期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CFD Analysis of Corrugated Plate Designs to Improve Heat Transfer Efficiency in Plate Heat Exchangers
1
作者 Kashif Ahmed Soomro Rahool Rai +3 位作者 S.R.Qureshi Sudhakar Kumarasamy Abdul Hameed Memon Rabiya Jamil 《Energy Engineering》 2025年第12期4857-4872,共16页
Plate heat exchangers suffer from significant energy losses,which adversely affect the overall efficiency of thermal systems.To address this challenge,various heat transfer enhancement techniques have been investigate... Plate heat exchangers suffer from significant energy losses,which adversely affect the overall efficiency of thermal systems.To address this challenge,various heat transfer enhancement techniques have been investigated.Notably,the incorporation of surface corrugations is widely recognized as both effective and practical.Chevron corrugation is the most employed design.However,there remains a need to investigate alternative geometries that may offer superior performance.This study aims to find a novel corrugation design by conducting a comparative CFD analysis of flat,square,chevron,and cylindrical corrugated surfaces,assessing their impact on heat transfer enhancement within a plate heat exchanger.ANSYS Fluent software was used for simulation at four distinct Reynolds numbers(10,000,18,000,26,000,and 28,000),with a heat flux of 12,000 W/m^(2).A structured mesh was generated using Pointwise software.The material of the solid plates was modelled as aluminum,the fluid was modelled as water,and the flow was turbulent.To obtain a fully developed turbulent flow,a separate inlet duct was modelled,and the output velocity profile of the inlet duct was input into the plate heat exchanger.The Nusselt number(Nu)and heattransfer coefficient(h)were calculated to evaluate the performance of all surfaces.The results indicate that cylindrical corrugated surfaces exhibit higher Nusselt numbers than chevron,square,and flat plates.This higher performance is because of the generation of vortices in the middle of the cylindrical texture.Consequently,flow recirculation occurs,leading to reattachment to the mainstreamflow.This phenomenon induces increased turbulence,thereby enhancing the heat transfer efficiency.To validate the results,a grid-convergence independence test was performed for three different mesh sizes.In addition,empirical calculations were performed using the Dittus-Boelter and the Genilaski equations to validate the results of the flat-plate heat exchanger.It was concluded that the cylinder was the best corrugated surface and had a maximum heat transfer 35%higher than that of a flat plate. 展开更多
关键词 Plate heat exchanger corrugations heat transfer enhancement computational fluid dynamics CFD Nusselt number
在线阅读 下载PDF
Enhancing Solar Photovoltaic Efficiency:A Computational Fluid Dynamics Analysis
2
作者 Rahool Rai Fareed Hussain Mangi +1 位作者 Kashif Ahmed Sudhakar Kumaramsay 《Energy Engineering》 EI 2025年第1期153-166,共14页
The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar ener... The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar energy,among the various renewable sources,is particularly appealing due to its abundant availability.However,the efficiency of commercial solar photovoltaic(PV)modules is hindered by several factors,notably their conversion efficiency,which averages around 19%.This efficiency can further decline to 10%–16%due to temperature increases during peak sunlight hours.This study investigates the cooling of PV modules by applying water to their front surface through Computational fluid dynamics(CFD).The study aimed to determine the optimal conditions for cooling the PV module by analyzing the interplay between water film thickness,Reynolds number,and their effects on temperature reduction and heat transfer.The CFD analysis revealed that the most effective cooling condition occurred with a 5 mm thick water film and a Reynolds number of 10.These specific parameters were found to maximize the heat transfer and temperature reduction efficiency.This finding is crucial for the development of practical and efficient cooling systems for PV modules,potentially leading to improved performance and longevity of solar panels.Alternative cooling fluids or advanced cooling techniques that might offer even better efficiency or practical benefits. 展开更多
关键词 PV module efficiency water film thickness reynolds number CFD analysis PV/T renewable energy
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部