The cross-modal person re-identification task aims to match visible and infrared images of the same individual.The main challenges in this field arise from significant modality differences between individuals and the ...The cross-modal person re-identification task aims to match visible and infrared images of the same individual.The main challenges in this field arise from significant modality differences between individuals and the lack of high-quality cross-modal correspondence methods.Existing approaches often attempt to establish modality correspondence by extracting shared features across different modalities.However,these methods tend to focus on local information extraction and fail to fully leverage the global identity information in the cross-modal features,resulting in limited correspondence accuracy and suboptimal matching performance.To address this issue,we propose a quadratic graph matching method designed to overcome the challenges posed by modality differences through precise cross-modal relationship alignment.This method transforms the cross-modal correspondence problem into a graph matching task and minimizes the matching cost using a center search mechanism.Building on this approach,we further design a block reasoning module to uncover latent relationships between person identities and optimize the modality correspondence results.The block strategy not only improves the efficiency of updating gallery images but also enhances matching accuracy while reducing computational load.Experimental results demonstrate that our proposed method outperforms the state-of-the-art methods on the SYSU-MM01,RegDB,and RGBNT201 datasets,achieving excellent matching accuracy and robustness,thereby validating its effectiveness in cross-modal person re-identification.展开更多
There are errors in multi-source uncertain time series data.Truth discovery methods for time series data are effective in finding more accurate values,but some have limitations in their usability.To tackle this challe...There are errors in multi-source uncertain time series data.Truth discovery methods for time series data are effective in finding more accurate values,but some have limitations in their usability.To tackle this challenge,we propose a new and convenient truth discovery method to handle time series data.A more accurate sample is closer to the truth and,consequently,to other accurate samples.Because the mutual-confirm relationship between sensors is very similar to the mutual-quote relationship between web pages,we evaluate sensor reliability based on PageRank and then estimate the truth by sensor reliability.Therefore,this method does not rely on smoothness assumptions or prior knowledge of the data.Finally,we validate the effectiveness and efficiency of the proposed method on real-world and synthetic data sets,respectively.展开更多
文摘The cross-modal person re-identification task aims to match visible and infrared images of the same individual.The main challenges in this field arise from significant modality differences between individuals and the lack of high-quality cross-modal correspondence methods.Existing approaches often attempt to establish modality correspondence by extracting shared features across different modalities.However,these methods tend to focus on local information extraction and fail to fully leverage the global identity information in the cross-modal features,resulting in limited correspondence accuracy and suboptimal matching performance.To address this issue,we propose a quadratic graph matching method designed to overcome the challenges posed by modality differences through precise cross-modal relationship alignment.This method transforms the cross-modal correspondence problem into a graph matching task and minimizes the matching cost using a center search mechanism.Building on this approach,we further design a block reasoning module to uncover latent relationships between person identities and optimize the modality correspondence results.The block strategy not only improves the efficiency of updating gallery images but also enhances matching accuracy while reducing computational load.Experimental results demonstrate that our proposed method outperforms the state-of-the-art methods on the SYSU-MM01,RegDB,and RGBNT201 datasets,achieving excellent matching accuracy and robustness,thereby validating its effectiveness in cross-modal person re-identification.
基金National Natural Science Foundation of China(No.62002131)Shuangchuang Ph.D Award(from World Prestigious Universities)of Jiangsu Province,China(No.JSSCBS20211179)。
文摘There are errors in multi-source uncertain time series data.Truth discovery methods for time series data are effective in finding more accurate values,but some have limitations in their usability.To tackle this challenge,we propose a new and convenient truth discovery method to handle time series data.A more accurate sample is closer to the truth and,consequently,to other accurate samples.Because the mutual-confirm relationship between sensors is very similar to the mutual-quote relationship between web pages,we evaluate sensor reliability based on PageRank and then estimate the truth by sensor reliability.Therefore,this method does not rely on smoothness assumptions or prior knowledge of the data.Finally,we validate the effectiveness and efficiency of the proposed method on real-world and synthetic data sets,respectively.