Today,due to the pandemic of COVID-19 the entire world is facing a serious health crisis.According to the World Health Organization(WHO),people in public places should wear a face mask to control the rapid transmissio...Today,due to the pandemic of COVID-19 the entire world is facing a serious health crisis.According to the World Health Organization(WHO),people in public places should wear a face mask to control the rapid transmission of COVID-19.The governmental bodies of different countries imposed that wearing a face mask is compulsory in public places.Therefore,it is very difficult to manually monitor people in overcrowded areas.This research focuses on providing a solution to enforce one of the important preventative measures of COVID-19 in public places,by presenting an automated system that automatically localizes masked and unmasked human faces within an image or video of an area which assist in this outbreak of COVID-19.This paper demonstrates a transfer learning approach with the Faster-RCNN model to detect faces that are masked or unmasked.The proposed framework is built by fine-tuning the state-of-the-art deep learning model,Faster-RCNN,and has been validated on a publicly available dataset named Face Mask Dataset(FMD)and achieving the highest average precision(AP)of 81%and highest average Recall(AR)of 84%.This shows the strong robustness and capabilities of the Faster-RCNN model to detect individuals with masked and un-masked faces.Moreover,this work applies to real-time and can be implemented in any public service area.展开更多
In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field h...In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field has been separated into two layers vertically: a vegetated layer and a non-vegetated free-water layer.Within the vegetated layer,an analysis of the mechanisms affecting water flow through flexible vegetation has been conducted.In the non-vegetated layer,a modified log-law equation that represents the velocity profile varying with vegetation height has been investigated.Based on the studied analytical model,a sensitivity analysis has been conducted to assess the influences of the drag (CD) and friction (Cf ) coefficients on the flow velocity.The investigated ranges of CD and Cf have also been compared to published values.The findings suggest that the CD and Cf values are non-constant at different depths and vegetation densities,unlike the constant values commonly suggested in literature.This phenomenon is particularly clear for flows with flexible vegetation,which is characterised by large deflection.展开更多
Cities are undergoing rapid changes continuously due to the high demands of this era, and simultaneously affect several life fields, namely urban transport. High demands are triggering people to travel more frequently...Cities are undergoing rapid changes continuously due to the high demands of this era, and simultaneously affect several life fields, namely urban transport. High demands are triggering people to travel more frequently than ever;thus, they utilize public transportation more and private transportation less as the latter ceased to fulfill all the transportation needs. Thus, public transportation demand has been increasing greatly alongside citizens’ needs. Nonetheless, many cities lack proper urban traffic planning and organization, while some lack an urban transport service. Ferizaj, a city in Kosovo, is one of the cities that lacks an urban traffic designation;hence, this paper presents a designed urban traffic model, precisely suitable to fulfill the urban transportation need for Ferizaj city. This model is designed under the utilization of applied mathematics’ techniques and operational research. Several factors have been considered, following the geographical distribution of the population, existing roads, and residents’ needs. Consequently, the Solver program has been used as an optimization tool to find the shortest path and most economical paths, added in the discussion part. Besides, the likelihood of the designed urban traffic model’s application in Ferizaj is discussed, considering its viability and application conditions. This study presents mathematical constraints to design a model of the bus network in Ferizaj through Solver. We have used mathematical optimization methods, graph theory, the simulation model through the Solver computer program for network minimal distances and presenting the first model of the Urban traffic network in Ferizaj.展开更多
The COVID-19 pandemic has brought significant challenges to higher education worldwide. Due to the COVID-19 pandemic, e-learning has begun to be widely used and applied in the teaching and learning processes. However,...The COVID-19 pandemic has brought significant challenges to higher education worldwide. Due to the COVID-19 pandemic, e-learning has begun to be widely used and applied in the teaching and learning processes. However, learning under technological circumstances has proven not always to be a proper solution in education. A highlight challenge, in this regard, is considered to be learning Mathematics online. While some support its positive impact, others greatly oppose it by arguing that neither teaching nor learning has proven successful. Thus, this study examines Kosovo selected universities to see the effectiveness of learning Mathematics online as a case study. Further, it compares the online and traditional learning methods and explores how teachers in higher education in Kosova Universities apply and integrate technology into learning mathematics. This study employed a methodology encompassing questionnaires for students. The results show that students are not overall satisfied with learning Mathematics online leading to the conclusion that online learning is not an effective educational method for learning Mathematics.展开更多
Effective maintenance is a key for infrastructuresr high operational reliability.The integration of corrective repairs and schedule-based failure preventions has been a mainstream of modern maintenance,and an associat...Effective maintenance is a key for infrastructuresr high operational reliability.The integration of corrective repairs and schedule-based failure preventions has been a mainstream of modern maintenance,and an associated policy-making technique,delay-time modelling,is overviewedin this paper for optimising the maintenance cost-efficiency in different practical scenarios,including imperfect,opportunistic and nested maintenance.A few typical examples of its applications in minimising maintenance operating expenses are discussed in this paper and their results are explained to better demonstrate the benefits of the technique.This work aims to prepare for the future applications of the delay-time modelling in railway maintenance policy making.展开更多
The aquatic vegetation can significantly affect the flow structure,the sediment transport,the bed scour and the water quality in rivers,lakes,reservoirs and open channels.In this study,the lattice Boltzmann method(LBM...The aquatic vegetation can significantly affect the flow structure,the sediment transport,the bed scour and the water quality in rivers,lakes,reservoirs and open channels.In this study,the lattice Boltzmann method(LBM)is applied in the two-dimensional numerical simulation of the flow structure in a flume with rigid vegetation.A multi-relaxation time model is applied to improve the stability of the numerical scheme for flows with a high Reynolds number.The vegetation induced drag force is added in the lattice Boltzmann equation model in order to improve the simulation accuracy and an algorithm of the multi-relaxation time is developed.Numerical simulations are performed for a wide range of flow and vegetation conditions and are validated by comparing with the laboratory experiments.Analysis of the simulated and experimentally measured flow Helds shows that the numerical simulation can satisfactorily reproduce the laboratory experiments,indicating that the proposed lattice Boltzmann model enjoys a high accuracy for simulating the flow-vegetation interaction in open channels.展开更多
The suspended sediment transport capacity is important for estimating the suspended load concentration and the ecological environment of the river.So far,few studies have been conducted to investigate the suspended se...The suspended sediment transport capacity is important for estimating the suspended load concentration and the ecological environment of the river.So far,few studies have been conducted to investigate the suspended sediment transport capacity in the vegetated sediment-laden flow.In this study,a new formula is derived to predict the sediment transport capacity in a vegetated flow by considering the absolute value of the energy loss between the sediment-laden flow and the clear water flow.Finally,the formula is expressed in a practical form by using the logarithmic matching method.展开更多
Due to vegetation drag and vegetation-generated turbulence,bedload transport in vegetated channels is more complicated than that in nonvegetated channels.It is challenging to obtain accurate predictions of bedload tra...Due to vegetation drag and vegetation-generated turbulence,bedload transport in vegetated channels is more complicated than that in nonvegetated channels.It is challenging to obtain accurate predictions of bedload transport in vegetated channels.Previous studies generally used rigid circular cylinders to simulate vegetation,and the impact of plant morphology on bedload transport was typically ignored;these methods deviate from natural scenarios,resulting in prediction errors in transport rates of more than an order of magnitude.This study measured bedload transport rates inside P.australis,A.calamus and T.latifolia canopies and in arrays of rigid cylinders for comparison.The impact of plant morphology on bedload transport in vegetated channels was examined.Inside the canopies of natural morphology,the primary factor driving bedload transport is the near-bed turbulent kinetic energy(TKE),which consists of both bed-generated and vegetation-generated turbulence.A method was proposed to predict the near-bed TKE inside canopies with natural morphology.For the same solid volume fraction of plants,the transport rate inside canopies with a natural morphology is greater than or equal to that within an array of rigid cylinders,depending on the plant shape.This finding indicates that plant morphology has a significant impact on transport rates in vegetated regions and cannot be ignored,which is typical in practice.Four classic bedload transport equations(the Meyer-Peter-Müller,Einstein,Engelund and Dou equations),which are suitable for bare channels(no vegetation),were modified in terms of the near-bed TKE.The predicted near-bed TKE was inserted into these four equations to predict the transport rate in canopies with natural morphology.A comparison of the predictions indicated that the Meyer-Peter-Müller equation had the highest accuracy in predicting the transport rate in vegetated landscapes.展开更多
This study presents results from a vegetation-induced flow experimental study which investigates 3-D turbulence structure profiles,including Reynolds stress,turbulence intensity and bursting analysis of open channel f...This study presents results from a vegetation-induced flow experimental study which investigates 3-D turbulence structure profiles,including Reynolds stress,turbulence intensity and bursting analysis of open channel flow.Different vegetation densities have been built between the adjacent vegetations,and the flow measurements are taken using acoustic Doppler velocimeter(ADV)at the locations within and downstream of the vegetation panel.Three different tests are conducted,where the first test has compact vegetations,while the second and the third tests have open spaces created by one and two empty vegetation slots within the vegetated field.Observation reveals that over 10%of eddies size is generated within the vegetated zone of compact vegetations as compared with the fewer vegetations.Significant turbulence structures variation is also observed at the points in the non-vegetated row.The findings from burst-cycle analysis show that the sweep and outward interaction events are dominant,where they further increase away from the bed.The effect of vegetation on the turbulent burst cycle is mostly obvious up to approximately two-third of vegetation height where this phenomenon is also observed for most other turbulent structure.展开更多
基金This work was supported King Abdulaziz University under grant number IFPHI-033-611-2020.
文摘Today,due to the pandemic of COVID-19 the entire world is facing a serious health crisis.According to the World Health Organization(WHO),people in public places should wear a face mask to control the rapid transmission of COVID-19.The governmental bodies of different countries imposed that wearing a face mask is compulsory in public places.Therefore,it is very difficult to manually monitor people in overcrowded areas.This research focuses on providing a solution to enforce one of the important preventative measures of COVID-19 in public places,by presenting an automated system that automatically localizes masked and unmasked human faces within an image or video of an area which assist in this outbreak of COVID-19.This paper demonstrates a transfer learning approach with the Faster-RCNN model to detect faces that are masked or unmasked.The proposed framework is built by fine-tuning the state-of-the-art deep learning model,Faster-RCNN,and has been validated on a publicly available dataset named Face Mask Dataset(FMD)and achieving the highest average precision(AP)of 81%and highest average Recall(AR)of 84%.This shows the strong robustness and capabilities of the Faster-RCNN model to detect individuals with masked and un-masked faces.Moreover,this work applies to real-time and can be implemented in any public service area.
文摘In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field has been separated into two layers vertically: a vegetated layer and a non-vegetated free-water layer.Within the vegetated layer,an analysis of the mechanisms affecting water flow through flexible vegetation has been conducted.In the non-vegetated layer,a modified log-law equation that represents the velocity profile varying with vegetation height has been investigated.Based on the studied analytical model,a sensitivity analysis has been conducted to assess the influences of the drag (CD) and friction (Cf ) coefficients on the flow velocity.The investigated ranges of CD and Cf have also been compared to published values.The findings suggest that the CD and Cf values are non-constant at different depths and vegetation densities,unlike the constant values commonly suggested in literature.This phenomenon is particularly clear for flows with flexible vegetation,which is characterised by large deflection.
文摘Cities are undergoing rapid changes continuously due to the high demands of this era, and simultaneously affect several life fields, namely urban transport. High demands are triggering people to travel more frequently than ever;thus, they utilize public transportation more and private transportation less as the latter ceased to fulfill all the transportation needs. Thus, public transportation demand has been increasing greatly alongside citizens’ needs. Nonetheless, many cities lack proper urban traffic planning and organization, while some lack an urban transport service. Ferizaj, a city in Kosovo, is one of the cities that lacks an urban traffic designation;hence, this paper presents a designed urban traffic model, precisely suitable to fulfill the urban transportation need for Ferizaj city. This model is designed under the utilization of applied mathematics’ techniques and operational research. Several factors have been considered, following the geographical distribution of the population, existing roads, and residents’ needs. Consequently, the Solver program has been used as an optimization tool to find the shortest path and most economical paths, added in the discussion part. Besides, the likelihood of the designed urban traffic model’s application in Ferizaj is discussed, considering its viability and application conditions. This study presents mathematical constraints to design a model of the bus network in Ferizaj through Solver. We have used mathematical optimization methods, graph theory, the simulation model through the Solver computer program for network minimal distances and presenting the first model of the Urban traffic network in Ferizaj.
文摘The COVID-19 pandemic has brought significant challenges to higher education worldwide. Due to the COVID-19 pandemic, e-learning has begun to be widely used and applied in the teaching and learning processes. However, learning under technological circumstances has proven not always to be a proper solution in education. A highlight challenge, in this regard, is considered to be learning Mathematics online. While some support its positive impact, others greatly oppose it by arguing that neither teaching nor learning has proven successful. Thus, this study examines Kosovo selected universities to see the effectiveness of learning Mathematics online as a case study. Further, it compares the online and traditional learning methods and explores how teachers in higher education in Kosova Universities apply and integrate technology into learning mathematics. This study employed a methodology encompassing questionnaires for students. The results show that students are not overall satisfied with learning Mathematics online leading to the conclusion that online learning is not an effective educational method for learning Mathematics.
文摘Effective maintenance is a key for infrastructuresr high operational reliability.The integration of corrective repairs and schedule-based failure preventions has been a mainstream of modern maintenance,and an associated policy-making technique,delay-time modelling,is overviewedin this paper for optimising the maintenance cost-efficiency in different practical scenarios,including imperfect,opportunistic and nested maintenance.A few typical examples of its applications in minimising maintenance operating expenses are discussed in this paper and their results are explained to better demonstrate the benefits of the technique.This work aims to prepare for the future applications of the delay-time modelling in railway maintenance policy making.
基金Supported by the National Natural Science Foundation of China(Grant No.11861003,11761005).
文摘The aquatic vegetation can significantly affect the flow structure,the sediment transport,the bed scour and the water quality in rivers,lakes,reservoirs and open channels.In this study,the lattice Boltzmann method(LBM)is applied in the two-dimensional numerical simulation of the flow structure in a flume with rigid vegetation.A multi-relaxation time model is applied to improve the stability of the numerical scheme for flows with a high Reynolds number.The vegetation induced drag force is added in the lattice Boltzmann equation model in order to improve the simulation accuracy and an algorithm of the multi-relaxation time is developed.Numerical simulations are performed for a wide range of flow and vegetation conditions and are validated by comparing with the laboratory experiments.Analysis of the simulated and experimentally measured flow Helds shows that the numerical simulation can satisfactorily reproduce the laboratory experiments,indicating that the proposed lattice Boltzmann model enjoys a high accuracy for simulating the flow-vegetation interaction in open channels.
基金the Natural Science Foundation of China(Grant Nos.52020105006,11872285)the UK Royal Society-International Exchanges Program(Grant No.IESIR2\181122)the Open Funding of the State Key Laboratory of Water Resources and Hydropower Engineering Science(WRHES)and the Wuhan University(Grant No.2018HLG01).
文摘The suspended sediment transport capacity is important for estimating the suspended load concentration and the ecological environment of the river.So far,few studies have been conducted to investigate the suspended sediment transport capacity in the vegetated sediment-laden flow.In this study,a new formula is derived to predict the sediment transport capacity in a vegetated flow by considering the absolute value of the energy loss between the sediment-laden flow and the clear water flow.Finally,the formula is expressed in a practical form by using the logarithmic matching method.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0128200)the National Natural Science Foundation of China(Grant Nos.52379072,52022063)the Fundamental Research Project of China Yangtze Power Co.,Ltd.(Grant No.2423020045).
文摘Due to vegetation drag and vegetation-generated turbulence,bedload transport in vegetated channels is more complicated than that in nonvegetated channels.It is challenging to obtain accurate predictions of bedload transport in vegetated channels.Previous studies generally used rigid circular cylinders to simulate vegetation,and the impact of plant morphology on bedload transport was typically ignored;these methods deviate from natural scenarios,resulting in prediction errors in transport rates of more than an order of magnitude.This study measured bedload transport rates inside P.australis,A.calamus and T.latifolia canopies and in arrays of rigid cylinders for comparison.The impact of plant morphology on bedload transport in vegetated channels was examined.Inside the canopies of natural morphology,the primary factor driving bedload transport is the near-bed turbulent kinetic energy(TKE),which consists of both bed-generated and vegetation-generated turbulence.A method was proposed to predict the near-bed TKE inside canopies with natural morphology.For the same solid volume fraction of plants,the transport rate inside canopies with a natural morphology is greater than or equal to that within an array of rigid cylinders,depending on the plant shape.This finding indicates that plant morphology has a significant impact on transport rates in vegetated regions and cannot be ignored,which is typical in practice.Four classic bedload transport equations(the Meyer-Peter-Müller,Einstein,Engelund and Dou equations),which are suitable for bare channels(no vegetation),were modified in terms of the near-bed TKE.The predicted near-bed TKE was inserted into these four equations to predict the transport rate in canopies with natural morphology.A comparison of the predictions indicated that the Meyer-Peter-Müller equation had the highest accuracy in predicting the transport rate in vegetated landscapes.
文摘This study presents results from a vegetation-induced flow experimental study which investigates 3-D turbulence structure profiles,including Reynolds stress,turbulence intensity and bursting analysis of open channel flow.Different vegetation densities have been built between the adjacent vegetations,and the flow measurements are taken using acoustic Doppler velocimeter(ADV)at the locations within and downstream of the vegetation panel.Three different tests are conducted,where the first test has compact vegetations,while the second and the third tests have open spaces created by one and two empty vegetation slots within the vegetated field.Observation reveals that over 10%of eddies size is generated within the vegetated zone of compact vegetations as compared with the fewer vegetations.Significant turbulence structures variation is also observed at the points in the non-vegetated row.The findings from burst-cycle analysis show that the sweep and outward interaction events are dominant,where they further increase away from the bed.The effect of vegetation on the turbulent burst cycle is mostly obvious up to approximately two-third of vegetation height where this phenomenon is also observed for most other turbulent structure.