期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Fuzzy Multi-Objective Framework for Energy Optimization and Reliable Routing in Wireless Sensor Networks via Particle Swarm Optimization
1
作者 Medhat A.Tawfeek Ibrahim Alrashdi +1 位作者 Madallah Alruwaili Fatma M.Talaat 《Computers, Materials & Continua》 2025年第5期2773-2792,共20页
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu... Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use. 展开更多
关键词 Wireless sensor networks particle swarm optimization fuzzy multi-objective framework routing stability
在线阅读 下载PDF
An Efficient Explainable AI Model for Accurate Brain Tumor Detection Using MRI Images
2
作者 Fatma M.Talaat Mohamed Salem +1 位作者 Mohamed Shehata Warda M.Shaban 《Computer Modeling in Engineering & Sciences》 2025年第8期2325-2358,共34页
The diagnosis of brain tumors is an extended process that significantly depends on the expertise and skills of radiologists.The rise in patient numbers has substantially elevated the data processing volume,making conv... The diagnosis of brain tumors is an extended process that significantly depends on the expertise and skills of radiologists.The rise in patient numbers has substantially elevated the data processing volume,making conventional methods both costly and inefficient.Recently,Artificial Intelligence(AI)has gained prominence for developing automated systems that can accurately diagnose or segment brain tumors in a shorter time frame.Many researchers have examined various algorithms that provide both speed and accuracy in detecting and classifying brain tumors.This paper proposes a newmodel based on AI,called the Brain Tumor Detection(BTD)model,based on brain tumor Magnetic Resonance Images(MRIs).The proposed BTC comprises three main modules:(i)Image Processing Module(IPM),(ii)Patient Detection Module(PDM),and(iii)Explainable AI(XAI).In the first module(i.e.,IPM),the used dataset is preprocessed through two stages:feature extraction and feature selection.At first,the MRI is preprocessed,then the images are converted into a set of features using several feature extraction methods:gray level co-occurrencematrix,histogramof oriented gradient,local binary pattern,and Tamura feature.Next,the most effective features are selected fromthese features separately using ImprovedGrayWolfOptimization(IGWO).IGWOis a hybrid methodology that consists of the Filter Selection Step(FSS)using information gain ratio as an initial selection stage and Binary Gray Wolf Optimization(BGWO)to make the proposed method better at detecting tumors by further optimizing and improving the chosen features.Then,these features are fed to PDM using several classifiers,and the final decision is based on weighted majority voting.Finally,through Local Interpretable Model-agnostic Explanations(LIME)XAI,the interpretability and transparency in decision-making processes are provided.The experiments are performed on a publicly available Brain MRI dataset that consists of 98 normal cases and 154 abnormal cases.During the experiments,the dataset was divided into 70%(177 cases)for training and 30%(75 cases)for testing.The numerical findings demonstrate that the BTD model outperforms its competitors in terms of accuracy,precision,recall,and F-measure.It introduces 98.8%accuracy,97%precision,97.5%recall,and 97.2%F-measure.The results demonstrate the potential of the proposed model to revolutionize brain tumor diagnosis,contribute to better treatment strategies,and improve patient outcomes. 展开更多
关键词 Brain tumor detection MRI images explainable AI(XAI) improved gray wolf optimization(IGWO)
在线阅读 下载PDF
Authentication of Vehicles and Road Side Units in Intelligent Transportation System 被引量:3
3
作者 Muhammad Waqas Shanshan Tu +5 位作者 Sadaqat Ur Rehman Zahid Halim Sajid Anwar Ghulam Abbas Ziaul Haq Abbas Obaid Ur Rehman 《Computers, Materials & Continua》 SCIE EI 2020年第7期359-371,共13页
Security threats to smart and autonomous vehicles cause potential consequences such as traffic accidents,economically damaging traffic jams,hijacking,motivating to wrong routes,and financial losses for businesses and ... Security threats to smart and autonomous vehicles cause potential consequences such as traffic accidents,economically damaging traffic jams,hijacking,motivating to wrong routes,and financial losses for businesses and governments.Smart and autonomous vehicles are connected wirelessly,which are more attracted for attackers due to the open nature of wireless communication.One of the problems is the rogue attack,in which the attacker pretends to be a legitimate user or access point by utilizing fake identity.To figure out the problem of a rogue attack,we propose a reinforcement learning algorithm to identify rogue nodes by exploiting the channel state information of the communication link.We consider the communication link between vehicle-to-vehicle,and vehicle-to-infrastructure.We evaluate the performance of our proposed technique by measuring the rogue attack probability,false alarm rate(FAR),mis-detection rate(MDR),and utility function of a receiver based on the test threshold values of reinforcement learning algorithm.The results show that the FAR and MDR are decreased significantly by selecting an appropriate threshold value in order to improve the receiver’s utility. 展开更多
关键词 Intelligent transportation system AUTHENTICATION rogue attack
在线阅读 下载PDF
Modified aquila optimizer for forecasting oil production 被引量:6
4
作者 Mohammed A.A.Al-qaness Ahmed A.Ewees +2 位作者 Hong Fan Ayman Mutahar AlRassas Mohamed Abd Elaziz 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第4期519-535,共17页
Oil production estimation plays a critical role in economic plans for local governments and organizations.Therefore,many studies applied different Artificial Intelligence(AI)based meth-ods to estimate oil production i... Oil production estimation plays a critical role in economic plans for local governments and organizations.Therefore,many studies applied different Artificial Intelligence(AI)based meth-ods to estimate oil production in different countries.The Adaptive Neuro-Fuzzy Inference System(ANFIS)is a well-known model that has been successfully employed in various applica-tions,including time-series forecasting.However,the ANFIS model faces critical shortcomings in its parameters during the configuration process.From this point,this paper works to solve the drawbacks of the ANFIS by optimizing ANFIS parameters using a modified Aquila Optimizer(AO)with the Opposition-Based Learning(OBL)technique.The main idea of the developed model,AOOBL-ANFIS,is to enhance the search process of the AO and use the AOOBL to boost the performance of the ANFIS.The proposed model is evaluated using real-world oil produc-tion datasets collected from different oilfields using several performance metrics,including Root Mean Square Error(RMSE),Mean Absolute Error(MAE),coefficient of determination(R2),Standard Deviation(Std),and computational time.Moreover,the AOOBL-ANFIS model is compared to several modified ANFIS models include Particle Swarm Optimization(PSO)-ANFIS,Grey Wolf Optimizer(GWO)-ANFIS,Sine Cosine Algorithm(SCA)-ANFIS,Slime Mold Algorithm(SMA)-ANFIS,and Genetic Algorithm(GA)-ANFIS,respectively.Additionally,it is compared to well-known time series forecasting methods,namely,Autoregressive Integrated Moving Average(ARIMA),Long Short-Term Memory(LSTM),Seasonal Autoregressive Integrated Moving Average(SARIMA),and Neural Network(NN).The outcomes verified the high performance of the AOOBL-ANFIS,which outperformed the classic ANFIS model and the compared models. 展开更多
关键词 Oil production ANFIS opposition-based learning(OBL) Aquila Optimizer(AO) time series forecasting Tahe oilfield Sunah oilfield
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部