期刊文献+
共找到7,098篇文章
< 1 2 250 >
每页显示 20 50 100
Energy Efficiency, Indoor Air Quality and Thermal Comfort Studies at the Faculty of Engineering and Built Environment, University Kebangsaan Malaysia 被引量:1
1
作者 N.L. Teng S.M. Zain +1 位作者 N.E.A. Basri S. Mat 《Journal of Environmental Science and Engineering》 2011年第11期1407-1413,共7页
The study was conducted to identify indoor air quality and the level of thermal comfort in various selected locations in Faculty of Engineering and Built Environment (FKAB), University Kebangsaan Malaysia (UKM) wi... The study was conducted to identify indoor air quality and the level of thermal comfort in various selected locations in Faculty of Engineering and Built Environment (FKAB), University Kebangsaan Malaysia (UKM) with built-up area of 250,936 fie. The indoor air quality and thermal comfort were measured at various selected locations by using indoor air quality equipment (Thermal Comfort SERI). The thermal comfort assessments are based on Malaysian Code of Practice Indoor Air Quality 2005 and Moderate Thermal Environments-Determination of the PMV and PPD indices specification of the condition for thermal comfort (ISO7730:1994) From the data analysis, the FKAB building is considered inadequately vented space. The concentration of CO2 for all sampling area evaluated exceeds the recommended concentration (〉 1000 ppm). The ventilation system used in FKAB building is designed by delivering fix amount of fresh air into building from external building without consideration on the number of occupants. This common ventilation design will increase the amount of CO2 dramatically all day long and these reflect the inefficiency of energy used. The faculty needs to be equipped with a comprehensive energy management system that can allow detailed documentation of continuous performance of all energy system and consumption in the building. 展开更多
关键词 Energy efficiency indoor air quality comfort survey FKAB UKM
在线阅读 下载PDF
The Scientific Initiation in the Graduation Courses of UEMG's Faculty of Engineering: Disparities and Challenges
2
作者 Filipe Mattos Goncalves Natalia Pereira da Silv +1 位作者 Junia Soares Alexandrino Telma Ellen Drumond Ferreira 《Journal of Mechanics Engineering and Automation》 2017年第2期101-106,共6页
The notoriety of the shortage of qualified professionals in the engineering segment to meet the existing projects and also the future ones is worrying the academic community. These challenges show how the lack of appr... The notoriety of the shortage of qualified professionals in the engineering segment to meet the existing projects and also the future ones is worrying the academic community. These challenges show how the lack of appropriate courses and low expenses with incentives to research and extension programs can affect the formation of the future engineer. Therefore, universities have the mission to develop teaching, research and extension, offering to the students new opportunities for diverse technical training, scientific and humanist formation. It is noted, however, that such activities in many engineering courses, especially scientific research, are not being prioritized by the universities. In light of this, the present paper aims to register measure and evaluate the participation of the students in scientific initiation in the four engineering courses of the Faculty of Engineering of the Minas Gerais State University. Sticking to the disparities presented by the four courses studied, in relation to the participation in research projects, the results showed a greater engagement of students of Environmental Engineering and Mining Engineering courses regarding the other engineering courses. In addition, a better divulgation and a greater involvement of teachers in projects were identified as the main recurring challenges to the access in scientific research by the students of this institution. 展开更多
关键词 CHALLENGES ENGINEERING scientific initiation university.
在线阅读 下载PDF
Fatigue Resistance in Engineering Components:A Comprehensive Review on the Role of Geometry and Its Optimization
3
作者 Ibrahim T.Teke Ahmet H.Ertas 《Computer Modeling in Engineering & Sciences》 2025年第7期201-237,共37页
Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how str... Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how stress affects lifespan,this review offers the first comprehensive,multiscale comparison of strategies that optimize geometry to improve fatigue performance.This includes everything from microscopic features like the shape of graphite nodules to large-scale design elements such as fillets,notches,and overall structural layouts.We analyze and combine various methods,including topology and shape optimization,the ability of additive manufacturing to finetune internal geometries,and reliability-based design approaches.A key new contribution is our proposal of a standard way to evaluate geometry-focused fatigue design,allowing for consistent comparison and encouraging validation across different fields.Furthermore,we highlight important areas for future research,such as incorporating manufacturing flaws,using multiscale models,and integrating machine learning techniques.This work is the first to provide a broad geometric viewpoint in fatigue engineering,laying the groundwork for future design methods that are driven by data and centered on reliability. 展开更多
关键词 Fatigue resistance geometry optimization topology optimization microstructural geometry additive manufacturing crack initiation multiaxial fatigue reliability-based design raster orientation notch effect defect morphology fatigue life prediction
在线阅读 下载PDF
A unique bioreactor that offers synchronized physiological-like electrical and mechanical stimuli for cardiac tissue engineering
4
作者 Maskit Gvirtz Markish Udi Sarig +1 位作者 Limor Baruch Marcelle Machluf 《Bio-Design and Manufacturing》 2025年第4期581-594,I0031,I0032,共16页
Cardiac tissue engineering aims to efficiently replace or repair injured heart tissue using scaffolds,relevant cells,or their combination.While the combination of scaffolds and relevant cells holds the potential to ra... Cardiac tissue engineering aims to efficiently replace or repair injured heart tissue using scaffolds,relevant cells,or their combination.While the combination of scaffolds and relevant cells holds the potential to rapidly remuscularize the heart,thereby avoiding the slow process of cell recruitment,the proper ex vivo cellularization of a scaffold poses a substantial challenge.First,proper diffusion of nutrients and oxygen should be provided to the cell-seeded scaffold.Second,to generate a functional tissue construct,cells can benefit from physiological-like conditions.To meet these challenges,we developed a modular bioreactor for the dynamic cellularization of full-thickness cardiac scaffolds under synchronized mechanical and electrical stimuli.In this unique bioreactor system,we designed a cyclic mechanical load that mimics the left ventricle volume inflation,thus achieving a steady stimulus,as well as an electrical stimulus with an action potential profile to mirror the cells’microenvironment and electrical stimuli in the heart.These mechanical and electrical stimuli were synchronized according to cardiac physiology and regulated by constant feedback.When applied to a seeded thick porcine cardiac extracellular matrix(pcECM)scaffold,these stimuli improved the proliferation of mesenchymal stem/stromal cells(MSCs)and induced the formation of a dense tissue-like structure near the scaffold’s surface.Most importantly,after 35 d of cultivation,the MSCs presented the early cardiac progenitor markers Connexin-43 andα-actinin,which were absent in the control cells.Overall,this research developed a new bioreactor system for cellularizing cardiac scaffolds under cardiac-like conditions,aiming to restore a sustainable dynamic living tissue that can bear the essential cardiac excitation–contraction coupling. 展开更多
关键词 Tissue engineering BIOREACTOR Mechanical stimulation Electrical stimulation PERFUSION Excitation-contraction coupling Cardiac regeneration
暂未订购
Effect of Image Resolution on UAV-Based Photogrammetric Accuracy for Civil Engineering Applications
5
作者 Mostafa Abdel-Bary Ebrahim 《Journal of Civil Engineering and Architecture》 2025年第7期317-326,共10页
This study provides the first systematic evaluation of image resolution’s effect (50-300 PPI, pixels per inch) on UAV (unmanned aerial vehicle)-based digital close-range photogrammetry accuracy in civil engineering a... This study provides the first systematic evaluation of image resolution’s effect (50-300 PPI, pixels per inch) on UAV (unmanned aerial vehicle)-based digital close-range photogrammetry accuracy in civil engineering applications, such as infrastructure monitoring and heritage preservation. Using a high-resolution UAV with a 20 MP (MegaPixels) sensor, four images of a brick wall test field were captured and processed in Agisoft Metashape, with resolutions compared against Leica T2002 theodolite measurements (1.0 mm accuracy). Advanced statistical methods (ANOVA (analysis of variance), Tukey tests, Monte Carlo simulations) and ground control points validated the results. Accuracy improved from 25 mm at 50 PPI to 5 mm at 150 PPI (p < 0.01), plateauing at 4 mm beyond 200 PPI, while 150 PPI reduced processing time by 62% compared to 300 PPI. Unlike prior studies, this research uniquely isolates resolution effects in a controlled civil engineering context, offering a novel 150 PPI threshold that balances precision and efficiency. This threshold supports Saudi Vision 2030’s smart infrastructure goals for megaprojects like NEOM, providing a scalable framework for global applications. Future research should leverage deep learning to optimize resolutions in dynamic environments. 展开更多
关键词 UAV photogrammetry image resolution 3D measurements civil engineering Saudi Vision 2030
在线阅读 下载PDF
Effective suppression of surface cation segregations on double perovskite oxides through entropy engineering
6
作者 Zhe Wang Mengke Yuan +5 位作者 Juntao Gao Hongru Hao Jingwei Li Lingling Xu Zhe Lv Bo Wei 《Journal of Rare Earths》 2025年第2期345-353,I0005,共10页
Cation segregation on cathode surfaces plays a key role in determining the activity and operational stability of solid oxide fuel cells(SOFCs).The double perovskite oxide PrBa_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(PBCC)has been... Cation segregation on cathode surfaces plays a key role in determining the activity and operational stability of solid oxide fuel cells(SOFCs).The double perovskite oxide PrBa_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(PBCC)has been widely studied as an active cathode but still suffer from serious detrimental segregations.To enhance the cathode stability,a PBCC derived A-site medium-entropy Pr_(0.6)La_(0.1)Nd_(0.1)Sm_(0.1)Gd_(0.1)Ba_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(ME-PBCC)oxide was prepared and its segregation behaviors were investigated under different conditions.Compared with initial PBCC oxide,the segregations of BaO and Co_(3)O_(4)on the surface of ME-PBCC material are significantly suppressed,especially for Co_(3)O_(4),which is attributed to its higher configuration entropy.Our results also confirm the improved electrochemical performance and structural stability of ME-PBCC material,enabling it as a promising cathode for SOFCs. 展开更多
关键词 Solid oxide fuel cells CATHODE Double perovskite Configuration entropy Cation segregation Rare earths
原文传递
Strain and doping engineerings unlocking power density and cyclability of microspherical TiNb_(2)O_(7)anodes of lithium-ion batteries
7
作者 Yang Li Jing Yang +10 位作者 Tai Su Kai Zhang Yanjie Li Maykel Manawan Dongwei Ma Chengfu Yang Zhongzhu Liu Zhicong Shi Carlos Ponce de León Albarrán Yong-Wei Zhang Jia Hong Pan 《Journal of Energy Chemistry》 2025年第9期827-837,I0022,共12页
The limited ion/electron transport kinetics and insufficient crystalline stability of TiNb_(2)O_(7)(TNO)present significant challenges to the development of high-performance lithium-ion batteries(LIBs)with fastchargin... The limited ion/electron transport kinetics and insufficient crystalline stability of TiNb_(2)O_(7)(TNO)present significant challenges to the development of high-performance lithium-ion batteries(LIBs)with fastcharging capabilities and long cycle life.Here we propose a dual-modification strategy combining Ndoped carbon(NC)coating and Co^(2+)/W^(6+)doping,which not only enhances ionic and electronic conductivity but also effectively regulates volume expansion during electrochemical cycling.Upon Li+ion insertion,a significant reduction in the unit cell expansion coefficient of doped TNO is observed,from 7.48%(pristine TNO)to 5.37%(with 3%W^(6+)doping)and 4.65%(with 3%Co^(2+)doping),alo ng with lowered lattice distortion and improved uniformity in internal strain release.Density functional theory(DFT)simulation demonstrates that Co^(2+)and W^(6+)ions preferentially substitute Ti^(4+)sites in the TNO crystal,leading to the improved electronic conductivity by narrowing the bandgap.Moreover,Co^(2+)doping creates lower electron density and wider Li+ion transport channels than W^(6+)doping.The optimized 3Co-TNO@NC anode delivers a remarkable power density of 11.0 kW kg^(-1)at 20 C while maintaining a high reversible capacity of 150.9 mAh g^(-1)at 10 C after 2000 cycles.It also exhibits excellent compatibility in full cells,paired well with LiFePO_(4)(137.9 mAh g^(-1)after 2000 cycles)and Ni-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)(130.9 mAh g^(-1)after 500cycles)cathodes at 5 C,highlighting its potential as a high-safety,low-strain anode material for highpower LIBs. 展开更多
关键词 TiNb_(2)O_(7)microspheres Volume expansion Lattice strain Doping engineering High-power lithium-ion batteries
在线阅读 下载PDF
Recent advances in shikonin nanoformulations for managing inflammation-related disease
8
作者 Ting-Ting Zuo Jun-Jie Zhang +2 位作者 Derya bal Altuntaş Dong-Liang Yang Chao Zhang 《Traditional Medicine Research》 2026年第2期69-75,共7页
Shikonin,a naphthoquinone compound derived from the root of Lithospermum erythrorhizon,has been extensively studied for its antibacterial,antioxidant,and anti-inflammatory properties.Increasing evidence highlights its... Shikonin,a naphthoquinone compound derived from the root of Lithospermum erythrorhizon,has been extensively studied for its antibacterial,antioxidant,and anti-inflammatory properties.Increasing evidence highlights its potential in treating inflammation-related diseases.However,its clinical application is hindered by challenges such as poor water solubility,rapid metabolism in vivo,and other limitations.Recent advancements have demonstrated that encapsulating shikonin within nanocarriers can significantly enhance its water solubility and pharmacokinetic profile.Building on this,this perspective paper outlines the current landscape of inflammation treatment,explores the anti-inflammatory mechanisms of shikonin,reviews the latest progress in shikonin-based nanomaterials for anti-inflammatory applications,and discusses the challenges and future directions for the clinical translation of shikonin nanoformulations. 展开更多
关键词 SHIKONIN NANOMEDICINE inflammation-related diseases
暂未订购
Rapid Evaluation of Rock Mass Integrity of Engineering Slopes Using Three-Dimensional Laser Scanning 被引量:5
9
作者 Liang Chen Yunfeng Ge +5 位作者 Xuming Zeng Haiyan Wang Changdong Li Shan Dong Yang Ye Dongming Gu 《Journal of Earth Science》 SCIE CAS CSCD 2023年第6期1920-1925,共6页
0 INTRODUCTION.The classification of the rock mass quality is an important research topic within geological engineering and rock mechanics,because it is a powerful tool to perform rock mass stability analysis in rock ... 0 INTRODUCTION.The classification of the rock mass quality is an important research topic within geological engineering and rock mechanics,because it is a powerful tool to perform rock mass stability analysis in rock engineering practices(Babacan et al.,2014;Singh et al.,1992). 展开更多
关键词 ROCK Singh SLOPE
原文传递
Functional layer engineering to improve performance of protonic ceramic fuel cells 被引量:4
10
作者 Ning Wang Zhi-Yin Huang +5 位作者 Chun-Mei Tang Li-Xin Xing Ling Meng Yoshitaka Aoki Lei Du Si-Yu Ye 《Rare Metals》 SCIE EI CAS CSCD 2023年第7期2250-2260,共11页
Protonic ceramic fuel cells(PCFCs)have been attracting increasing attention because of their advances in high-efficiency power generation in an intermediate-temperature range,as compared to the high-temperature solid ... Protonic ceramic fuel cells(PCFCs)have been attracting increasing attention because of their advances in high-efficiency power generation in an intermediate-temperature range,as compared to the high-temperature solid oxide fuel cells(SOFCs).The greatest difference between PCFCs and SOFCs is the specific requirement of protonic(H+)conductivity at the PCFC cathode,in addition to the electronic(e^(-))and oxide-ion(O^(2-))conductivity.The development of a triple H^(+)/e^(-)/O^(2-)conductor for PCFC cathode is still challenging.Thus,the most-widely used cathode material is based on the mature e^(-)/O^(2-)conductor.However,this leads to insufficient triple phase boundary(TPB),i.e.,reaction area.Herein,an efficient strategy that uses a~100 nm-thick proton conductive functional layer(La_(0.5)Sr_(0.5)CoO_(3-δ),LSC55)in-between the typical La_(0.8)Sr_(0.2)CoO_(3-δ)cathode(a mature e-/O^(2-)conductor,LS C 82)and B aZr_(0.4)Ce_(0.4)Y_(0.1)Yb_(0.)1O_(3-δ)elec trolyte(11 mm in diameter,20μm in thickness)is proposed to significantly enhance the reaction area.Reasonably,the ohmic resistance and polarization resistance are both decreased by 47%and 62%,respectively,compared with that of PCFCs without the functional layer.The power density of the PCFC with such a functional layer can be raised by up to 2.24 times,superior to those described in previous reports.The enhanced PCFC performances are attributed to the well-built TPB and enhanced reaction area via the functional layer engineering strategy. 展开更多
关键词 Protonic ceramic fuel cell(PCFC) Cathode functional layer(CFL) Power density Triple phase boundary(TPB)
原文传递
Surface Geophysical Methods used to Verify the Karst Geological Structure in the Built-up Area:A Case Study of Specific Engineering-Geological Conditions 被引量:2
11
作者 Rene PUTISKA Marian MARSCHALKO +4 位作者 Isik YILMAZ Dominik NIEMIEC CHENG Xianfeng Ivan DOSTAL Jan KUBAC 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第5期1763-1770,共8页
This article presents a research study of complex limestone karst engineering-geological conditions in the municipality Valaskanear Banska Bystrica in Slovakia.The aim of the study is to demonstrate the impossibility ... This article presents a research study of complex limestone karst engineering-geological conditions in the municipality Valaskanear Banska Bystrica in Slovakia.The aim of the study is to demonstrate the impossibility of spatial identification of cave spaces using surface geophysical methods due to the specific engineering-geological conditions of a thick surface layer of anthropogenic fill containing highly heterogeneous anthropogenic material.Its maximum thickness is 3 m.Another specificific condition of the study area is its location in the built-up area,due to which the applicability of geophysical methods was limited.The article contains methodological recommendations to be used in analogous geological conditions with karst structures topped with anthropogenic fill,which complicates the identification of cave spaces.The recommended solution herein is the identification of the cave system using underground mapping of the karst and its projection onto the surface for which surface geophysical methods have been combined. 展开更多
关键词 KARST engineering geology LIMESTONE DOLOMITE anthropogenic fill complicated engineering-geological conditions geophysical study
在线阅读 下载PDF
Engineering behaviour of in situ cored deep cement mixed marine deposits subjected to undrained and drained shearing 被引量:1
12
作者 Wei Li Chung Yee Kwok 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1749-1760,共12页
The deep cement mixing(DCM)is used to improve the capacity and reduce the settlement of the soft ground by forming cemented clay columns.The investigation on the mechanical behaviour of the DCM samples is limited to e... The deep cement mixing(DCM)is used to improve the capacity and reduce the settlement of the soft ground by forming cemented clay columns.The investigation on the mechanical behaviour of the DCM samples is limited to either laboratory-prepared samples or in-situ samples under unconfined compression.In this study,a series of drained and undrained triaxial shearing tests was performed on the in-situ cored DCM samples with high cement content to assess their mechanical behaviours.It is found that the drainage condition affects significantly the stiffness,peak and residual strengths of the DCM samples,which is mainly due to the state of excess pore water pressure at different strain levels,i.e.being positive before the peak deviatoric stress and negative after the peak deviatoric stress,in the undrained tests.The slope of the failure envelope changes obviously with the confining pressures,being steeper at lower stress levels and flatter at higher stress levels.The strength parameters,effective cohesion and friction angle obtained from lower stress levels(c′0 andφ′0)are 400 kPa and 58°,respectively,which are deemed to be true for design in most DCM applications where the in-situ stress levels are normally at lower values of 50-200 kPa.Additionally,the computed tomography(CT)scanning system was adopted to visualize the internal structures of DCM samples.It is found that the clay pockets existing inside the DCM samples due to uneven mixing affect markedly their stress-strain behaviour,which is one of the main reasons for the high variability of the DCM samples. 展开更多
关键词 Deep cement mixing(DCM) In-situ cored sample Triaxial shearing Drainage condition Confining pressure Computed tomography(CT)
在线阅读 下载PDF
Application of Radial Basis Function Learning Algorithm in Petroleum Engineering: Bottom-Hole Pressure Prediction 被引量:1
13
作者 Mehdi Mohammadpoor Farshid Torabi 《材料科学与工程(中英文A版)》 2011年第4X期586-591,共6页
关键词 径向基函数神经网络 压力预测 石油工程 井底压力 学习算法 垂直多相流 RBFNN 应用
在线阅读 下载PDF
A Review on the Role of Risk Management (RM) and Value Engineering (VE) Tools for Project Successful Delivery 被引量:1
14
作者 Elysé Masengesho Ji Wei +1 位作者 Nadine Umubyeyi Rosette Niyirora 《World Journal of Engineering and Technology》 2021年第1期109-127,共19页
Both in developed and in developing countries, the construction industry is regarded as an economic investment activity without forgetting its significant relationship with national economic development due to its gre... Both in developed and in developing countries, the construction industry is regarded as an economic investment activity without forgetting its significant relationship with national economic development due to its great contributions to the national gross domestic product (GDP) of the country. Concerning construction processes, both risk management (RM) and value engineering (VE) techniques have commonalities from the beginning up to the completion of the project due to enhancing the project value/quality, meeting the project deadline, and reducing overall project cost. VE includes resolving the uncertainty of project objectives and ensuring that the project is delivered in a value for money way. The key point of RM is to solve the uncertainty of the project itself and its results to ensure that the specifications are achieved within the prescribed time, cost, and quality constraints. This review work is comparatively and collectively focus</span><span style="font-family:Verdana;">ed</span><span style="font-family:Verdana;"> on assessing the role of RM and VE tools for project successful delivery. It studies the points of difference and common features of the two aspects in terms of construction project delivery. So, this study concluded that in construction RM tool cannot be the chief aim of the all parties involved in the project execution because sometimes it produces itself negative results and reduces project management success. Therefore, RM needs a strong combination with VE due to the dependence of the target in identifying and assessing risks by considering the highest performance and lowest cost. The integration of RM and VE combination in a single study would avoid duplication of work and deliver better value for money thereby leading to better project outcomes. 展开更多
关键词 Managing Projects Risk Management Value Engineering Proper Project Delivery
在线阅读 下载PDF
Geological and Geoengineering Properties of the 1997 Yangjia Shan Landslide, Enshi, China 被引量:1
15
作者 M. A. M. Ez Eldin Huiming Tang +3 位作者 Yixian Xu Changdong Li Chengren Xiong Liangqing Wang 《International Journal of Geosciences》 2013年第4期803-815,共13页
Yangjia Shan instability has been evidenced by the occurrence of the July 16, 1997 landslide. The instability factor which leads to activating the landslide is the intense rainfall;lithology of Luoreiping Formation an... Yangjia Shan instability has been evidenced by the occurrence of the July 16, 1997 landslide. The instability factor which leads to activating the landslide is the intense rainfall;lithology of Luoreiping Formation and the highly weathered slopes’ rocks have played a great role in starting and aggravation. Weathering at the landslide site consists largely of attack on the cement and removal of support of the sandy mudstone and sandstone and decompose of shale. The weathering degree of the rocks decreases vertically with increasing depth from high, medium to slightly weathered corresponding to grade IV, III and II, respectively. The slip surface consists of moderate to highly weathered intercalated layers of sandy mudstone (mudstone) and shale, while, the layer below the slip surface is characterized by dark gray, moderately weathered and thick layered mudstone. The moderate to highly weathered subsurface lithology is probably attributed to the accumulation of the infiltrated rainfall water through fractures and porosity, raising the ground water level and wetting of the sandy mudstone and shale rocks of Luoreping Formation. The wetting contributed more or less to the disintegration of the sandy mudstone and shale, lowered the shear strength and created cracks on the upper part of the slope leading thus to increase the landslide susceptibility. Therefore, the frequency and magnitude of landslide at the study area and its vicinity are expected to increase through the activation of old landslides and triggering of new ones under circumstances similar to those of the past. 展开更多
关键词 RAINFALL LITHOLOGY WEATHERING Yangjia Shan LANDSLIDE Laboratory Test
暂未订购
A review of carbon-based hybrid materials for supercapacitors 被引量:4
16
作者 Theodore Azemtsop Manfo Hannu Laaksonen 《新型炭材料(中英文)》 北大核心 2025年第1期81-110,共30页
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti... Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors. 展开更多
关键词 Carbon-based hybrid material Structure design Electrode material Specific capacitance SUPERCAPACITORS
在线阅读 下载PDF
Application of the Engineering-Geological Conditions in Land-Use Plans in the Petrvald Region(Czech Republic)
17
作者 Marian MARSCHALKO Isik YILMAZ +2 位作者 Martin BEDNARIK Karel KUBEKA Toms BOUCHAL 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第1期272-285,共14页
The objective of this paper is to demonstrate necessity to inform relevant parties about engineering-geological conditions for various practical purposes, especially including appropriate land-use planning. However, t... The objective of this paper is to demonstrate necessity to inform relevant parties about engineering-geological conditions for various practical purposes, especially including appropriate land-use planning. However, the relationship between relevant geological information and the geological environment is vital for foundation engineering purposes, especially where demanding structures are involved. This information is most conveniently structured when accumulated information concerning engineering-geological zones is utilized. This necessarily includes knowledge of rock workability and also of the pre-Quaternary bedrock, and these characteristics were then related to the current built-up area and future development according to the land-use plans in a case study are from the Petrvald Region (Czech Republic). The geological environment of area has been severely influenced by anthropogenic effects of deep black coal mining. Results of this research showed that future development should be founded on spoil banks, dumps, and settling basins. According to the land-use plan, this zone occupies 44.9% of the area of interest, and its materials predominantly emanate from mining in the Ostrava-Karvina Coal District. For future foundation structures planned there, it is imperative to consult detailed engineering-geological study. However, attention to and reliance on this necessity is not reflected in the existing land-use plan. 展开更多
关键词 Geological environment land-use plan engineering-geological zones workability of rocks GIS Petrvald Region (Czech Republic)
在线阅读 下载PDF
The Effect of Spironolactone Loading on the Properties of 3D-Printed Polycaprolactone/Gold Nanoparticles Composite Scaffolds for Myocardial Tissue Engineering
18
作者 Sharareh Ghaziof Shahrokh Shojaei +2 位作者 Mehdi Mehdikhani Mohammad Khodaei Milad Jafari Nodoushan 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期924-937,共14页
Engineered cardiac constructs(ECC)aid in the progression of regenerative medicine,disease modeling and targeted drug delivery to adjust and aim the release of remedial combination as well as decrease the side effects ... Engineered cardiac constructs(ECC)aid in the progression of regenerative medicine,disease modeling and targeted drug delivery to adjust and aim the release of remedial combination as well as decrease the side effects of drugs.In this research,polycaprolactone/gold nanoparticles(PCL/GNPs)three-dimensional(3D)composite scaffolds were manufactured by 3D printing using the fused deposition modeling(FDM)method and then coated with gelatin/spironolactone(GEL/SPL).Scanning electron microscopy(SEM)and Fourier transform-infrared spectroscopy(FTIR–ATR)were applied to characterize the samples.Furthermore,drug release,biodegradation,behavior of the myoblasts(H9C2)cell line,and cytotoxicity of the 3D scaffolds were evaluated.The microstructural observation of the scaffolds reported interconnected pores with 150–300µm in diameter.The 3D scaffolds were degraded significantly after 28 days of immersion in stimulated body fluid(SBF),with the maximum rate of GEL-coated 3D scaffolds.SPL release from cross-linked GEL coating demonstrated the excess of drug release over time,and according to the control release systems,the drug delivery systems(DDS)went into balance after the 14th day.In addition,cell culture study showed that with the addition of GNPs,the proliferation of(H9C2)was enhanced,and with GEL/SPL coating the cell attachment and viability were improved significantly.These findings suggested that PCL/GNPs 3D scaffolds coated with GEL/SPL can be an appropriate choice for myocardial tissue engineering. 展开更多
关键词 POLYCAPROLACTONE Gold nanoparticles Drug delivery systems SPIRONOLACTONE Cell behavior MYOBLASTS
暂未订购
Engineering Geological and Geophysical Assessment of the 2009 Jiwei Shan Rockslide, Wulong, China
19
作者 Ez Eldin M. A. M., Huiming Tang +2 位作者 Yixian Xu Chengren Xiong Yunfeng Ge 《Open Journal of Geology》 2013年第2期60-70,共11页
This study presents the engineering geological and geophysical assessment of the June 5, 2009 Jiwei Shan rockslide, Wulong, China. Jiwei Shan is a part of Wulong karst terrain lithologically, it’s composed of Quatern... This study presents the engineering geological and geophysical assessment of the June 5, 2009 Jiwei Shan rockslide, Wulong, China. Jiwei Shan is a part of Wulong karst terrain lithologically, it’s composed of Quaternary Deposits, Jialingjiang Formation, Maokou, Qixia, Liangshan and Hanjiadian Groups (chronologically from younger to older). The surface is highly irregular (pinnached), the rocks contain two sets of fractures, networks of convoluted solution channels and caves and there are large voids filled by soil mantle. It’s a south-north dipping limb of an anticline fold composed of sedimentary rocks, mainly of limestone of variable composition, mudstone and shale and series of limestone deposited with interbedded mudstone and shale. There are two sets of steeply dipping fractures developed in the Maokou and upper strata of Qixia Groups;set one trending EW and set two trending nearly SN directions. The study has been conducted by geological fieldwork, geophysical investigation (Vertical Electrical Sounding), petrographical and scanning electron microscope (SEM) studies and laboratory testing on rock samples collected from Jialingjiang Formation and Maokou and Qixia Groups. The study of the SEM photomicrographs showed that the microcrack propagations in limestone indicated that the increases in crack length and micropores of limestone are indication to the weathering grade increase from II (slightly weathered rock) to grade III and IV (moderately and highly weathered, respectively). The Qixia Group;Middle Layer is highly weathered shale and bituminous interlayer with clear fissility, high porosity, and gently dipping strata, it represents the sliding surface of the rockslide. It’s comparatively weak and strongly weathered compared to the overlain EW and SN fractured stratum. Generally, the tectonic of the study area imposes controls on the rockslide in many ways: created favourable terrain, provided sufficient rockslide prone materials such as highly weathered limestone and shale, weak rocks, created very steep beds which reduced the stability of the highly fractured bedrock of the slope. 展开更多
关键词 LITHOLOGY FRACTURES WEATHERING Jiwei Shan ROCKSLIDE Laboratory Tests
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部