期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impacts of Soil Additives on Crop Yield and C-Sequestration in Post Mine Substrates of Lusatia,Germany 被引量:6
1
作者 A.RODIONOV S.NII-ANNANG +5 位作者 O.BENS M.TRIMBORN S.SCHILLEM B.U.SCHNEIDER T.RAAB R.F.HTTL 《Pedosphere》 SCIE CAS CSCD 2012年第3期343-350,共8页
Opencast lignite mining in the Lusatia region of Germany has resulted in large scale landscape disturbances, which require suitable recultivation techniques in order to promote plant growth and establishment in the re... Opencast lignite mining in the Lusatia region of Germany has resulted in large scale landscape disturbances, which require suitable recultivation techniques in order to promote plant growth and establishment in the remaining nutrient-poor substrates with low water-holding capacity. Thus, the effects of two commercial soil additives (CSA), a hydrophilic polymer mixed with volcanic rock flour and bentonite (a-CSA), and digester solids from biogas plants enriched with humic acids and bentonite (b-CSA), on soil organic carbon (SOC) storage, plant yields and root biomass were assessed after cultivating perennial crops (Dactylis 9lornerata L.) in monoculture and Helianthus annuus L.-Brassica napus L. in crop rotation systems. The CSA were incorporated into the top 20 cm soil depth using a rotary spader. The results indicated that a-CSA led to a significant increase in plant yield during the first year, and improved root biomass in the following year. As a result, SOC stocks increased, especially in the 0 10 cm soil layer. No significant sequestration of additional SOC was observed on b-CSA-amended plots at the end of both years. Bulk density values decreased in all treatments under the monoculture system. It can be concluded that application of a-CSA enhanced soil water availability for plant uptake and consequently promoted plant growth and organic carbon sequestration. The relative enrichment of organic matter without effects on water-holding capacities of b-CSA treatments suggested that it was not suitable for rapid land reclamation. 展开更多
关键词 bulk density organic C inputs POLYACRYLATE soil organic carbon water-holding capacity
原文传递
Along Road Height Interpolation Based on Discrete Elevation Points
2
作者 Tran Thong Nhat 《Journal of Earth Science and Engineering》 2012年第11期691-695,共5页
The simulating exactly compared with realty of ground surface to run a model is more and more highly required. In the real, terrain of the earth surface is always complicated by the natural and human made ground objec... The simulating exactly compared with realty of ground surface to run a model is more and more highly required. In the real, terrain of the earth surface is always complicated by the natural and human made ground objects. Because of limitation of collecting and storing technologies in the past time, data are usually not detailed so that the data can not be full for the simulation. Besides computing power and simulation increase more day by day, the increasing requirements more detailed of topography surface simulation is a demand. In simulated flooding phenomenon or phenomena related to energy and momentum of water flow, the linear objects of ground surface such as roads, dikes, dams, etc. need to have their vertical dimension along continuously. However, these datas have often no height information alternately, there are only discrete elevation points that are extracted from topographic maps. Consequently, the demand of a suitable method for linear objects height interpolation is necessary. This paper aims to provide a method and evaluate its accuracy to meet this requirement. 展开更多
关键词 Height interpolation GIS road interpolation discrete elevation points.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部