The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective ...The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.展开更多
Reservoirs play a critical role in addressing water resources challenges.However,their vertical influence on the assembly mechanisms of different microbial communities,including prokaryotes and eukaryotes,remains uncl...Reservoirs play a critical role in addressing water resources challenges.However,their vertical influence on the assembly mechanisms of different microbial communities,including prokaryotes and eukaryotes,remains unclear.This study examined the vertical diversity patterns of abundant and rare subcommunities of prokaryotes and eukaryotes in an urban reservoir,using water depth as a geographical gradient and employing high-throughput sequencing.The impact of vertical environmental heterogeneity on community structure was quantified,and key drivers of these dynamics were identified.The results indicated that the urban reservoir exhibited statistically significant differences in the vertical distribution of water temperature and oxidation/reduction potential.The a-diversity of the abundant subcommunity displayed an opposing vertical pattern compared to that of the rare subcommunity,while the b-diversity for both subcommunities of prokaryotes and eukaryotes increased with water depth.Moreover,the distinct diversity patterns of abundant and rare subcommunities were associated with environmental heterogeneity and species adaptability.Notably,the b-diversity of the rare subcommunity of eukaryotes was primarily driven by species turnover in surface water,whereas nestedness became the dominant factor in deeper water.Furthermore,eukaryotic microbes exhibited a more pronounced response to changes in water depth than prokaryotes,consistent with the importance of heterogeneous selection to the eukaryotic community.Water temperature significantly affected the community composition of all groups,highlighting its importance in shaping community dynamics.This study provides valuable insights into the vertical distribution and assembly mechanisms of microbial communities in urban reservoirs,contributing to the protection and management of aquatic ecosystems under river regulation.展开更多
The deterioration of environmental conditions is the major contributory factor to poor health and quality of life that hinders sustainable development in any region.Coal mining is one of the major industries that cont...The deterioration of environmental conditions is the major contributory factor to poor health and quality of life that hinders sustainable development in any region.Coal mining is one of the major industries that contribute to the economy of a country but it also impacts the environment.The chemical parameters of the coal,overburden,soil and sediments along with the coal mine drainage(CMD)were investigated in order to understand the overall environmental impact from high sulphur coal mining at northeastern coalfield(India).It was found that the total sulphur content of the coal is noticeably high compared to the overburden(OB)and soil.The volatile matter of the coal is sufficiently high against the high ash content of the soil and overburden.The water samples have a High Electrical Conductivity(EC)and high Total Dissolve Solid(TDS).Lower values of pH,indicate the dissolution of minerals present in the coal as well as other minerals in the mine rejects/overburden.The chemical and nano-mineralogical composition of coal,soil and overburden samples was studied using a High Resolution-Transmission Electron Microscopy(HR-TEM),Energy Dispersive Spectroscopy(EDS),Selected-Area Diffraction(SAED),Field Emission-Scanning Electron Microscopy(FE-SEM)/EDS,X-ray diffraction(XRD),Fourier Transform Infrared Spectroscopy(FTIR),Raman and Ion-Chromatographic analysis,and Mossbauer spectroscopy.From different geochemical analysis it has been found that the mine water sample from Ledo colliery has the lowest pH value of 3.30,Tirap colliery samples have the highest electrical conductivity value of5.40 ms cm^(-1)Both Ledo and Tirap coals have total sulphur contents within the range 3-3.50%.The coal mine water from Tirap colliery(TW-15 B)has high values of Mg^(2+)(450 ppm),and Br^-(227.17 ppm).XRD analysis revealed the presence of minerals including quartz and hematite in the coals.Mineral analysis of coal mine overburden(OB)indicates the presence both of pyrite and marcasite which was also confirmed in XRD and Mossbauer spectral analysis.The presented data of the minerals and ultra/nano-particles present shows their ability to control the mobility of hazardous elements,suggesting possible use in environmental management technology,including restoration of the delicate Indian coal mine areas.展开更多
The ability to manage and restore plant communities in the face of human-induced landscape change may rely on our ability to predict how species respond to environmental variables.Understanding this response requires ...The ability to manage and restore plant communities in the face of human-induced landscape change may rely on our ability to predict how species respond to environmental variables.Understanding this response requires examining factors or their interactions that have influence on plant and resource availability.Our objective was to analyze the relationships between changes in plant abundance and the interaction among environmental habitat factors including soil, geological(rock type), and other environmental variables in the Longhushan karst mountains ecosystem.Species density and dominance were examined using ANOVA, ANCOVA,and Generalized Linear Models to establish the single or combined effects of these groups of factors.The results showed that trends in abundance were mainly affected by rock type(related to the percentage content of dolomite and calcite), soil characteristics in association with topography.Both plant indices were higher in dolomite dominated areas and varied positively with moisture, and elevation, but negatively with organic matter, while density also increased with slope degree.The results demonstrate that significant variations in species abundance was produced with the combination of variables from soil, geological, andenvironmental factors, suggesting their interaction influence on plants.We postulate that spatial variations in plant abundance in karst ecosystem depends on the carbonate rock type in addition to water and nutrient availability which are mainly controlled by topography and other factors such as soil texture and temperature.The study suggests that in karst areas carbonate rock type, in addition to local environmental variables, should be taken into account when analyzing the factors that have impact on plant communities.展开更多
Dry evergreen montane forests in Ethiopia are severely threatened.The status of species composition and structure of forest vegetation are important indicators to understand the trends of threats on local plant commun...Dry evergreen montane forests in Ethiopia are severely threatened.The status of species composition and structure of forest vegetation are important indicators to understand the trends of threats on local plant communities.In the present study,we examined the floristic composition and structure of the Kibate Forest,Wonchi Highland,Ethiopia along environmental gradients.Sixty-six(30 m×30 m)plots were established every 100 m interval along altitudinal gradients(2811‒3073 m a.s.l.)in five transect lines for vegetation and environmental data collection.In total,125 vascular plant species belonging to 104 genera and 52 families were identified.Eighteen species(14%)were endemic to Ethiopia and Eritrea.The two most dominant families,Asteraceae(29 species)and Lamiaceae(eight species)accounted for 30%of the total number of species.The highest number of species(54%)was herbs.Four major community types(viz.,Olinia rochetiana-Myrsine melanophloeos,Ilex mitis-Galiniera saxifraga,Erica arborea-Protea gaguedi,and Hagenia abyssinica-Juniperus procera)were identified.The highest species richness,evenness,diversity,and importance value index were in community types 2 and 4.About 82%of the species and all endemic taxa except five were recorded in these two community types.The most dominant woody species were O.rochetiana,E.arborea,Olea europaea subsp.cuspidata,Myrica salicifolia,I.mitis var.mitis,and H.abyssinica with different patterns of population structure.The results show that there was a weak correlation between species richness and altitude.Our findings confirm that environmental variables both with interactions(such as altitude)and without interactions(such as livestock grazing)significantly(p<0.05)affect species richness.Anthropogenic activities and overgrazing by livestock appear to be the main threat in community types 2 and 3.Urgent management practices and conservation measures such as prohibiting forest clearing and overgrazing and planting indigenous trees through community participation should be considered in community types that are rich in endemic species but are highly threatened.展开更多
UiO-66 series metal-organic framework materials(MOFs)are typical porous materials assembled by Zr^(4+) with a large mass-to-nucleus ratio and terephthalic acid ligands,which form tetrahedral and octahedral cages arran...UiO-66 series metal-organic framework materials(MOFs)are typical porous materials assembled by Zr^(4+) with a large mass-to-nucleus ratio and terephthalic acid ligands,which form tetrahedral and octahedral cages arranged in a periodic triangular window pattern.Due to the strong interaction between Zr and O,UiO-66 series MOFs exhibit high thermal stability,structural stability,and chemical stability.This article mainly reviews the applications of UiO-66 and its composites in adsorption,photocatalysis,and resource utilization,while exploring the harm of pollutants to human health and the environment.In the first part,the differences in adsorption and removal mechanisms of liquid organic pollutants,heavy metals,and volatile organic compounds(VOCs)are investigated.The results show that organic pollutants are mainly removed by physical adsorption,electrostatic interactions,hydrogen bonding,andπ-πinteractions,while heavy metals are mainly removed by chemical adsorption,electrostatic interactions,reduction,and chelation.VOCs are mainly removed by the pore volume and pore size structure of the material.Heterojunction catalysis can achieve non-toxic treatment of pollutants,and this study mainly focuses on UiO-based composite materials constructed by strategies such as semiconductor composites,ion doping,and metal/dye encapsulation.In the second part,the synergistic effect between the components of UiO-based composite materials promotes the oriented and rapid separation and transfer of earriers at the material interface,thereby promoting the generation of active species such as h^(+),·O_(2)^(-) and·OH,and achieving rapid degradation of pollutants and detoxification of heavy metals.In the third part,heterojunctions can realize the resource utilization of pollutants in water and air,producing energy-type substances such as hydrogen and methanol while solving environmental problems.In addition,this article also summarizes the harm of common typical pollutants to the environment and human health.Finally,the development prospects and unresolved problems of UiO-66-based materials in water remediation,gas purification,and environmental resource utilization are reviewed.展开更多
Enhancing soil organic matter characteristics,ameliorating physical structure,mitigating heavy metal toxicity,and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings ...Enhancing soil organic matter characteristics,ameliorating physical structure,mitigating heavy metal toxicity,and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate.The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation.Despite this,there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation.The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate,under the combined effects of biomass co-smoldering pyrolysis and plant colonization.The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects,which enhance the physical and chemical properties of tailings,while simultaneously accelerating the rate of mineral weathering.Notable improvements include the amelioration of extreme pH levels,nutrient enrichment,the formation of aggregates,and an increase in enzyme activity,all of which collectively demonstrate the successful attainment of tailings substrate reconstruction.Evidence of the acceleratedweathering was verified by phase and surfacemorphology analysis using X-ray diffraction and scanning electron microscopy.Discovered corrosion and fragmentation on the surface ofminerals.The weathering resulted in corrosion and fragmentation of the surface of the treated mineral.This study confirms that co-smoldering pyrolysis of biomass,combined with plant colonization,can effectively promote the transformation of tailings into soil-like substrates.This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.展开更多
Current research primarily focuses on emerging organic pollutants,with limited attention to emerging inorganic pollutants (EIPs).However,due to advances in detection technology and the escalating environmental and hea...Current research primarily focuses on emerging organic pollutants,with limited attention to emerging inorganic pollutants (EIPs).However,due to advances in detection technology and the escalating environmental and health challenges posed by pollution,there is a growing interest in treating waters contaminated with EIPs.This paper explores biochar characteristics and modification methods,encompassing physical,chemical,and biological approaches for adsorbing EIPs.It offers a comprehensive review of research advancements in employing biochar for EIPs remediation in water,outlines the adsorption mechanisms of EIPs by biochar,and presents an environmental and economic analysis.It can be concluded that using biochar for the adsorption of EIPs in wastewater exhibits promising potential.Nonetheless,it is noteworthy that certain EIPs like Au(III),Rh(III),Ir(III),Ru(III),Os(III),Sc(III),and Y(III),have not been extensively investigated regarding their adsorption onto biochar.This comprehensive review will catalyze further inquiry into the biochar-based adsorption of EIPs,addressing current research deficiencies and advancing the practical implementation of biochar as a potent substrate for EIP removal from wastewater streams.展开更多
Objective Recent studies have highlighted the critical role of NUDT19 in the initiation,progression,and prognosis of specific cancer types.However,its involvement in pan-cancer analysis has not been fully characterize...Objective Recent studies have highlighted the critical role of NUDT19 in the initiation,progression,and prognosis of specific cancer types.However,its involvement in pan-cancer analysis has not been fully characterized.This study aims to systematically explore the expression patterns,clinical significance,and immune-related functions of NUDT19 in various cancer types through multi-omics analysis,further revealing its potential role in cancer,particularly its functional and therapeutic target value in leukemia.Methods To achieve this goal,various bioinformatics approaches were employed to evaluate the expression patterns,clinical significance,and immune-related functions of NUDT19 in tumors and normal tissues.Additionally,we analyzed the mutation characteristics of NUDT19 and its relationship with epigenetic modifications.Using the single-cell analysis tool SingleCellBase,we explored the distribution of NUDT19 across different cell subpopulations in tumors.To validate these findings,qRT-PCR was used to measure NUDT19 expression levels in specific tumor cell lines,and we established acute myeloid leukemia(AML)cell lines(HL-60 and THP-1)to conduct NUDT19 knockdown and overexpression experiments,assessing its effects on leukemia cell proliferation,apoptosis,and invasion.Results Pan-cancer analysis revealed the dysregulated expression of NUDT19 across multiple cancer types,which was closely associated with poor prognosis,clinical staging,and diagnostic markers.Furthermore,NUDT19 was significantly correlated with tumor biomarkers,immune-related genes,and immune cell infiltration in different cancers.Mutation analysis showed that multiple mutations in NUDT19 were significantly associated with epigenetic changes.Single-cell analysis revealed the heterogeneity of NUDT19 expression in cancer cells,suggesting its potentially diverse functional roles in different cell subpopulations.qRT-PCR experiments confirmed the significant upregulation of NUDT19 in various tumor cell lines.In AML cell lines,NUDT19 knockdown led to reduced cell proliferation and invasion,with increased apoptosis,while NUDT19 overexpression significantly enhanced cell proliferation and invasion while reducing apoptosis.Conclusion This study demonstrates the diverse roles of NUDT19 in various cancer types,with a particularly prominent functional role in leukemia.NUDT19 is not only associated with tumor initiation and progression but may also influence cancer progression through the regulation of immune microenvironment and epigenetic mechanisms.Our research highlights the potential of NUDT19 as a therapeutic target,particularly for targeted therapies in malignancies such as leukemia,with significant clinical application prospects.展开更多
Site index(SI)is determined from the top height development and is a proxy for forest productivity,defined as the expected top height for a given species at a certain index age.In Norway,an index age of 40 years is us...Site index(SI)is determined from the top height development and is a proxy for forest productivity,defined as the expected top height for a given species at a certain index age.In Norway,an index age of 40 years is used.By using bi-temporal airborne laser scanning(ALS)data,SI can be determined using models estimated from SI observed on field plots(the direct approach)or from predicted top heights at two points in time(the height differential approach).Time series of ALS data may enhance SI determination compared to conventional methods used in operational forest inventory by providing more detailed information about the top height development.We used longitudinal data comprising spatially consistent field and ALS data collected from training plots in 1999,2010,and 2022 to determine SI using the direct and height differential approaches using all combinations of years and performed an external validation.We also evaluated the use of data assimilation.Values of root mean square error obtained from external validation were in the ranges of 16.3%–21.4%and 12.8%–20.6%of the mean fieldregistered SI for the direct approach and the height differential approach,respectively.There were no statistically significant effects of time series length or the number of points in time on the obtained accuracies.Data assimilation did not result in any substantial improvement in the obtained accuracies.Although a time series of ALS data did not yield greater accuracies compared to using only two points in time,a larger proportion of the study area could be used in ALS-based determination of SI when a time series was available.This was because areas that were unsuitable for SI determination between two points in time could be subject to SI determination based on data from another part of the time series.展开更多
Metal nanoparticle(NP_S)catalysts exhibit desirable activities in various catalytic reactions.However,the sintering of metal NPs at high-temperatures even in reducing atmospheres limits its practical application.In th...Metal nanoparticle(NP_S)catalysts exhibit desirable activities in various catalytic reactions.However,the sintering of metal NPs at high-temperatures even in reducing atmospheres limits its practical application.In this work,we successfully synthesized TPA-ZSM-5 with pit-type defects by treating the ZSM-5 with tetrahydroxy ammonium hydroxide(TPAOH),which was then used as a support to prepare Ag-based and Cu-based catalysts.Stability testing results show that the Ag/TPA-ZSM-5 catalyst treated at 800℃with H_(2) could maintain the high performance in NH_(3)-SCO and the Cu/TPA-ZSM-5 catalyst treated at 900℃ with N_(2) could maintained its excellent activity in NH_(3)-SCR,however,the activities of Ag/ZSM-5 and Cu/ZSM-5 were drastically decreased or even deactivated after high-temperature treatment.In addition,a series of characterization analyses revealed that the excellent thermal stability is attribute to the presence of pit-type defects in the TPA-ZSM-5 as physical barriers to slow down or even inhibit the Ag NPs and Cu NPs sintering process.The strategy of using the pit-type defects to inhibit the sintering of metal NPs and improve the thermal stability can greatly enhance the practical application of catalysts.展开更多
A key property of the boreal forest is that it stores huge amounts of carbon(C),especially belowground in the soil.Amounts of C stored in the uppermost organic layer of boreal forest soils vary greatly in space due to...A key property of the boreal forest is that it stores huge amounts of carbon(C),especially belowground in the soil.Amounts of C stored in the uppermost organic layer of boreal forest soils vary greatly in space due to an interplay between several variables facilitating or preventing C accumulation.In this study,we split C stocks into the organic layer and charcoal C due to their difference in origin,stability,and ecological properties.We compared organic layer C and charcoal C stocks in two regions of south-central Norway(Trillemarka and Varaldskogen),characterized by Scots pine and Norway spruce forests with varying fire histories.We used structural equation modeling to investigate how vegetation composition,hydrotopography,and soil properties interplay to shape organic layer C and charcoal C stocks.Pine forests consistently contained larger organic layer C stocks than spruce forests.Charcoal stocks,in contrast,were less consistent across both forest types and study regions as pine forests had higher charcoal C stocks than spruce forests in Trillemarka,while the two forest types contained equal charcoal C stocks in Varaldskogen.Charcoal and soil organic layer C stocks increased with higher fire frequencies(number of fire events over the last 600 years),but not with a shorter time since last fire(TSF).Additionally,vegetation composition,terrain slope,and soil moisture were the most important drivers of the organic layer C stocks,while charcoal C stocks were mainly controlled by the depth of the organic layer.Also,microtopography was of importance for organic layer C and charcoal C,since depressions in the forest floor had more charcoal C than well-drained minor hills.展开更多
To improve the activity of Co/Al_(2)O_(3)catalysts in selective catalytic oxidation of ammonia(NH_(3)-SCO),valence state and size of active centers of Al_(2)O_(3)-supported Co catalysts were adjusted by conducting H_(...To improve the activity of Co/Al_(2)O_(3)catalysts in selective catalytic oxidation of ammonia(NH_(3)-SCO),valence state and size of active centers of Al_(2)O_(3)-supported Co catalysts were adjusted by conducting H_(2)reduction pretreatment.The NH_(3)-SCO activity of the adjusted 2Co/Al_(2)O_(3)catalyst was substantially improved,outperforming other catalysts with higher Co-loading.Fresh Co/Al_(2)O_(3)catalysts exhibited multitemperature reduction processes,enabling the control of the valence state of the Co-active centers by adjusting the reduction temperature.Changes in the state of the Co-active centers also led to differences in redox capacity of the catalysts,resulting in different reaction mechanisms for NH_(3)-SCO.However,in situ diffuse reflectance infrared Fourier transform spectra revealed that an excessive O_(2)activation capacity caused overoxidation of NH_(3)to NO and NO_(2).The NH_(3)-SCO activity of the 2Co/Al_(2)O_(3)catalyst with low redox capacity was successfully increased while controlling and optimizing the N_(2)selectivity by modulating the active centers via H_(2)pretreatment,which is a universalmethod used for enhancing the redox properties of catalysts.Thus,this method has great potential for application in the design of inexpensive and highly active catalysts.展开更多
The mutualistic symbiotic system formed by clumping arbuscular mycorrhizal fungi(AMF)and plants can remediate heavy metal-contaminated soils.However,the specific mechanisms underlying the interaction between AMF and i...The mutualistic symbiotic system formed by clumping arbuscular mycorrhizal fungi(AMF)and plants can remediate heavy metal-contaminated soils.However,the specific mechanisms underlying the interaction between AMF and inter-root microbial communities,particularly their impact on organic phosphorus(P)cycling,remain unclear.This study investigated the gene regulation processes involved in inter-root soil phosphorus cycling in wetland plants,specifically Iris tectorum,following inoculation with AMF under varying concentrations of chromium(Cr)stress.Through macro-genome sequencing,we analyzed the composition and structure of the inter-root soil microbial community associated with Iris tectorum under greenhouse pot conditions.The results demonstrated significant changes in the diversity and composition of the inter-root soil microbial community following AMF inoculation,with Proteobacteria,Actinobacteria,Chloroflexi,Acidobacteria,and Bacteroidetes being the dominant taxa.Under Cr stress,species and gene co-occurrence network analysis revealed that AMF promoted the transformation process of organic phosphorus mineralization and facilitated inorganic phosphorus uptake.Additionally,network analysis of functional genes indicated strong aggregation of(pstS,pstA,pstC,TC.PIT,phoR,pp-gppA)genes,which collectively enhanced phosphorus uptake by plants.These findings shed light on the inter-root soil phosphorus cycling process during the co-remediation of Cr-contaminated soil by AMF-Iris tectorum symbiosis,providing valuable theoretical support for the application of AMF-wetland plant symbiosis systems to remediate heavy metal-contaminated soil.展开更多
The ACF adsorbent with high Cu loading was treated with dielectric barrier discharge plasma to mitigate the negative effects of high Cu loading and enhance PH_(3)and H_(2)S adsorption and oxidation.Bruno-Emmett-Taylor...The ACF adsorbent with high Cu loading was treated with dielectric barrier discharge plasma to mitigate the negative effects of high Cu loading and enhance PH_(3)and H_(2)S adsorption and oxidation.Bruno-Emmett-Taylor(BET)result showed that the specific surface area of the adsorbent after air plasma modification was almost three times that before modification.X-ray photoelectron spectroscopy(XPS)findings revealed that the amino group was added to the adsorbent's surface,increasing lattice oxygen and chemisorbed oxygen.The adsorbent's large specific surface area,excellent surface active oxygen,and abundance of basic groups facilitate PH_(3)and H_(2)S adsorption and oxidation.The scanning electron microscopy showed that air plasma modification exposed more active components and uniformly dispersed them on the surface of adsorbent,thereby improving the adsorption performance.Activity evaluation results showed that the adsorbent has the best ability to capture PH_(3)and H_(2)S after being modified by air plasma at 4 kV voltage for 10 min.The adsorbent's breakthrough ability at high space velocity(WHSV:60,000 h^(−1))is 190 mg P/g and 146 mg S/g,respectively,which is 74%and 60%greater than that before modification.This is a great improvement over previous studies.In addition,the possible mechanism of adsorbent deactivation was proposed.展开更多
This study employed a wet impregnation method to synthesize five types of Cu/HZSM-5 adsorbents with Si/Al ratios of 25,50,85,200,and 300,used for the removal of H_(2)S in lowtemperature,low-oxygen environments.The imp...This study employed a wet impregnation method to synthesize five types of Cu/HZSM-5 adsorbents with Si/Al ratios of 25,50,85,200,and 300,used for the removal of H_(2)S in lowtemperature,low-oxygen environments.The impact of different Si/Al ratios on the adsorption oxidative performance of Cu_(30)/HZSM-5–85 adsorbents was investigated.According to the performance test results,Cu_(30)/HZSM-5–85 exhibited the highest breakthrough capacity,reaching 231.75 mg H_(2)S/g_(sorbent).Cu/HZSM-5 sorbent maintains a strong ability to remove H_(2)S even under humid conditions and shows excellent water resistance.XRD,BET,and XPS results revealed that CuO is the primary active species,with Cu_(30)/HZSM-5–85 having the largest surface area and highest CuO content,providing more active sites for H_(2)S adsorption.H_(2)-TPR and O_(2)-TPD results confirmed that Cu_(30)/HZSM-5–85 sorbent exhibits outstanding redox properties and oxygen storage capacity,contributing to excellent oxygen transferability in the molecular sieve adsorption-oxidation process.With notable characteristics such as a large surface area,high desulfurization efficiency,and water resistance,Cu_(30)/HZSM-5–85 sorbents hold significant importance for industrial applications.展开更多
The chlor-alkali industry faces high energy consumption,competition between the chlorine evolution reaction(CER)and oxygen evolution reaction(OER),and challenges,such as high costs and poor stability of precious metal...The chlor-alkali industry faces high energy consumption,competition between the chlorine evolution reaction(CER)and oxygen evolution reaction(OER),and challenges,such as high costs and poor stability of precious metal catalysts in chlorine production.At the same time,the treatment of antibiotic pollution urgently requires efficient degradation technologies.In this study,a non-precious metal anode of CuCo_(2)S_(4)/Ti(CCS/Ti)with a nanosheet structure was constructed on a foam titanium substrate using a hydrothermal method,achieving dual-functional applications for efficient chlorine evolution and the degradation of ofloxacin(OFX).The electrode exhibits an overpotential of 1.23 V(vs.Ag/AgCl)at a current density of 100 mA·cm^(−2),with a Faradaic efficiency of 95.66%,and remains stable for 180 h.Density functional theory(DFT)calculations indicate that the chlorine evolution mechanism on the CCS/Ti electrode primarily follows the Volmer-Heyrovsky pathway.Furthermore,the CCS/Ti electrode achieves a degradation efficiency of 91.34%for OFX within 5 min and demonstrates broad-spectrum degradation capabilities for various fluoroquinolone antibiotics(>83.05%).This study provides an efficient and cost-effective new approach for catalyst material design,contributing to the greening of the chlor-alkali industry and the treatment of refractory pollutants.展开更多
Polychlorinated naphthalenes(PCNs)are detrimental to human health and the environment.With the commercial production of PCNs banned,unintentional releases have emerged as a significant environmental source.However,rel...Polychlorinated naphthalenes(PCNs)are detrimental to human health and the environment.With the commercial production of PCNs banned,unintentional releases have emerged as a significant environmental source.However,relevant information is still scarce.In this study,provincial emissions for eight PCNs homologues from 37 sources in the Chinese mainland during the period of 1960-2019 were estimated based on a source-specific and time-varying emission factor database.The results showed that the total PCNs emissions in 2019 reached 757.0 kg with Hebei ranked at the top among all the provinces and iron&steel industry as the biggest source.Low-chlorinated PCNs comprised 90%of emissions by mass,while highly chlorinated PCNs dominated in terms of toxicity,highlighting divergent priorities for mitigating emissions and safeguarding human health.The emissions showed an overall upward trend from 1960 to 2019 driven by emission increase from iron&steel industry in terms of source,and from North China and East China in terms of geographic area.Per-capita emissions followed an inverted U-shaped environmental Kuznets curvewhile emission intensities decreased with increasing per-capita Gross Domestic Product(GDP)following a nearly linear pattern when log-transformed.展开更多
Tetracyclines (TCs) are the second most commonly used antibiotics worldwide, utilized in medical treatments and animal husbandry. Although effective against various infectious diseases, TC residues persist in the envi...Tetracyclines (TCs) are the second most commonly used antibiotics worldwide, utilized in medical treatments and animal husbandry. Although effective against various infectious diseases, TC residues persist in the environment and contribute to the emergence of antibiotic-resistant pathogens, posing significant risks to human health. This study employed the heterogeneous Fenton process to degrade TC using soybean residue-derived magnetic biochar (Fe-SoyB) as the catalyst. The Fe-SoyB sample was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and superconducting quantum interference device (SQUID) techniques. The effects of key parameters, including pH, H2O2 concentration, catalyst dosage, and initial TC concentration, on TC degradation were investigated. The results indicated that the TC removal efficiency decreased with increasing initial TC concentration, while it was improved with higher H2O2 concentrations and greater catalyst dosages. The optimal conditions for the Fenton-like process were determined: a pH of 3, a H2O2 concentration of 245 mmol/L, an initial TC concentration of 800 mg/L, and a catalyst dosage of 0.75 g/L, achieving a removal efficiency of 90.0% after 150 min. Additionally, the TC removal efficiency of the Fe-SoyB system varied significantly across different water matrices, with 87.1% for deionized water, 78.5% for tap water, and 72.5% for river water. The catalyst demonstrated notable stability, maintaining a TC removal efficiency of 79.7% after three cycles of use. Overall, Fe-SoyB shows promise as a cost-effective catalyst for the elimination of organic pollutants in aqueous solutions.展开更多
The El Pintado 1 Silurian section in Seville Province,Spain,described by Loydell et al.(2015),has been ratified by the IUGS as the replacement GSSP for the base of the Telychian Stage,to replace the Cefn Cerig quarry ...The El Pintado 1 Silurian section in Seville Province,Spain,described by Loydell et al.(2015),has been ratified by the IUGS as the replacement GSSP for the base of the Telychian Stage,to replace the Cefn Cerig quarry section in the Llandovery area of Wales,which was found to be within a sedimentary mélange and therefore not a continuous section.No section other than El Pintado 1 has been found to be continuously fossiliferous across the Aeronian/Telychian boundary.展开更多
基金supported by National Natural Science Foundation of China(Grant No.52270106 and 22266021)Yunnan Major Scientific and Technological Projects(grant No.202202AG050005)Yunnan Fundamental Research Projects(grant No.202201AT070116).
文摘The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.92047201)the Fundamental Research Funds for the Central Universities(Grant No.B230201026)+1 种基金the National Natural Science Foundation of China(Grants No.42377054 and 42007149)the Open Project of Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake(Grant No.HZHLAB2301).
文摘Reservoirs play a critical role in addressing water resources challenges.However,their vertical influence on the assembly mechanisms of different microbial communities,including prokaryotes and eukaryotes,remains unclear.This study examined the vertical diversity patterns of abundant and rare subcommunities of prokaryotes and eukaryotes in an urban reservoir,using water depth as a geographical gradient and employing high-throughput sequencing.The impact of vertical environmental heterogeneity on community structure was quantified,and key drivers of these dynamics were identified.The results indicated that the urban reservoir exhibited statistically significant differences in the vertical distribution of water temperature and oxidation/reduction potential.The a-diversity of the abundant subcommunity displayed an opposing vertical pattern compared to that of the rare subcommunity,while the b-diversity for both subcommunities of prokaryotes and eukaryotes increased with water depth.Moreover,the distinct diversity patterns of abundant and rare subcommunities were associated with environmental heterogeneity and species adaptability.Notably,the b-diversity of the rare subcommunity of eukaryotes was primarily driven by species turnover in surface water,whereas nestedness became the dominant factor in deeper water.Furthermore,eukaryotic microbes exhibited a more pronounced response to changes in water depth than prokaryotes,consistent with the importance of heterogeneous selection to the eukaryotic community.Water temperature significantly affected the community composition of all groups,highlighting its importance in shaping community dynamics.This study provides valuable insights into the vertical distribution and assembly mechanisms of microbial communities in urban reservoirs,contributing to the protection and management of aquatic ecosystems under river regulation.
基金The financial assistance from CSIR,New Delhi(MLP6000-WP-Ⅲ)
文摘The deterioration of environmental conditions is the major contributory factor to poor health and quality of life that hinders sustainable development in any region.Coal mining is one of the major industries that contribute to the economy of a country but it also impacts the environment.The chemical parameters of the coal,overburden,soil and sediments along with the coal mine drainage(CMD)were investigated in order to understand the overall environmental impact from high sulphur coal mining at northeastern coalfield(India).It was found that the total sulphur content of the coal is noticeably high compared to the overburden(OB)and soil.The volatile matter of the coal is sufficiently high against the high ash content of the soil and overburden.The water samples have a High Electrical Conductivity(EC)and high Total Dissolve Solid(TDS).Lower values of pH,indicate the dissolution of minerals present in the coal as well as other minerals in the mine rejects/overburden.The chemical and nano-mineralogical composition of coal,soil and overburden samples was studied using a High Resolution-Transmission Electron Microscopy(HR-TEM),Energy Dispersive Spectroscopy(EDS),Selected-Area Diffraction(SAED),Field Emission-Scanning Electron Microscopy(FE-SEM)/EDS,X-ray diffraction(XRD),Fourier Transform Infrared Spectroscopy(FTIR),Raman and Ion-Chromatographic analysis,and Mossbauer spectroscopy.From different geochemical analysis it has been found that the mine water sample from Ledo colliery has the lowest pH value of 3.30,Tirap colliery samples have the highest electrical conductivity value of5.40 ms cm^(-1)Both Ledo and Tirap coals have total sulphur contents within the range 3-3.50%.The coal mine water from Tirap colliery(TW-15 B)has high values of Mg^(2+)(450 ppm),and Br^-(227.17 ppm).XRD analysis revealed the presence of minerals including quartz and hematite in the coals.Mineral analysis of coal mine overburden(OB)indicates the presence both of pyrite and marcasite which was also confirmed in XRD and Mossbauer spectral analysis.The presented data of the minerals and ultra/nano-particles present shows their ability to control the mobility of hazardous elements,suggesting possible use in environmental management technology,including restoration of the delicate Indian coal mine areas.
基金founded by the National Natural Scientific Foundation of China(Grant No.40972218)the Fundamental Research Founds for National University,China University of Geosciences(Wuhan)(Grant Nos.G1323521125,G1323521225,G1323521325)
文摘The ability to manage and restore plant communities in the face of human-induced landscape change may rely on our ability to predict how species respond to environmental variables.Understanding this response requires examining factors or their interactions that have influence on plant and resource availability.Our objective was to analyze the relationships between changes in plant abundance and the interaction among environmental habitat factors including soil, geological(rock type), and other environmental variables in the Longhushan karst mountains ecosystem.Species density and dominance were examined using ANOVA, ANCOVA,and Generalized Linear Models to establish the single or combined effects of these groups of factors.The results showed that trends in abundance were mainly affected by rock type(related to the percentage content of dolomite and calcite), soil characteristics in association with topography.Both plant indices were higher in dolomite dominated areas and varied positively with moisture, and elevation, but negatively with organic matter, while density also increased with slope degree.The results demonstrate that significant variations in species abundance was produced with the combination of variables from soil, geological, andenvironmental factors, suggesting their interaction influence on plants.We postulate that spatial variations in plant abundance in karst ecosystem depends on the carbonate rock type in addition to water and nutrient availability which are mainly controlled by topography and other factors such as soil texture and temperature.The study suggests that in karst areas carbonate rock type, in addition to local environmental variables, should be taken into account when analyzing the factors that have impact on plant communities.
基金The work was supported by the Regional Capacity Building for Sustainable Natural Resource Management and Agricultural Improvement under Climate Change(CAPSNAC)Project of the Norwegian Program for Capacity Building in Higher Education and Research for Development(NORHED).
文摘Dry evergreen montane forests in Ethiopia are severely threatened.The status of species composition and structure of forest vegetation are important indicators to understand the trends of threats on local plant communities.In the present study,we examined the floristic composition and structure of the Kibate Forest,Wonchi Highland,Ethiopia along environmental gradients.Sixty-six(30 m×30 m)plots were established every 100 m interval along altitudinal gradients(2811‒3073 m a.s.l.)in five transect lines for vegetation and environmental data collection.In total,125 vascular plant species belonging to 104 genera and 52 families were identified.Eighteen species(14%)were endemic to Ethiopia and Eritrea.The two most dominant families,Asteraceae(29 species)and Lamiaceae(eight species)accounted for 30%of the total number of species.The highest number of species(54%)was herbs.Four major community types(viz.,Olinia rochetiana-Myrsine melanophloeos,Ilex mitis-Galiniera saxifraga,Erica arborea-Protea gaguedi,and Hagenia abyssinica-Juniperus procera)were identified.The highest species richness,evenness,diversity,and importance value index were in community types 2 and 4.About 82%of the species and all endemic taxa except five were recorded in these two community types.The most dominant woody species were O.rochetiana,E.arborea,Olea europaea subsp.cuspidata,Myrica salicifolia,I.mitis var.mitis,and H.abyssinica with different patterns of population structure.The results show that there was a weak correlation between species richness and altitude.Our findings confirm that environmental variables both with interactions(such as altitude)and without interactions(such as livestock grazing)significantly(p<0.05)affect species richness.Anthropogenic activities and overgrazing by livestock appear to be the main threat in community types 2 and 3.Urgent management practices and conservation measures such as prohibiting forest clearing and overgrazing and planting indigenous trees through community participation should be considered in community types that are rich in endemic species but are highly threatened.
基金financially supported by the National Natural Science Foundation of China(No.22206080)Zhongyuan Yingcai Jihua(No.ZYYCYU202012183)+11 种基金Henan Key Scientific Research Projects(No.23B610004)Henan Postdoctoral Foundation(No.202003027)the Natural Science Youth Fund of Henan Province(Nos.202300410034 and 232300420336)the Natural Science Foundation of Jiangsu(No.SBK2022041070)the Science and Technology Project of Henan Province(No.232102321050)the International Science and Technology Cooperation Projects of Henan Province(No.232102521009)the Young Teacher Foundation of Henan University of Urban Construction(No.YCJQNGGJS202306)China Postdoctoral Science Foundation(No.2021M701099)the Academic Leader of Henan Institute of Urban Construction(No.YCJXSJSDTR202204)the Science and Technology Major Special of Pingdingshan(No.2021ZD03)the Key University Scientific Research Project of Henan Province(No.22A610007)the Doctoral Research Start-up Project of Henan University of Urban Construction(No.990/K-Q2022016)。
文摘UiO-66 series metal-organic framework materials(MOFs)are typical porous materials assembled by Zr^(4+) with a large mass-to-nucleus ratio and terephthalic acid ligands,which form tetrahedral and octahedral cages arranged in a periodic triangular window pattern.Due to the strong interaction between Zr and O,UiO-66 series MOFs exhibit high thermal stability,structural stability,and chemical stability.This article mainly reviews the applications of UiO-66 and its composites in adsorption,photocatalysis,and resource utilization,while exploring the harm of pollutants to human health and the environment.In the first part,the differences in adsorption and removal mechanisms of liquid organic pollutants,heavy metals,and volatile organic compounds(VOCs)are investigated.The results show that organic pollutants are mainly removed by physical adsorption,electrostatic interactions,hydrogen bonding,andπ-πinteractions,while heavy metals are mainly removed by chemical adsorption,electrostatic interactions,reduction,and chelation.VOCs are mainly removed by the pore volume and pore size structure of the material.Heterojunction catalysis can achieve non-toxic treatment of pollutants,and this study mainly focuses on UiO-based composite materials constructed by strategies such as semiconductor composites,ion doping,and metal/dye encapsulation.In the second part,the synergistic effect between the components of UiO-based composite materials promotes the oriented and rapid separation and transfer of earriers at the material interface,thereby promoting the generation of active species such as h^(+),·O_(2)^(-) and·OH,and achieving rapid degradation of pollutants and detoxification of heavy metals.In the third part,heterojunctions can realize the resource utilization of pollutants in water and air,producing energy-type substances such as hydrogen and methanol while solving environmental problems.In addition,this article also summarizes the harm of common typical pollutants to the environment and human health.Finally,the development prospects and unresolved problems of UiO-66-based materials in water remediation,gas purification,and environmental resource utilization are reviewed.
基金supported by the National Natural Science Foundation of China(No.52060011).
文摘Enhancing soil organic matter characteristics,ameliorating physical structure,mitigating heavy metal toxicity,and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate.The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation.Despite this,there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation.The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate,under the combined effects of biomass co-smoldering pyrolysis and plant colonization.The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects,which enhance the physical and chemical properties of tailings,while simultaneously accelerating the rate of mineral weathering.Notable improvements include the amelioration of extreme pH levels,nutrient enrichment,the formation of aggregates,and an increase in enzyme activity,all of which collectively demonstrate the successful attainment of tailings substrate reconstruction.Evidence of the acceleratedweathering was verified by phase and surfacemorphology analysis using X-ray diffraction and scanning electron microscopy.Discovered corrosion and fragmentation on the surface ofminerals.The weathering resulted in corrosion and fragmentation of the surface of the treated mineral.This study confirms that co-smoldering pyrolysis of biomass,combined with plant colonization,can effectively promote the transformation of tailings into soil-like substrates.This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.
基金support from the earmarked fund for XJARS(No.XJARS-06)the Bingtuan Science and Technology Program(Nos.2021DB019,2022CB001-01)+1 种基金the National Natural Science Foundation of China(No.42275014)the Guangdong Foundation for Program of Science and Technology Research,China(No.2023B1212060044)。
文摘Current research primarily focuses on emerging organic pollutants,with limited attention to emerging inorganic pollutants (EIPs).However,due to advances in detection technology and the escalating environmental and health challenges posed by pollution,there is a growing interest in treating waters contaminated with EIPs.This paper explores biochar characteristics and modification methods,encompassing physical,chemical,and biological approaches for adsorbing EIPs.It offers a comprehensive review of research advancements in employing biochar for EIPs remediation in water,outlines the adsorption mechanisms of EIPs by biochar,and presents an environmental and economic analysis.It can be concluded that using biochar for the adsorption of EIPs in wastewater exhibits promising potential.Nonetheless,it is noteworthy that certain EIPs like Au(III),Rh(III),Ir(III),Ru(III),Os(III),Sc(III),and Y(III),have not been extensively investigated regarding their adsorption onto biochar.This comprehensive review will catalyze further inquiry into the biochar-based adsorption of EIPs,addressing current research deficiencies and advancing the practical implementation of biochar as a potent substrate for EIP removal from wastewater streams.
文摘Objective Recent studies have highlighted the critical role of NUDT19 in the initiation,progression,and prognosis of specific cancer types.However,its involvement in pan-cancer analysis has not been fully characterized.This study aims to systematically explore the expression patterns,clinical significance,and immune-related functions of NUDT19 in various cancer types through multi-omics analysis,further revealing its potential role in cancer,particularly its functional and therapeutic target value in leukemia.Methods To achieve this goal,various bioinformatics approaches were employed to evaluate the expression patterns,clinical significance,and immune-related functions of NUDT19 in tumors and normal tissues.Additionally,we analyzed the mutation characteristics of NUDT19 and its relationship with epigenetic modifications.Using the single-cell analysis tool SingleCellBase,we explored the distribution of NUDT19 across different cell subpopulations in tumors.To validate these findings,qRT-PCR was used to measure NUDT19 expression levels in specific tumor cell lines,and we established acute myeloid leukemia(AML)cell lines(HL-60 and THP-1)to conduct NUDT19 knockdown and overexpression experiments,assessing its effects on leukemia cell proliferation,apoptosis,and invasion.Results Pan-cancer analysis revealed the dysregulated expression of NUDT19 across multiple cancer types,which was closely associated with poor prognosis,clinical staging,and diagnostic markers.Furthermore,NUDT19 was significantly correlated with tumor biomarkers,immune-related genes,and immune cell infiltration in different cancers.Mutation analysis showed that multiple mutations in NUDT19 were significantly associated with epigenetic changes.Single-cell analysis revealed the heterogeneity of NUDT19 expression in cancer cells,suggesting its potentially diverse functional roles in different cell subpopulations.qRT-PCR experiments confirmed the significant upregulation of NUDT19 in various tumor cell lines.In AML cell lines,NUDT19 knockdown led to reduced cell proliferation and invasion,with increased apoptosis,while NUDT19 overexpression significantly enhanced cell proliferation and invasion while reducing apoptosis.Conclusion This study demonstrates the diverse roles of NUDT19 in various cancer types,with a particularly prominent functional role in leukemia.NUDT19 is not only associated with tumor initiation and progression but may also influence cancer progression through the regulation of immune microenvironment and epigenetic mechanisms.Our research highlights the potential of NUDT19 as a therapeutic target,particularly for targeted therapies in malignancies such as leukemia,with significant clinical application prospects.
基金part of the Centre for Research-based Innovation SmartForest:Bringing Industry 4.0 to the Norwegian forest sector(NFR SFI project no.309671,smartforest.no)。
文摘Site index(SI)is determined from the top height development and is a proxy for forest productivity,defined as the expected top height for a given species at a certain index age.In Norway,an index age of 40 years is used.By using bi-temporal airborne laser scanning(ALS)data,SI can be determined using models estimated from SI observed on field plots(the direct approach)or from predicted top heights at two points in time(the height differential approach).Time series of ALS data may enhance SI determination compared to conventional methods used in operational forest inventory by providing more detailed information about the top height development.We used longitudinal data comprising spatially consistent field and ALS data collected from training plots in 1999,2010,and 2022 to determine SI using the direct and height differential approaches using all combinations of years and performed an external validation.We also evaluated the use of data assimilation.Values of root mean square error obtained from external validation were in the ranges of 16.3%–21.4%and 12.8%–20.6%of the mean fieldregistered SI for the direct approach and the height differential approach,respectively.There were no statistically significant effects of time series length or the number of points in time on the obtained accuracies.Data assimilation did not result in any substantial improvement in the obtained accuracies.Although a time series of ALS data did not yield greater accuracies compared to using only two points in time,a larger proportion of the study area could be used in ALS-based determination of SI when a time series was available.This was because areas that were unsuitable for SI determination between two points in time could be subject to SI determination based on data from another part of the time series.
基金supported by the National Natural Science Foundation of China(No.52370113)Yunnan Fundamental Research Projects(No.202101BE070001-001)。
文摘Metal nanoparticle(NP_S)catalysts exhibit desirable activities in various catalytic reactions.However,the sintering of metal NPs at high-temperatures even in reducing atmospheres limits its practical application.In this work,we successfully synthesized TPA-ZSM-5 with pit-type defects by treating the ZSM-5 with tetrahydroxy ammonium hydroxide(TPAOH),which was then used as a support to prepare Ag-based and Cu-based catalysts.Stability testing results show that the Ag/TPA-ZSM-5 catalyst treated at 800℃with H_(2) could maintain the high performance in NH_(3)-SCO and the Cu/TPA-ZSM-5 catalyst treated at 900℃ with N_(2) could maintained its excellent activity in NH_(3)-SCR,however,the activities of Ag/ZSM-5 and Cu/ZSM-5 were drastically decreased or even deactivated after high-temperature treatment.In addition,a series of characterization analyses revealed that the excellent thermal stability is attribute to the presence of pit-type defects in the TPA-ZSM-5 as physical barriers to slow down or even inhibit the Ag NPs and Cu NPs sintering process.The strategy of using the pit-type defects to inhibit the sintering of metal NPs and improve the thermal stability can greatly enhance the practical application of catalysts.
基金funded by the Norwegian University of Life Sciences(NMBU)a strategic institutional research program at the Norwegian Institute of Bioeconomy Research(NIBIO).
文摘A key property of the boreal forest is that it stores huge amounts of carbon(C),especially belowground in the soil.Amounts of C stored in the uppermost organic layer of boreal forest soils vary greatly in space due to an interplay between several variables facilitating or preventing C accumulation.In this study,we split C stocks into the organic layer and charcoal C due to their difference in origin,stability,and ecological properties.We compared organic layer C and charcoal C stocks in two regions of south-central Norway(Trillemarka and Varaldskogen),characterized by Scots pine and Norway spruce forests with varying fire histories.We used structural equation modeling to investigate how vegetation composition,hydrotopography,and soil properties interplay to shape organic layer C and charcoal C stocks.Pine forests consistently contained larger organic layer C stocks than spruce forests.Charcoal stocks,in contrast,were less consistent across both forest types and study regions as pine forests had higher charcoal C stocks than spruce forests in Trillemarka,while the two forest types contained equal charcoal C stocks in Varaldskogen.Charcoal and soil organic layer C stocks increased with higher fire frequencies(number of fire events over the last 600 years),but not with a shorter time since last fire(TSF).Additionally,vegetation composition,terrain slope,and soil moisture were the most important drivers of the organic layer C stocks,while charcoal C stocks were mainly controlled by the depth of the organic layer.Also,microtopography was of importance for organic layer C and charcoal C,since depressions in the forest floor had more charcoal C than well-drained minor hills.
基金supported by the National Natural Science Foundation of China(No.52260013)Yunnan Major Scientific and Technological Projects(No.202202AG050005).
文摘To improve the activity of Co/Al_(2)O_(3)catalysts in selective catalytic oxidation of ammonia(NH_(3)-SCO),valence state and size of active centers of Al_(2)O_(3)-supported Co catalysts were adjusted by conducting H_(2)reduction pretreatment.The NH_(3)-SCO activity of the adjusted 2Co/Al_(2)O_(3)catalyst was substantially improved,outperforming other catalysts with higher Co-loading.Fresh Co/Al_(2)O_(3)catalysts exhibited multitemperature reduction processes,enabling the control of the valence state of the Co-active centers by adjusting the reduction temperature.Changes in the state of the Co-active centers also led to differences in redox capacity of the catalysts,resulting in different reaction mechanisms for NH_(3)-SCO.However,in situ diffuse reflectance infrared Fourier transform spectra revealed that an excessive O_(2)activation capacity caused overoxidation of NH_(3)to NO and NO_(2).The NH_(3)-SCO activity of the 2Co/Al_(2)O_(3)catalyst with low redox capacity was successfully increased while controlling and optimizing the N_(2)selectivity by modulating the active centers via H_(2)pretreatment,which is a universalmethod used for enhancing the redox properties of catalysts.Thus,this method has great potential for application in the design of inexpensive and highly active catalysts.
基金supported by 2024 Guizhou Basic Research Plan(Natural Science)Project,China(Foundation of Guizhou science cooperation-ZK[2024]General 490)the National Natural Science Foundation of China(No.31560107).
文摘The mutualistic symbiotic system formed by clumping arbuscular mycorrhizal fungi(AMF)and plants can remediate heavy metal-contaminated soils.However,the specific mechanisms underlying the interaction between AMF and inter-root microbial communities,particularly their impact on organic phosphorus(P)cycling,remain unclear.This study investigated the gene regulation processes involved in inter-root soil phosphorus cycling in wetland plants,specifically Iris tectorum,following inoculation with AMF under varying concentrations of chromium(Cr)stress.Through macro-genome sequencing,we analyzed the composition and structure of the inter-root soil microbial community associated with Iris tectorum under greenhouse pot conditions.The results demonstrated significant changes in the diversity and composition of the inter-root soil microbial community following AMF inoculation,with Proteobacteria,Actinobacteria,Chloroflexi,Acidobacteria,and Bacteroidetes being the dominant taxa.Under Cr stress,species and gene co-occurrence network analysis revealed that AMF promoted the transformation process of organic phosphorus mineralization and facilitated inorganic phosphorus uptake.Additionally,network analysis of functional genes indicated strong aggregation of(pstS,pstA,pstC,TC.PIT,phoR,pp-gppA)genes,which collectively enhanced phosphorus uptake by plants.These findings shed light on the inter-root soil phosphorus cycling process during the co-remediation of Cr-contaminated soil by AMF-Iris tectorum symbiosis,providing valuable theoretical support for the application of AMF-wetland plant symbiosis systems to remediate heavy metal-contaminated soil.
基金supported by Yunnan Major Scientific and Technological Projects(No.202202AG050005)Yunnan Fundamental Research Projects(No.202101BE070001-001).
文摘The ACF adsorbent with high Cu loading was treated with dielectric barrier discharge plasma to mitigate the negative effects of high Cu loading and enhance PH_(3)and H_(2)S adsorption and oxidation.Bruno-Emmett-Taylor(BET)result showed that the specific surface area of the adsorbent after air plasma modification was almost three times that before modification.X-ray photoelectron spectroscopy(XPS)findings revealed that the amino group was added to the adsorbent's surface,increasing lattice oxygen and chemisorbed oxygen.The adsorbent's large specific surface area,excellent surface active oxygen,and abundance of basic groups facilitate PH_(3)and H_(2)S adsorption and oxidation.The scanning electron microscopy showed that air plasma modification exposed more active components and uniformly dispersed them on the surface of adsorbent,thereby improving the adsorption performance.Activity evaluation results showed that the adsorbent has the best ability to capture PH_(3)and H_(2)S after being modified by air plasma at 4 kV voltage for 10 min.The adsorbent's breakthrough ability at high space velocity(WHSV:60,000 h^(−1))is 190 mg P/g and 146 mg S/g,respectively,which is 74%and 60%greater than that before modification.This is a great improvement over previous studies.In addition,the possible mechanism of adsorbent deactivation was proposed.
基金supported by the National Natural Science Foundation of China(Nos.52270106 and 22266021)Yunnan Major Scientific and Technological Projects(No.202202AG050005)Yunnan Fundamental Research Projects(No.202201AT070116).
文摘This study employed a wet impregnation method to synthesize five types of Cu/HZSM-5 adsorbents with Si/Al ratios of 25,50,85,200,and 300,used for the removal of H_(2)S in lowtemperature,low-oxygen environments.The impact of different Si/Al ratios on the adsorption oxidative performance of Cu_(30)/HZSM-5–85 adsorbents was investigated.According to the performance test results,Cu_(30)/HZSM-5–85 exhibited the highest breakthrough capacity,reaching 231.75 mg H_(2)S/g_(sorbent).Cu/HZSM-5 sorbent maintains a strong ability to remove H_(2)S even under humid conditions and shows excellent water resistance.XRD,BET,and XPS results revealed that CuO is the primary active species,with Cu_(30)/HZSM-5–85 having the largest surface area and highest CuO content,providing more active sites for H_(2)S adsorption.H_(2)-TPR and O_(2)-TPD results confirmed that Cu_(30)/HZSM-5–85 sorbent exhibits outstanding redox properties and oxygen storage capacity,contributing to excellent oxygen transferability in the molecular sieve adsorption-oxidation process.With notable characteristics such as a large surface area,high desulfurization efficiency,and water resistance,Cu_(30)/HZSM-5–85 sorbents hold significant importance for industrial applications.
基金supported by the Major Science and Technology Projects in Yunnan Province(China)(No.202302AE090014)the National Natural Science Foundation of China(No.5196080497).
文摘The chlor-alkali industry faces high energy consumption,competition between the chlorine evolution reaction(CER)and oxygen evolution reaction(OER),and challenges,such as high costs and poor stability of precious metal catalysts in chlorine production.At the same time,the treatment of antibiotic pollution urgently requires efficient degradation technologies.In this study,a non-precious metal anode of CuCo_(2)S_(4)/Ti(CCS/Ti)with a nanosheet structure was constructed on a foam titanium substrate using a hydrothermal method,achieving dual-functional applications for efficient chlorine evolution and the degradation of ofloxacin(OFX).The electrode exhibits an overpotential of 1.23 V(vs.Ag/AgCl)at a current density of 100 mA·cm^(−2),with a Faradaic efficiency of 95.66%,and remains stable for 180 h.Density functional theory(DFT)calculations indicate that the chlorine evolution mechanism on the CCS/Ti electrode primarily follows the Volmer-Heyrovsky pathway.Furthermore,the CCS/Ti electrode achieves a degradation efficiency of 91.34%for OFX within 5 min and demonstrates broad-spectrum degradation capabilities for various fluoroquinolone antibiotics(>83.05%).This study provides an efficient and cost-effective new approach for catalyst material design,contributing to the greening of the chlor-alkali industry and the treatment of refractory pollutants.
基金supported by National Key R&D Program of China (No.2022YFC3105800)the National Natural Science Foundation of China (Nos.42277388,42230505,42206148,and 41907313)the Science and Technology Commission of Shanghai Municipality (No.19ZR1415100).
文摘Polychlorinated naphthalenes(PCNs)are detrimental to human health and the environment.With the commercial production of PCNs banned,unintentional releases have emerged as a significant environmental source.However,relevant information is still scarce.In this study,provincial emissions for eight PCNs homologues from 37 sources in the Chinese mainland during the period of 1960-2019 were estimated based on a source-specific and time-varying emission factor database.The results showed that the total PCNs emissions in 2019 reached 757.0 kg with Hebei ranked at the top among all the provinces and iron&steel industry as the biggest source.Low-chlorinated PCNs comprised 90%of emissions by mass,while highly chlorinated PCNs dominated in terms of toxicity,highlighting divergent priorities for mitigating emissions and safeguarding human health.The emissions showed an overall upward trend from 1960 to 2019 driven by emission increase from iron&steel industry in terms of source,and from North China and East China in terms of geographic area.Per-capita emissions followed an inverted U-shaped environmental Kuznets curvewhile emission intensities decreased with increasing per-capita Gross Domestic Product(GDP)following a nearly linear pattern when log-transformed.
文摘Tetracyclines (TCs) are the second most commonly used antibiotics worldwide, utilized in medical treatments and animal husbandry. Although effective against various infectious diseases, TC residues persist in the environment and contribute to the emergence of antibiotic-resistant pathogens, posing significant risks to human health. This study employed the heterogeneous Fenton process to degrade TC using soybean residue-derived magnetic biochar (Fe-SoyB) as the catalyst. The Fe-SoyB sample was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and superconducting quantum interference device (SQUID) techniques. The effects of key parameters, including pH, H2O2 concentration, catalyst dosage, and initial TC concentration, on TC degradation were investigated. The results indicated that the TC removal efficiency decreased with increasing initial TC concentration, while it was improved with higher H2O2 concentrations and greater catalyst dosages. The optimal conditions for the Fenton-like process were determined: a pH of 3, a H2O2 concentration of 245 mmol/L, an initial TC concentration of 800 mg/L, and a catalyst dosage of 0.75 g/L, achieving a removal efficiency of 90.0% after 150 min. Additionally, the TC removal efficiency of the Fe-SoyB system varied significantly across different water matrices, with 87.1% for deionized water, 78.5% for tap water, and 72.5% for river water. The catalyst demonstrated notable stability, maintaining a TC removal efficiency of 79.7% after three cycles of use. Overall, Fe-SoyB shows promise as a cost-effective catalyst for the elimination of organic pollutants in aqueous solutions.
基金funded by project PDI2021-125585NB-I00 of the Spanish Ministry of Science,Innovation and Universities‒Agencia Estatal de Investigacion.JF thanks the Grant Agency of the Czech Republic for support of his study(GA23-06198S).
文摘The El Pintado 1 Silurian section in Seville Province,Spain,described by Loydell et al.(2015),has been ratified by the IUGS as the replacement GSSP for the base of the Telychian Stage,to replace the Cefn Cerig quarry section in the Llandovery area of Wales,which was found to be within a sedimentary mélange and therefore not a continuous section.No section other than El Pintado 1 has been found to be continuously fossiliferous across the Aeronian/Telychian boundary.