期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Solution of multigroup neutron diffusion equation in 3D hexagonal geometry using nodal Green's function method
1
作者 Il-Mun Ho Kum-Hyok Ok Chol So 《Nuclear Science and Techniques》 2025年第9期33-42,共10页
In this paper,we propose a numerical calculation model of the multigroup neutron diffusion equation in 3D hexagonal geometry using the nodal Green's function method and verified it.We obtained one-dimensional tran... In this paper,we propose a numerical calculation model of the multigroup neutron diffusion equation in 3D hexagonal geometry using the nodal Green's function method and verified it.We obtained one-dimensional transverse integrated equations using the transverse integration procedure over 3D hexagonal geometry and denoted the solutions as a nodal Green's functions under the Neumann boundary condition.By applying a quadratic polynomial expansion of the transverse-averaged quantities,we derived the net neutron current coupling equation,equation for the expansion coefficients of the transverse-averaged neutron flux,and formulas for the coefficient matrix of these equations.We formulated the closed system of equations in correspondence with the boundary conditions.The proposed model was tested by comparing it with the benchmark for the VVER-440 reactor,and the numerical results were in good agreement with the reference solutions. 展开更多
关键词 NGFM Hexagonal geometry Multigroup neutron diffusion equation
在线阅读 下载PDF
Minimum dose path planning for facility inspection based on the discrete Rao-combined ABC algorithm in radioactive environments with obstacles
2
作者 Kwon Ryong Hong Su Il O +2 位作者 Ryon Hui Kim Tae Song Kim Jang Su Kim 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期26-40,共15页
Workers who conduct regular facility inspections in radioactive environments will inevitably be affected by radiation.Therefore,it is important to optimize the inspection path to ensure that workers are exposed to the... Workers who conduct regular facility inspections in radioactive environments will inevitably be affected by radiation.Therefore,it is important to optimize the inspection path to ensure that workers are exposed to the least amount of radiation.This study proposes a discrete Rao-combined artificial bee colony(ABC)algorithm for planning inspection paths with minimum exposure doses in radioactive environments with obstacles.In this algorithm,retaining the framework of the traditional ABC algorithm,we applied the directional solution update rules of Rao algorithms at the employed bee stage and onlooker bee stage to increase the exploitation ability of the algorithm and implement discretion using the swap operator and swap sequence.To increase the randomness of solution generation,the chaos algorithm was used at the initialization stage.The K-opt operation technique was introduced at the scout bee stage to increase the exploration ability of the algorithm.For path planning in an environment with complex structural obstacles,an obstacle detour technique using a recursive algorithm was applied.To evaluate the performance of the proposed algorithm,we performed experimental simulations in three hypothetical environments and compared the results with those of improved particle swarm optimization,chaos particle swarm optimization,improved ant colony optimization,and discrete Rao’s algorithms.The experimental results show the high performance of the proposed discrete Rao-combined ABC algorithm and its obstacle detour capability. 展开更多
关键词 Minimum dose Path planning Nuclear facility inspection ABC algorithm Rao algorithms Swap sequence K-opt operation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部