期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis and Research on Aerodynamic Characteristics of Quad Tilt Rotor Aircraft 被引量:1
1
作者 Jike Jia Xiaomei Ye +2 位作者 Guoyi He Qingjin Huang Zhile Hong 《Advances in Aerospace Science and Technology》 2024年第1期28-39,共12页
For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of... For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft. 展开更多
关键词 Quad Tilt Rotor Aircraft Analysis of Aerodynamic Characteristics CFD Method
在线阅读 下载PDF
Prediction of Aerothermal Environment and Heat Transfer for Hypersonic Vehicles with Different Aerodynamic Shapes Based on C++
2
作者 Tianqiang Huang Guoyi He Qi Wang 《Advances in Aerospace Science and Technology》 2022年第3期123-134,共12页
This research paper discusses constructing a unified framework to develop a full-rate scheme for hypersonic heating calculations. The method uses a flow tracing technique with normal phase vector adjustment in a non-s... This research paper discusses constructing a unified framework to develop a full-rate scheme for hypersonic heating calculations. The method uses a flow tracing technique with normal phase vector adjustment in a non-structured delineated grid combined with empirical formulations for convective heat transfer standing and non-standing heat flow engineering. This is done using dev-C++ programming in the C++ language environment. Comparisons of the aerodynamic thermal environment with wind tunnel experimental data for the Space Shuttle and Apollo return capsules and standing point heat transfer measurements for the Fire II return capsule was carried out in the hypersonic Mach number range of 6 - 35 Ma. The tests were carried out on an 11th Gen Intel(R) Core(TM) i5-1135G7 processor with a valuable test time of 45 mins. The agreement is good, but due to the complexity of the space shuttle tail, the measurements are still subject to large errors compared to wind tunnel experiments. A comparison of the measured Fire-II return capsule standing-point heat values with the theory for calculating standing-point heat fluxes simulated using Fay & Riddell and wind tunnel experiments is provided to verify the validity of this procedure for hypersonic vehicle heat transfer prediction. The heat fluxes assessed using this method for different aerodynamic profiles of hypersonic vehicles agree very well with the theoretical solution. 展开更多
关键词 HYPERSONIC C++ Aerodynamic Heating Reentry Vehicle Aerodynamic Thermal Environment
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部