivity(1.4×10^(7)S·m^(-1)).However,the fast-...As one of the alloy-type lithium-ion electrodes,Bi has outstanding application prospects for large volume capacity(3800 mAh·cm^(-3))and high electronic conductivity(1.4×10^(7)S·m^(-1)).However,the fast-charging performance is hindered by significant volume expansion(>218%)and a low rate of phase diffusion.To overcome these two problems,an N-doped carbon nanoflower coating layer was elaborately in-situ reconstructed on a multiple-wall Bi microsphere by hydrothermal methods and subsequent calcination in this study.The carbon nanoflowers greatly increase specific surface area(40.0 m^(2)·g^(-1))and alleviate the volume expansion(130%).In addition,the incorporation of N-doped carbon nanoflowers leads to a gradual enhancement in the Li adsorption energy of Bi during the process of lithium insertion and improves the electrical conductivity.Therefore,the contribution rate of pseudo-capacitance reached 87.5%at the scan rate of 0.8 mV·s^(-1),and the Li-ion diffusion coefficient(D_(Li^(+)))was calculated in the range of 10^(-10)to 10^(-12)cm^(2)·s^(-1).The Bi@CNFs anode provided a high specific volumetric capacity of 2117.0 mAh·cm^(-3)at 5C and a high capacity retention ratio of 93.2%after 800 cycles.The Bi@CNFs//LiFePO_(4)full cell also displayed a stable capacity of 113.9 mAh·g^(-1)and energy density of 296.1 Wh·kg^(-1)after 100 cycles with a Coulombic efficiency of 97.6%.The mechanism of fast-charging lithium storage was verified by distribution of relaxation time analysis and density functional theory calculation.This paper provides a new strategy to increase the pseudo-capacitance and reduce the volume expansion for the preparation of alloy-type fast-charging electrodes.展开更多
The void defect in intermetallic compounds(IMCs)layer at the joints caused by inhomogeneous atomic diffusion is one of the most important factors limiting the further development of Sn-based solders.In this work,the t...The void defect in intermetallic compounds(IMCs)layer at the joints caused by inhomogeneous atomic diffusion is one of the most important factors limiting the further development of Sn-based solders.In this work,the thermodynamic stability of IMCs(high-temperatureη-Cu_(6)Sn_(5)and o-Cu_(3)Sn phases)was improved by adding small amounts of indium(In),and the IMCs layers with moderate thickness,low defect concentrations and stable interface bonding were successfully obtained.The formation order of compounds and the interfacial orientation relationships in IMCs layers,the atomic diffusion mechanism,and the growth tuning mechanism of In onη-Cu_(6)Sn_(5)and Cu_(3)Sn,after In adding,were discussed com-prehensively by combining calculations and experiments.It is the first time that the classic heteroge-neous nucleation theory and CALPHAD data were used to obtain the critical nucleus radius ofη-Cu_(6)Sn_(5)and Cu_(3)Sn,and to explain in detail the main factors affecting the formation order and location of IMCs at joints during the welding process.A novel and systematic growth model about IMCs layers in the case of doping with alloying elements was proposed.The growth tuning mechanism of In doping onη-Cu_(6)Sn_(5)and Cu_(3)Sn was further clarified based on the proposed model using first-principles calculations.The growth model used in this study can provide insights into the development and design of multiele-ment Sn-based solders.展开更多
Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic ...Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic electrode of insitu-grown type for alkaline water splitting based on FeCoNi alloy substrate has been successfully prepared via a facile one-step hydrothermal oxidation route in an alkaline hydrogen peroxide medium.It shows that the matrix alloy with the atom ratio 4∶3∶3 of Fe∶Co∶Ni can obtain the best catalytic performance when hydrothermally treated at 180℃for 18 h in the solution containing 1.8 M hydrogen peroxide and 3.6 M sodium hydroxide.The as-prepared Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode exhibits small overpotentials of only 184 and 175 mV at electrolysis current density of 10 mA cm^(-2)for alkaline OER and HER processes,respectively.The overall water splitting at electrolysis current density of 10 mA cm^(-2)can be stably delivered at a low cell voltage of 1.62 V.These characteristics including the large specific surface area,the high surface nickel content,the abundant catalyst species,the balanced distribution between bivalent and trivalent metal ions,and the strong binding of in-situ naturally growed catalytic layer to matrix are responsible for the prominent catalytic performance of the Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode,which can act as a possible replacement for expensive noble metal-based materials.展开更多
SA508Gr.4 N steel is commonly used in nuclear pressure vessels. The current study discloses the impact of austenitizing temperature on its martensitic transformation. Various austenitizing temperatures were employed t...SA508Gr.4 N steel is commonly used in nuclear pressure vessels. The current study discloses the impact of austenitizing temperature on its martensitic transformation. Various austenitizing temperatures were employed to examine the martensitic transformation at different experimental conditions. The characteristics of grain boundaries, microstructure, transformation kinetics, and crystallography of the martensitic phase following the austenitizing process and martensitic transformation were analyzed. Austenitizing temperatures had minimal effects on the critical temperature of the austenitizing phase transition. However, an increase in austenitizing temperature resulted in larger grain sizes. The phase composition primarily consisted of lath martensite, accompanied by a small amount of residual austenite (RA). As the austenitizing temperature increased, the temperature of martensite-start temperature (Ms) initially decreased and then increased. On the other hand, the temperature of martensite-finish (Mf) showed no significant sensitivity to changes in the austenitizing temperature. Moreover, the average size of the lath martensite structure was increased, and there was an increased tendency for variant selection as the austenitizing temperature increased, and the combination of specific orientation relationships appeared. This study is very valuable for revealing the microstructure evolution at different temperatures.展开更多
In this work,Mg(0001)/AlB_(2)(0001)interfaces with various terminations and stacking orders were constructed,and the atomic and electronic structures and adhesion work(Wad)of the interface were investigated using the ...In this work,Mg(0001)/AlB_(2)(0001)interfaces with various terminations and stacking orders were constructed,and the atomic and electronic structures and adhesion work(Wad)of the interface were investigated using the first-principles calculations.Notably,during the geometry optimization process,the B-mid-top(B-MT)Mg(0001)/AlB_(2)(0001)interface exhibits the most significant interface changes and manifests the least stability.Horizontal movement of Mg atoms in the first layer of the Mg surface slab,along the normal direction,results in a structure akin to the structurally optimized hexagonal close-packed(HCP)interface.The B-HCP interface demonstrates the highest stability,the largest ideal Wad,and the smallest interface distance.The interface enhances the binding strength of the Mg-side sub-interface,but diminishes the binding strength of the AlB_(2)-side sub-interface.Furthermore,Mg atoms can form metallic/covalent mixed bonds with Al atoms on the Al-terminal AlB_(2) surface and form ionic bonds with B atoms on the B-terminal AlB_(2) surface.Mg(0001)/AlB_(2)(0001)interface has good bonding properties.This research provides strong theoretical support for an in-depth understanding of Mg/AlB_(2) interface characteristics.展开更多
The as-cast Mg-2.0Zn-1.5Sn-xZr(x=0,0.4,0.6,0.8,1.0 wt%)alloy was rolled with the pressure less than 5%each time.The microstructure,mechanical properties,corrosion properties and biocompatibility of the alloy were inve...The as-cast Mg-2.0Zn-1.5Sn-xZr(x=0,0.4,0.6,0.8,1.0 wt%)alloy was rolled with the pressure less than 5%each time.The microstructure,mechanical properties,corrosion properties and biocompatibility of the alloy were investigated.The microstructure of the alloy was observed and analyzed by scanning electron microscope,and the tensile test was carried out by universal tensile machine.The corrosion resistance of the alloy in Hank's solution was studied by hydrogen evolution experiment and electrochemical test,and the biocompatibility of the alloy was tested by L929 cells.The results show that Mg-2Zn-1.5Sn-xZr alloy has excellent mechanical properties.The elongation of Mg-2Zn-1.5Sn-xZr alloy decreases with the increase of Zr content,but the tensile strength first increases and then decreases with the increase of Zr concentration.When the Zr content is 0.8 wt%,the maximum tensile strength of the alloy is 235 MPa.The results of hydrogen evolution experiment and electrochemical analysis show that the corrosion resistance of the alloy is the best when the Zr content is 0.8 wt%,and all the five alloys have high biocompatibility.In conclusion,the rolled alloy has good properties and has broad application prospects in the field of biomaterials.展开更多
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s...When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.展开更多
Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 ...Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 in complex environmental samples.Here,solid-state nanochannels,modified with metal-organic frameworks(MOF)and specific aptamers,were engineered for highly sensitive detection of strontium ion(Sr^(2+)).The synergistic effect between the reduced effective diameter of the nanochannels due to MOF and the specific binding of Sr^(2+) by aptamers amplifies the difference in ionic current signals,enhancing detection sensitivity significantly.The MOF-modified nanochannels exhibit highly sensitive detection of Sr^(2+),with a limit of detection(LOD)being 0.03 nmol·L^(-1),whereas the LOD for anodized aluminum oxide(AAO)without the modified MOF nanosheets is only 1000 nmol·L^(-1).These findings indicate that the LOD of Sr^(2+) detected by the MOF-modified nanochannels is approximately 33,000 times higher than that by the nanochannels without MOF modification.Additionally,the highly reliable detection of Sr^(2+) in various water samples was achieved,with a recovery rate ranging from 94.00%to 118.70%.This study provides valuable insights into the rapidly advancing field of advanced nanochannel-based sensors and their diverse applications for analyzing complex samples,including environmental contaminant detection,food analysis,medical diagnostics,and more.展开更多
Aggregation-induced emission(AIE)is a unique phenomenon where certain organic materials exhibit enhanced luminescence in their aggregated states,overcoming the typical quenching observed in conventional organic materi...Aggregation-induced emission(AIE)is a unique phenomenon where certain organic materials exhibit enhanced luminescence in their aggregated states,overcoming the typical quenching observed in conventional organic materials.Since its discovery in 2001,AIE has driven significant advances in fields like OLEDs and biological imaging,earning recognition in fundamental research.However,its application in high-energy radiation detection remains underexplored.Organic scintillators,though widely used,face challenges such as low light yield and poor radiation attenuation.AIE materials offer promising solutions by improving light yield,response speed,and radiation attenuation.This review summarizes the design strategies behind AIE scintillators and their very recent applications in X-ray,γ-ray,and fast neutron detection.We highlight their advantages in enhancing detection sensitivity,reducing background noise,and achieving high-resolution imaging.By addressing the current challenges,we believe AIE materials will play a pivotal role in advancing future radiation detection and imaging technologies.展开更多
As candidate thermal/environmental barrier coatings(T/EBCs),the structure characteristics and comprehensive properties of monoclinic-prime(m')RETaO4(RE=Yb,Lu,Sc)with excellent Al2O3/SiO2 chemical compatibility are...As candidate thermal/environmental barrier coatings(T/EBCs),the structure characteristics and comprehensive properties of monoclinic-prime(m')RETaO4(RE=Yb,Lu,Sc)with excellent Al2O3/SiO2 chemical compatibility are studied.Excellent thermal insulation protection will be provided by m'RETaO4 due to their low thermal conductivity(~1.6 Wm^-1 K^-1,900℃)and prominent thermal radiation resistance,which is much better than those of YSZ(~2.5 Wm^-1 K^-1,1000℃)and La-12 Zr2O7(~2.0 Wm^-1 K,900℃).The thermal expansion coefficients(TECs)are 3.0–8.0×10^-6 K^-1(200-1200℃),which is suitable for T/EBCs applications.Furthermore,absence of phase transition and extraordinary chemical compatibility with Al2O3/SiO2 up to 1500℃indicate the potential application prospect.The documented governing mechanisms of m'RETaO4 properties will enable researchers to promote their application in the future investigation.展开更多
Mullite whiskers were facilely prepared by sintering kyanite at high temperature, with the addition of AlF3·3H20. The as-prepared whiskers have been characterized systematically in terms of phase composition, mor...Mullite whiskers were facilely prepared by sintering kyanite at high temperature, with the addition of AlF3·3H20. The as-prepared whiskers have been characterized systematically in terms of phase composition, morphology, and structure. Results showed that the morphology and size of mullite whiskers were strongly depended on the content of AlF3·3H20 and sintering temperature. At temperatures in the range of 1 100 to 1 500 ℃ with 4 wt% addition of AlF3·3H20, the well-shaped mullite whiskers were obtained. For an instance, the mullite whiskers with 5-10 μm in length and 0.1-0.2 μm in cross-section could be formed at 1 400 ℃, with 4 wt% addition of A1F3·3H20. Moreover, results showed that the addition of mullite whiskers into ceramic matrix enhanced its fracture toughness significantly.展开更多
A simple method for the determination of Sc, Y and Ln in carbonate at sub μg·g -1 levels by ICP MS with inter elements matrix matched technique was developed. A series of matrix matched standard so...A simple method for the determination of Sc, Y and Ln in carbonate at sub μg·g -1 levels by ICP MS with inter elements matrix matched technique was developed. A series of matrix matched standard solution were prepared by adopting the normalized concentration values, which were calculated the statistic average compositions of reference values of REEs in carbonate standard reference materials. The matrix effects of Ca and Mg on REEs were studied in detail and the results show that the matrix effect of Ca and Mg can be ignored when the dilution factors are more than 1000. The combination of 115 In and 103 Rh as internal standard was selected to compensate the drift of analytical signals. The method proposed was applied to the analysis of ultra trace REEs in carbonate references materials GSR 6, GSR 12 and real samples.展开更多
The effect of glass network modifier R2O (R=Li, Na, K) on upconversion luminescence in Er3+/yb3+ co-doped NaYF4 oxyfluoride glass-ceramics was investigated. NaYF4 nanocrystals with different sizes were studied und...The effect of glass network modifier R2O (R=Li, Na, K) on upconversion luminescence in Er3+/yb3+ co-doped NaYF4 oxyfluoride glass-ceramics was investigated. NaYF4 nanocrystals with different sizes were studied under glass network modifier alkali mental oxide. The nanocrystals size in NaYF4 of Li2O modified samples was 11 nm, whereas in the Na20 and K2O modified sample, the crystal size was 25 and 43 nm, respectively. It was found that red, yellow and green upconversions were observed in SAL, SAN, SAK glass ceramics. The reported results would deepen the understanding of size effects on the lanthanide upcon- version in nanocrystals.展开更多
The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1...The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1. The activation energy(Q) for the tested steel is calculated to be around 682.99 k J/mol at a deformation strain of 0.6. Microstructural analysis by SEM shows that the dynamic recrystallization(DRX) behavior is dependent sensitively on the deformation strain, temperature and strain rate, while an exponential relationship between DRX grain size and Z parameter is obtained from the computational formula. Moreover, the M6C-type carbides(〈1 μm) act as the main prohibitor of grain coarsening, and the polynomial regression relationship between them is worked out. With electron backscatter diffraction(EBSD) observation, DRX is the main nucleation mechanism responsible for the formation of new grains during hot compression. In conclusion, the interaction between DRX affected by hot deformation parameters and carbides precipitation determines the ultimate grain size refinement.展开更多
Herein,the effects of 33 alloying elements on the elastic properties and solid solution strengthening(SSS)of a-Ti alloys were systematically studied via first-principles calculations based on a dilute solid solution.A...Herein,the effects of 33 alloying elements on the elastic properties and solid solution strengthening(SSS)of a-Ti alloys were systematically studied via first-principles calculations based on a dilute solid solution.All alloying elements in these calculations were thermodynamically favorable,which indicated that these elements could be dissolved inα-Ti alloys.Ti_(35)Os had the highest elastic modulus as compared to those of other dilute Tibased solid solutions.Au,Co,and Pt were found to be promising candidates for improving the ductilities ofα-Ti solid solution alloys.Solid solution strengthening was analyzed using Cottrell's and Labush's models.Based on the solid solubility,Ir,Rh,Ni,and Pt were found to possess the best solid solution hardening effects in the following order:Ir>Rh>Ni>Pt.The bonding state between Ti and the impurity atom was visually characterized owing to the difference between their charge densities.By integrating the calculations of mean bond length and mean population,the results showed that Ti-Os had the largest mean population and degree of delocalization of the electron cloud around the solute atom,implying ionic characteristics of Os and Ti.Furthermore,after analyzing the alloying elements of each group,we found thatⅧ-group elements(Ru,Rh,Pd,Os,Ir,Pt)had good potentials for improving the comprehensive mechanical properties of Ti alloys.展开更多
Ziyang County, Shaanxi Province, China is a world known selenium(Se)-enriched area, and a severe selenosis incident was reported in Naore Village during the 1990 s. This study investigated the geochemical characteri...Ziyang County, Shaanxi Province, China is a world known selenium(Se)-enriched area, and a severe selenosis incident was reported in Naore Village during the 1990 s. This study investigated the geochemical characteristics of Se and its fractions in Se-enriched rocks from Ziyang. Se distribution is uneven, ranging from 0.23 to 57.00 μg/g(17.29±15.52 μg/g). Se content is higher in slate than chert, and even lower in carbonate rocks. Cd, As and V are enriched but Pb is depleted in Se-enriched strata. Se has different correlations both with TS(total sulfur)(R^2=0.59 for chert) and TC(total carbon)(R^2=0.77 for slate, R^2=0.87 for carbonate). Se has significant positive correlations with V(r=0.65), As(r=0.485), Cd(r=0.459) and Pb(r=0.405). The Se level correlates with mineral content, positively with pyrite, chlorite and illite, negatively with albite. Se associated with sulfide/selenide and elemental Se are the predominant fractions of total recovered Se, suggesting that a reducing environment and the formation of sulfides were significant to Se deposition during its geochemical cycle. Although low concentration of bio-available Se(average 5.62%±3.69%) may reduce the risk of Se poisoning in the target area, utilization of Se-rich rock as natural fertilizer should be restricted.展开更多
基金supported by the National Natural Science Foundation of China(No.52402078)Yunnan Major Scientific and Technological Projects(No.202302AG050010)+1 种基金Yunnan Fundamental Research Projects(No.202201BE070001-008)the National Key Research and Development Program of China(No.2022YFB3708600)。
文摘In this work,a novel microwave absorbing material(MAM)made of a pseudo-binary of Sr_(2)TiMoO_(6)-Al_(2)O_(3)(STM)is proposed first.The MAMs labeled as STM X(X=60,70,80 and 100,respectively),in which X is the initial weight percent of Sr_(2)TiMoO_(6),were synthesized using the solid-state reaction method.Compared with STM100,some equilibrium phases,including SrTiO_(3),Mo,Sr_(8)(Al1_(2)O_(24))(MoO_(4))_(2)and a few undefined ones,are presented in the composites as evidenced by X-ray diffraction results and scanning electron microscopy due to the chemical reaction between Sr_(2)TiMoO_(6)and Al_(2)O_(3)component.Besides conductance loss,heterogeneous interfaces between various equilibrium phases introduce interfacial polarization,which causes an enhancement of dissipation for the incident electromagnetic wave.Among the synthesized samples,STM80 presents the best microwave absorbing properties.It has a minimum reflection loss(RLmin)of-26 dB and an effective absorbing bandwidth up to 2.7 GHz when the thickness is only 1 mm.This indicates that STM80 is a new type of microwave absorbing material with strong absorption and ultrathin thickness.
基金support from Yunnan Major Scientific and Technological Projects(No.202302AG050010)Yunnan Fundamental Research Projects(Nos.202101AW070011 and202101BE070001–015)+1 种基金National Natural Science Foundation of China(No.52303295)Project Funds of“Xingdian Talent Support Program”.
文摘Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-temperature phase stability limits its further application.In this work,four sets of TBCs high-entropy ceramics,(Sm_(1/5)Dy_(1/5)Ho_(1/5)Er_(1/5)Yb_(1/5))(Nb_(1/2)Ta_(1/2))O_(4)(5NbTa),(Sm_(1/6)Dy_(1/6)Ho_(1/6)Er_(1/6)Yb_(1/6)Lu_(1/6))(Nb_(1/2)Ta_(1/2))O_(4)(6NbTa),(Sm_(1/7)Gd_(1/7)Dy_(1/7)Ho_(1/7)Er_(1/7)Yb_(1/7)Lu_(1/7))(Nb_(1/2)Ta_(1/2))O_(4)(7NbTa),(Sm_(1/8)Gd_(1/8)Dy_(1/8)Ho_(1/8)Er_(1/8)Tm_(1/8)Yb_(1/8)Lu_(1/8))(Nb_(1/2)Ta_(1/2))O_(4)(8NbTa)are synthesized using a solid-state reaction method at 1650℃for 6 h.Firstly,the X-ray diffractometer(XRD)patterns display that the samples are all single-phase solid solution structures(space group C 2/c).Differential scanning calorimetry(DSC)and the high-temperature XRD of 8NbTa cross-check that the addition of Ta element in 8HERN increases the phase transition temperature above 1400℃,which can be attributed to that the Ta/Nb co-doping at B site introduces the fluctuation of the bond strength of Ta-O and Nb-O.Secondly,compared to high-entropy rare-earth niobates,the introduction of Ta atoms at B site substantially reduce thermal conductivity(re-duced by 44%,800℃)with the seven components high entropy ceramic as an example.The low thermal conductivity means strong phonon scattering,which may originate from the softening acoustic mode and flattened phonon dispersion in 5–8 principal element high entropy rare earth niobium tantalates(5–8NbTa)revealed by the first-principles calculations.Thirdly,the Ta/Nb co-doping in 5–8NbTa systems can further optimize the insulation performance of oxygen ions.The oxygen-ion conductivity of 8NbTa(3.31×10^(−6)S cm^(−1),900℃)is about 5 times lower than that of 8HERN(15.8×10^(−6)S cm^(−1),900℃)because of the sluggish diffusion effect,providing better oxygen barrier capacity in 5–8NbTa systems to inhibit the overgrowth of the thermal growth oxide(TGO)of TBCs.In addition,influenced by lattice dis-tortion and solid solution strengthening,the samples possess higher hardness(7.51–8.15 GPa)and TECs(9.78×10^(−6)K−1^(-1)0.78×10^(−6)K^(−1),1500℃)than the single rare-earth niobates and tantalates.Based on their excellent overall properties,it is considered that 5–8NbTa can be used as auspicious TBCs.
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2023B0101200006)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515011926)+1 种基金Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,Guangzhou 510640,China(South China University of Technology)(No.2023B1212060003)State Key Laboratory of Applied Microbiology Southern China(No.SKLAM008-2022)。
文摘The dynamics of the drying process of polymer solutions are important for the development of coatings and films.In the present work,digital holographic microscopy(DHM)was performed to capture the drying dynamics of poly(ethylene oxide)(PEO)droplets using a gold nanoparticle tracer,where the heterogeneous flow field in different regions was illustrated.This demonstrates that the gold nanoparticles at either the center or the edge regions of the droplet exhibit anisotropic kinematic behavior.At early stage,Marangoni backflow causes gold nanoparticles to move towards the edge firstly,and the circles back towards the droplet center after arriving the contact line with a sudden increase in z axis for 10.4μm,indicating the scale of the upward-moving microscopic flow vortices.This phenomenon does not occur in water droplets in the absence of polymers.The gold nanoparticles underwent Brownian-like motion at the center of the PEO droplet or water droplet owing to the low perturbation of the flow field.At the late stage of pinning of the PEO droplets,the motion showed multiple reverses in the direction of the gold nanoparticles,indicating the complexity of the flow field.This study enhances the understanding of the drying dynamics of polymer solution droplets and offers valuable insights into the fabrication of surface materials.
基金financially supported by the Innovation Team Cultivation Project of Yunnan Province(No.202005AE160016)the Key Research&Development Program of Yunnan Province(No.202103AA080017)Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(No.YNWR-QNBJ2018-044)。
文摘The construction of intermetallic compounds(IMCs)connection layers with special compositions by adding small amounts of alloying elements has been proven to be an effective strategy for improving the reliability of electronic component interconnect.However,the synergistic effect mechanism of multi-component alloy compositions on the growth behavior of IMCs is not clear.Herein,we successfully prepared a new quaternary alloy solder with a composition of Sn-0.7Cu-0.175Pt-0.025Al(wt%)using the high-throughput screening(HTS)method.The results showed that it possesses excellent welding performance with an inhibition rate over 40%on the growth of IMCs layers.For Cu_(6)Sn_(5),the co-doping of Al and Pt not only greatly improves its thermodynamic stability,but also effectively suppresses the phase transition.Meanwhile,the co-doping of Al and Pt also significantly delays the generation time of Kirkendall defects.The substitution sites of Al and Pt in Cu_(6)Sn_(5)have been explored using atomic resolution imaging and advanced data informatics,indicating that Al and Pt preferentially substitute Sn and Cu atoms,respectively,to generate(Cu,Pt)_(6)(Sn,Al)_(5).A one-dimensional(1D)kinetic model of the IMCs layer growth at the Sn solder/Cu substrate interface was derived and validated,and the results showed that the error of the derived mathematical model is less than 5%.Finally,the synergistic mechanism of Al and Pt co-doping on the growth rate of Cu_(6)Sn_(5)was further elucidated.This work provides a feasible route for the design and development of multi-component alloy solders.
基金supported by the project of the National Natural Science Foundation of China(NSFC,Nos.5216040127,52164048 and U1802256)Central Guidance for Local Science and Technology Development Funds(No.202107AB110011)the Analysis and Test Funds of Kunming University of Science and Technology(No.2021M0202230188).
文摘As one of the alloy-type lithium-ion electrodes,Bi has outstanding application prospects for large volume capacity(3800 mAh·cm^(-3))and high electronic conductivity(1.4×10^(7)S·m^(-1)).However,the fast-charging performance is hindered by significant volume expansion(>218%)and a low rate of phase diffusion.To overcome these two problems,an N-doped carbon nanoflower coating layer was elaborately in-situ reconstructed on a multiple-wall Bi microsphere by hydrothermal methods and subsequent calcination in this study.The carbon nanoflowers greatly increase specific surface area(40.0 m^(2)·g^(-1))and alleviate the volume expansion(130%).In addition,the incorporation of N-doped carbon nanoflowers leads to a gradual enhancement in the Li adsorption energy of Bi during the process of lithium insertion and improves the electrical conductivity.Therefore,the contribution rate of pseudo-capacitance reached 87.5%at the scan rate of 0.8 mV·s^(-1),and the Li-ion diffusion coefficient(D_(Li^(+)))was calculated in the range of 10^(-10)to 10^(-12)cm^(2)·s^(-1).The Bi@CNFs anode provided a high specific volumetric capacity of 2117.0 mAh·cm^(-3)at 5C and a high capacity retention ratio of 93.2%after 800 cycles.The Bi@CNFs//LiFePO_(4)full cell also displayed a stable capacity of 113.9 mAh·g^(-1)and energy density of 296.1 Wh·kg^(-1)after 100 cycles with a Coulombic efficiency of 97.6%.The mechanism of fast-charging lithium storage was verified by distribution of relaxation time analysis and density functional theory calculation.This paper provides a new strategy to increase the pseudo-capacitance and reduce the volume expansion for the preparation of alloy-type fast-charging electrodes.
基金supported by the Innovation Team Cultivation Project of Yunnan Province(No.202005AE160016)Key Research&Development Program of Yunnan Province(No.202103AA080017)Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(No.YNWR-QNBJ-2018-044).
文摘The void defect in intermetallic compounds(IMCs)layer at the joints caused by inhomogeneous atomic diffusion is one of the most important factors limiting the further development of Sn-based solders.In this work,the thermodynamic stability of IMCs(high-temperatureη-Cu_(6)Sn_(5)and o-Cu_(3)Sn phases)was improved by adding small amounts of indium(In),and the IMCs layers with moderate thickness,low defect concentrations and stable interface bonding were successfully obtained.The formation order of compounds and the interfacial orientation relationships in IMCs layers,the atomic diffusion mechanism,and the growth tuning mechanism of In onη-Cu_(6)Sn_(5)and Cu_(3)Sn,after In adding,were discussed com-prehensively by combining calculations and experiments.It is the first time that the classic heteroge-neous nucleation theory and CALPHAD data were used to obtain the critical nucleus radius ofη-Cu_(6)Sn_(5)and Cu_(3)Sn,and to explain in detail the main factors affecting the formation order and location of IMCs at joints during the welding process.A novel and systematic growth model about IMCs layers in the case of doping with alloying elements was proposed.The growth tuning mechanism of In doping onη-Cu_(6)Sn_(5)and Cu_(3)Sn was further clarified based on the proposed model using first-principles calculations.The growth model used in this study can provide insights into the development and design of multiele-ment Sn-based solders.
基金supported by the Overseas Expertise Introduction Center for Discipline Innovation(D18025)National Nature Science Foundation of China(Grant No.41931295)
文摘Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic electrode of insitu-grown type for alkaline water splitting based on FeCoNi alloy substrate has been successfully prepared via a facile one-step hydrothermal oxidation route in an alkaline hydrogen peroxide medium.It shows that the matrix alloy with the atom ratio 4∶3∶3 of Fe∶Co∶Ni can obtain the best catalytic performance when hydrothermally treated at 180℃for 18 h in the solution containing 1.8 M hydrogen peroxide and 3.6 M sodium hydroxide.The as-prepared Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode exhibits small overpotentials of only 184 and 175 mV at electrolysis current density of 10 mA cm^(-2)for alkaline OER and HER processes,respectively.The overall water splitting at electrolysis current density of 10 mA cm^(-2)can be stably delivered at a low cell voltage of 1.62 V.These characteristics including the large specific surface area,the high surface nickel content,the abundant catalyst species,the balanced distribution between bivalent and trivalent metal ions,and the strong binding of in-situ naturally growed catalytic layer to matrix are responsible for the prominent catalytic performance of the Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode,which can act as a possible replacement for expensive noble metal-based materials.
基金financially supported by the Yunnan Fundamental Research Projects(Grant No.202101AU070152)the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(Grant No.YNWR-QNBJ-2020-020)+2 种基金the Key Research&Development Program of Yunnan Province(Grant Nos.202103AA080017 and CBN21281004A)the Natural Science Research Foundation of Kunming University of Science and Technology(Grant No.KKZ3202051043)supported via funding from Prince Sattam bin Abdulaziz University project No.PSAU/2023/R/1444.
文摘SA508Gr.4 N steel is commonly used in nuclear pressure vessels. The current study discloses the impact of austenitizing temperature on its martensitic transformation. Various austenitizing temperatures were employed to examine the martensitic transformation at different experimental conditions. The characteristics of grain boundaries, microstructure, transformation kinetics, and crystallography of the martensitic phase following the austenitizing process and martensitic transformation were analyzed. Austenitizing temperatures had minimal effects on the critical temperature of the austenitizing phase transition. However, an increase in austenitizing temperature resulted in larger grain sizes. The phase composition primarily consisted of lath martensite, accompanied by a small amount of residual austenite (RA). As the austenitizing temperature increased, the temperature of martensite-start temperature (Ms) initially decreased and then increased. On the other hand, the temperature of martensite-finish (Mf) showed no significant sensitivity to changes in the austenitizing temperature. Moreover, the average size of the lath martensite structure was increased, and there was an increased tendency for variant selection as the austenitizing temperature increased, and the combination of specific orientation relationships appeared. This study is very valuable for revealing the microstructure evolution at different temperatures.
基金supported by the Innovation Team Cultivation Project of Yunnan Province under Grant No.202005AE160016the Key Research&Development Program of Yunnan Province under Grant No.202103AA080017.
文摘In this work,Mg(0001)/AlB_(2)(0001)interfaces with various terminations and stacking orders were constructed,and the atomic and electronic structures and adhesion work(Wad)of the interface were investigated using the first-principles calculations.Notably,during the geometry optimization process,the B-mid-top(B-MT)Mg(0001)/AlB_(2)(0001)interface exhibits the most significant interface changes and manifests the least stability.Horizontal movement of Mg atoms in the first layer of the Mg surface slab,along the normal direction,results in a structure akin to the structurally optimized hexagonal close-packed(HCP)interface.The B-HCP interface demonstrates the highest stability,the largest ideal Wad,and the smallest interface distance.The interface enhances the binding strength of the Mg-side sub-interface,but diminishes the binding strength of the AlB_(2)-side sub-interface.Furthermore,Mg atoms can form metallic/covalent mixed bonds with Al atoms on the Al-terminal AlB_(2) surface and form ionic bonds with B atoms on the B-terminal AlB_(2) surface.Mg(0001)/AlB_(2)(0001)interface has good bonding properties.This research provides strong theoretical support for an in-depth understanding of Mg/AlB_(2) interface characteristics.
基金Funded by National Natural Science Foundation of China(Nos.52161024,51761021)Ten Thousand Talents Program of Yunnan Province(No.YNWR-QNJ-2018-044)。
文摘The as-cast Mg-2.0Zn-1.5Sn-xZr(x=0,0.4,0.6,0.8,1.0 wt%)alloy was rolled with the pressure less than 5%each time.The microstructure,mechanical properties,corrosion properties and biocompatibility of the alloy were investigated.The microstructure of the alloy was observed and analyzed by scanning electron microscope,and the tensile test was carried out by universal tensile machine.The corrosion resistance of the alloy in Hank's solution was studied by hydrogen evolution experiment and electrochemical test,and the biocompatibility of the alloy was tested by L929 cells.The results show that Mg-2Zn-1.5Sn-xZr alloy has excellent mechanical properties.The elongation of Mg-2Zn-1.5Sn-xZr alloy decreases with the increase of Zr content,but the tensile strength first increases and then decreases with the increase of Zr concentration.When the Zr content is 0.8 wt%,the maximum tensile strength of the alloy is 235 MPa.The results of hydrogen evolution experiment and electrochemical analysis show that the corrosion resistance of the alloy is the best when the Zr content is 0.8 wt%,and all the five alloys have high biocompatibility.In conclusion,the rolled alloy has good properties and has broad application prospects in the field of biomaterials.
文摘When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.
基金supported by the National Natural Science Foundation of China(No.22090050,No.22090052,No.22176180)National Basic Research Program of China(No.2021YFA1200400)+1 种基金the Natural Science Foundation of Hubei Province(No.2024AFA001)Shenzhen Science and Technology Program(No.JCYJ20220530162406014)。
文摘Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 in complex environmental samples.Here,solid-state nanochannels,modified with metal-organic frameworks(MOF)and specific aptamers,were engineered for highly sensitive detection of strontium ion(Sr^(2+)).The synergistic effect between the reduced effective diameter of the nanochannels due to MOF and the specific binding of Sr^(2+) by aptamers amplifies the difference in ionic current signals,enhancing detection sensitivity significantly.The MOF-modified nanochannels exhibit highly sensitive detection of Sr^(2+),with a limit of detection(LOD)being 0.03 nmol·L^(-1),whereas the LOD for anodized aluminum oxide(AAO)without the modified MOF nanosheets is only 1000 nmol·L^(-1).These findings indicate that the LOD of Sr^(2+) detected by the MOF-modified nanochannels is approximately 33,000 times higher than that by the nanochannels without MOF modification.Additionally,the highly reliable detection of Sr^(2+) in various water samples was achieved,with a recovery rate ranging from 94.00%to 118.70%.This study provides valuable insights into the rapidly advancing field of advanced nanochannel-based sensors and their diverse applications for analyzing complex samples,including environmental contaminant detection,food analysis,medical diagnostics,and more.
基金financial support from National Natural Science Foundation of China(No.22175156)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.162301202692).
文摘Aggregation-induced emission(AIE)is a unique phenomenon where certain organic materials exhibit enhanced luminescence in their aggregated states,overcoming the typical quenching observed in conventional organic materials.Since its discovery in 2001,AIE has driven significant advances in fields like OLEDs and biological imaging,earning recognition in fundamental research.However,its application in high-energy radiation detection remains underexplored.Organic scintillators,though widely used,face challenges such as low light yield and poor radiation attenuation.AIE materials offer promising solutions by improving light yield,response speed,and radiation attenuation.This review summarizes the design strategies behind AIE scintillators and their very recent applications in X-ray,γ-ray,and fast neutron detection.We highlight their advantages in enhancing detection sensitivity,reducing background noise,and achieving high-resolution imaging.By addressing the current challenges,we believe AIE materials will play a pivotal role in advancing future radiation detection and imaging technologies.
基金under the support of the Natural Science Foundation of China(No.51762028,No.91960103)Materials Genome Engineering of Rare and Precious Metal of Yunnan Province(No.2018ZE019)。
文摘As candidate thermal/environmental barrier coatings(T/EBCs),the structure characteristics and comprehensive properties of monoclinic-prime(m')RETaO4(RE=Yb,Lu,Sc)with excellent Al2O3/SiO2 chemical compatibility are studied.Excellent thermal insulation protection will be provided by m'RETaO4 due to their low thermal conductivity(~1.6 Wm^-1 K^-1,900℃)and prominent thermal radiation resistance,which is much better than those of YSZ(~2.5 Wm^-1 K^-1,1000℃)and La-12 Zr2O7(~2.0 Wm^-1 K,900℃).The thermal expansion coefficients(TECs)are 3.0–8.0×10^-6 K^-1(200-1200℃),which is suitable for T/EBCs applications.Furthermore,absence of phase transition and extraordinary chemical compatibility with Al2O3/SiO2 up to 1500℃indicate the potential application prospect.The documented governing mechanisms of m'RETaO4 properties will enable researchers to promote their application in the future investigation.
文摘Mullite whiskers were facilely prepared by sintering kyanite at high temperature, with the addition of AlF3·3H20. The as-prepared whiskers have been characterized systematically in terms of phase composition, morphology, and structure. Results showed that the morphology and size of mullite whiskers were strongly depended on the content of AlF3·3H20 and sintering temperature. At temperatures in the range of 1 100 to 1 500 ℃ with 4 wt% addition of AlF3·3H20, the well-shaped mullite whiskers were obtained. For an instance, the mullite whiskers with 5-10 μm in length and 0.1-0.2 μm in cross-section could be formed at 1 400 ℃, with 4 wt% addition of A1F3·3H20. Moreover, results showed that the addition of mullite whiskers into ceramic matrix enhanced its fracture toughness significantly.
文摘A simple method for the determination of Sc, Y and Ln in carbonate at sub μg·g -1 levels by ICP MS with inter elements matrix matched technique was developed. A series of matrix matched standard solution were prepared by adopting the normalized concentration values, which were calculated the statistic average compositions of reference values of REEs in carbonate standard reference materials. The matrix effects of Ca and Mg on REEs were studied in detail and the results show that the matrix effect of Ca and Mg can be ignored when the dilution factors are more than 1000. The combination of 115 In and 103 Rh as internal standard was selected to compensate the drift of analytical signals. The method proposed was applied to the analysis of ultra trace REEs in carbonate references materials GSR 6, GSR 12 and real samples.
基金supported by the National Natural Science Foundation of China(61368007,61265004,51272097)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20125314120018)
文摘The effect of glass network modifier R2O (R=Li, Na, K) on upconversion luminescence in Er3+/yb3+ co-doped NaYF4 oxyfluoride glass-ceramics was investigated. NaYF4 nanocrystals with different sizes were studied under glass network modifier alkali mental oxide. The nanocrystals size in NaYF4 of Li2O modified samples was 11 nm, whereas in the Na20 and K2O modified sample, the crystal size was 25 and 43 nm, respectively. It was found that red, yellow and green upconversions were observed in SAL, SAN, SAK glass ceramics. The reported results would deepen the understanding of size effects on the lanthanide upcon- version in nanocrystals.
基金Project(2012AA03A503) supported by the National High Technology Research and Development Program of China
文摘The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1. The activation energy(Q) for the tested steel is calculated to be around 682.99 k J/mol at a deformation strain of 0.6. Microstructural analysis by SEM shows that the dynamic recrystallization(DRX) behavior is dependent sensitively on the deformation strain, temperature and strain rate, while an exponential relationship between DRX grain size and Z parameter is obtained from the computational formula. Moreover, the M6C-type carbides(〈1 μm) act as the main prohibitor of grain coarsening, and the polynomial regression relationship between them is worked out. With electron backscatter diffraction(EBSD) observation, DRX is the main nucleation mechanism responsible for the formation of new grains during hot compression. In conclusion, the interaction between DRX affected by hot deformation parameters and carbides precipitation determines the ultimate grain size refinement.
基金financially supported by the Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province (No.202002AB080001-3)the National Natural Science Foundation of China (No.52001150)
文摘Herein,the effects of 33 alloying elements on the elastic properties and solid solution strengthening(SSS)of a-Ti alloys were systematically studied via first-principles calculations based on a dilute solid solution.All alloying elements in these calculations were thermodynamically favorable,which indicated that these elements could be dissolved inα-Ti alloys.Ti_(35)Os had the highest elastic modulus as compared to those of other dilute Tibased solid solutions.Au,Co,and Pt were found to be promising candidates for improving the ductilities ofα-Ti solid solution alloys.Solid solution strengthening was analyzed using Cottrell's and Labush's models.Based on the solid solubility,Ir,Rh,Ni,and Pt were found to possess the best solid solution hardening effects in the following order:Ir>Rh>Ni>Pt.The bonding state between Ti and the impurity atom was visually characterized owing to the difference between their charge densities.By integrating the calculations of mean bond length and mean population,the results showed that Ti-Os had the largest mean population and degree of delocalization of the electron cloud around the solute atom,implying ionic characteristics of Os and Ti.Furthermore,after analyzing the alloying elements of each group,we found thatⅧ-group elements(Ru,Rh,Pd,Os,Ir,Pt)had good potentials for improving the comprehensive mechanical properties of Ti alloys.
基金supported by the Foundation of China Geological Survey(Nos.12120113087100,12120113022600)the Basic Scientific Research of the Institute of Geophysical Geochemical Exploration,Chinese Academy of Geological Sciences(No.WHS201302)
文摘Ziyang County, Shaanxi Province, China is a world known selenium(Se)-enriched area, and a severe selenosis incident was reported in Naore Village during the 1990 s. This study investigated the geochemical characteristics of Se and its fractions in Se-enriched rocks from Ziyang. Se distribution is uneven, ranging from 0.23 to 57.00 μg/g(17.29±15.52 μg/g). Se content is higher in slate than chert, and even lower in carbonate rocks. Cd, As and V are enriched but Pb is depleted in Se-enriched strata. Se has different correlations both with TS(total sulfur)(R^2=0.59 for chert) and TC(total carbon)(R^2=0.77 for slate, R^2=0.87 for carbonate). Se has significant positive correlations with V(r=0.65), As(r=0.485), Cd(r=0.459) and Pb(r=0.405). The Se level correlates with mineral content, positively with pyrite, chlorite and illite, negatively with albite. Se associated with sulfide/selenide and elemental Se are the predominant fractions of total recovered Se, suggesting that a reducing environment and the formation of sulfides were significant to Se deposition during its geochemical cycle. Although low concentration of bio-available Se(average 5.62%±3.69%) may reduce the risk of Se poisoning in the target area, utilization of Se-rich rock as natural fertilizer should be restricted.