期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Automatic Diagnosis of COVID-19 from Chest X-Ray Images Using Transfer Learning-Based Deep Features and Machine Learning Models
1
作者 Vikas Kumar Arpit Gupta +1 位作者 Barenya Bikash Hazarika Deepak Gupta 《China Communications》 2025年第7期274-289,共16页
The COVID-19 pandemic,which was declared by the WHO,had created a global health crisis and disrupted people’s daily lives.A large number of people were affected by the COVID-19 pandemic.Therefore,a diagnostic model n... The COVID-19 pandemic,which was declared by the WHO,had created a global health crisis and disrupted people’s daily lives.A large number of people were affected by the COVID-19 pandemic.Therefore,a diagnostic model needs to be generated which can effectively classify the COVID and non-COVID cases.In this work,our aim is to develop a diagnostic model based on deep features using effectiveness of Chest X-ray(CXR)in distinguishing COVID from non-COVID cases.The proposed diagnostic framework utilizes CXR to diagnose COVID-19 and includes Grad-CAM visualizations for a visual interpretation of predicted images.The model’s performance was evaluated using various metrics,including accuracy,precision,recall,F1-score,and Gmean.Several machine learning models,such as random forest,dense neural network,SVM,twin SVM,extreme learning machine,random vector functional link,and kernel ridge regression,were selected to diagnose COVID-19 cases.Transfer learning was used to extract deep features.For feature extraction many CNN-based models such as Inception V3,MobileNet,ResNet50,VGG16 and Xception models are used.It was evident from the experiments that ResNet50 architecture outperformed all other CNN architectures based on AUC.The TWSVM classifier achieved the highest AUC score of 0.98 based on the ResNet50 feature vector. 展开更多
关键词 COVID-19 deep learning machine learning SARS-COV-2019 transfer learning
在线阅读 下载PDF
Three-Dimensional Trajectory Planning for Robotic Manipulators Using Model Predictive Control and Point Cloud Optimization
2
作者 Zeinel Momynkulov Azhar Tursynova +3 位作者 Olzhas Olzhayev Akhanseri Ikramov Sayat Ibrayev Batyrkhan Omarov 《Computer Modeling in Engineering & Sciences》 2025年第10期891-918,共28页
Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position,velocity,and acceleration must be satisfied.Conventional geometric planners emphasize path... Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position,velocity,and acceleration must be satisfied.Conventional geometric planners emphasize path smoothness but often ignore dynamic feasibility,motivating control-aware trajectory generation.This study presents a novel model predictive control(MPC)framework for three-dimensional trajectory planning of robotic manipulators that integrates second-order dynamic modeling and multi-objective parameter optimization.Unlike conventional interpolation techniques such as cubic splines,B-splines,and linear interpolation,which neglect physical constraints and system dynamics,the proposed method generates dynamically feasible trajectories by directly optimizing over acceleration inputs while minimizing both tracking error and control effort.A key innovation lies in the use of Pareto front analysis for tuning prediction horizon and sampling time,enabling a systematic balance between accuracy and motion smoothness.Comparative evaluation using simulated experiments demonstrates that the proposed MPC approach achieves a minimum mean absolute error(MAE)of 0.170 and reduces maximum acceleration to 0.0217,compared to 0.0385 in classical linear methods.The maximum deviation error was also reduced by approximately 27.4%relative to MPC configurations without tuned parameters.All experiments were conducted in a simulation environment,with computational times per control cycle consistently remaining below 20 milliseconds,indicating practical feasibility for real-time applications.Thiswork advances the state-of-the-art inMPC-based trajectory planning by offering a scalable and interpretable control architecture that meets physical constraints while optimizing motion efficiency,thus making it suitable for deployment in safety-critical robotic applications. 展开更多
关键词 Trajectory planning robotic manipulator dynamic constraints motion planning spline real-time control
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部