High-entropy alloys(HEAs)exhibit the excellent elevated-temperature performance and irradiation resistance due to the important core effect of serious lattice distortion for impeding dislocation motion,as candidate ma...High-entropy alloys(HEAs)exhibit the excellent elevated-temperature performance and irradiation resistance due to the important core effect of serious lattice distortion for impeding dislocation motion,as candidate materials for nuclear applications.Despite the growth of the nuclear power sector,the effects of high-temperature and high-dose irradiation-induced voids on the mechanical properties of HEA in higher power nuclear reactors remain insufficiently researched,hindering its industrial application.In this study,we establish a consistent parameterization crystal plastic constitutive model for the hardening and creep behaviors of HEA,incorporating the spatial distribution of void size and shape effects,in contrast to traditional creep models that rely on temperature-related fitting parameters of the phenomenological power law equation.The model matches well with experimental data at different temperatures and irradiation doses,demonstrating its robustness.The effects of irradiation dose,temperature,and degree of lattice distortion on irradiation hardening and creep behavior of void-containing HEA are investigated.The results indicate that HEA with high lattice distortion exhibits better creep resistance under higher stress loads.The yield stress of irradiated HEA increases with increasing irradiation dose and temperature.The creep resistance increases with increasing irradiation dose and decreases with increasing irradiation temperature.The increase in irradiation dose causes a specific morphological transformation from spherical to cubic voids.The modeling and results could provide an effective theoretical way for tuning the yield strength and alloy design in advanced HEAs to meet irradiation properties.展开更多
Environmental pollution,such as water contamination,is a critical issue that must be absolutely addressed.Here,three different morphologies of tungsten-based photocatalysts(WO_(3)nanorods,WO_(3)/WS_(2)nanobricks,WO_(3...Environmental pollution,such as water contamination,is a critical issue that must be absolutely addressed.Here,three different morphologies of tungsten-based photocatalysts(WO_(3)nanorods,WO_(3)/WS_(2)nanobricks,WO_(3)/WS_(2)nanorods)are made using a simple hydrothermal method by changing the solvents(H_(2)O,DMF,aqueous HCl solution).The as-prepared nanocatalysts have excellent thermal stability,large porosity,and high hydrophilicity.The results show all materials have good photocatalytic activity in aqueous media,with WO_(3)/WS_(2)nanorods(NRs)having the best activity in the photodegradation of bisphenol A(BPA)under visible-light irradiation.This may originate from increased migration of charge carriers and effective prevention of electron–hole recombination in WO_(3)/WS_(2)NRs,whereby this photocatalyst is able to generate more reactive·OH and·O_(2)^(–)species,leading to greater photocatalytic activity.About 99.6% of BPA is photodegraded within 60 min when using 1.5 g/L WO_(3)/WS_(2)NRs and 5.0 mg/L BPA at pH 7.0.Additionally,the optimal conditions(pH,catalyst dosage,initial BPA concentration)for WO_(3)/WS_(2)NRs are also elaborately investigated.These rod-like heterostructures are expressed as potential catalysts with excellent photostability,efficient reusability,and highly active effectivity in different types of water.In particular,the removal efficiency of BPA by WO_(3)/WS_(2)NRs reduces by only 1.5% after five recycling runs and even reaches 89.1%in contaminated lake water.This study provides promising insights for the nearly complete removal of BPA from wastewater or different water resources,which is advantageous to various applications in environmental remediation.展开更多
In thiswork,the perovskite LaZnO_(3) was synthesized via sol-gel method and applied for photocatalytic treatment of sulfamethizole(SMZ)antibiotics under visible light activation.SMZ was almost completely degraded(99.2...In thiswork,the perovskite LaZnO_(3) was synthesized via sol-gel method and applied for photocatalytic treatment of sulfamethizole(SMZ)antibiotics under visible light activation.SMZ was almost completely degraded(99.2%±0.3%)within 4 hr by photocatalyst LaZnO_(3) at the optimal dosage of 1.1 g/L,with amineralization proportion of 58.7%±0.4%.The efficient performance of LaZnO_(3) can be attributed to itswide-range light absorption and the appropriate energy band edge levels,which facilitate the formation of active agents such as·O_(2)^(−),h^(+),and·OH.The integration of RP-HPLC/Q-TOF-MS and DFT-based computational techniques revealed three degradation pathways of SMZ,which were initiated by the deamination reaction at the aniline ring,the breakdown of the sulfonamidemoieties,and a process known as Smile-type rearrangement and SO2 intrusion.Corresponding toxicity of SMZ and the intermediateswere analyzed by quantitative structure activity relationship(QSAR),indicating the effectiveness of LaZnO_(3)-based photocatalysis in preventing secondary pollution of the intermediates to the ecosystem during the degradation process.The visible-light-activated photocatalyst LaZnO_(3) exhibited efficient performance in the occurrence of inorganic anions and maintained high durability across multiple recycling tests,making it a promising candidate for practical antibiotic treatment.展开更多
The ground-state phase transition and the phonon dispersion relation of the quantum double-well model are studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefu...The ground-state phase transition and the phonon dispersion relation of the quantum double-well model are studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction. The single-particle state is taken to be a frozen Jackiw-Kerman wavefunction. Under the condition of minimum uncertainty relation, we obtain an effective classical Hamiltonian for the system and equations of motion for the particle's expectation values. It is shown that the effective substrate potential transits from a symmetric double-well potential to a symmetric single-well potential, and the ground state exhibits a transition from a broken symmetry phase to a restored symmetry phase as increasing the strength of quantum fluctuations. We also obtain the phonon dispersion relations and the phonon gaps at the two phases.展开更多
Polycrystalline diamond compact(PDC)drill bit often performs with low ROP,short service life and poor stability under complicated and difficult to drill formations.Therefore,a vertical wheel PDC bit is proposed,which ...Polycrystalline diamond compact(PDC)drill bit often performs with low ROP,short service life and poor stability under complicated and difficult to drill formations.Therefore,a vertical wheel PDC bit is proposed,which is a new drill bit technology applying an integrated unit combining the tooth wheel and the rotary shaft thereof.Besides,the experiments on motion and mechanical characteristics of the vertical wheel under the conditions of tooth shape and number of teeth,normal deflection angle of the wheel,and different cutting depth were carried out using variable parameter experimental device,and the movement,force law,and crushing specific work of vertical wheel under different experimental conditions were obtained.The comparative experiments of PDC cutting rock breaking under the conditions of parallel cutting of PDC unit and pre-damage of the wheel were also carried out,and the cutting load of PDC teeth under pre-damage conditions is between 38.72% and 70.95%lower than that of parallel cutting was obtained.Finally,a comparative experiment of indoor drilling between vertical wheel PDC bit and conventional PDC bit was carried out.Results show than when drilling in gravel rock,under the same WOB,the torque response of vertical wheel PDC bit is equivalent to that of the PDC bit,while the ROP of vertical wheel PDC bit is 22.94%-53.33% higher than that of conventional PDC bit,and the threedimensional acceleration of the vertical wheel PDC bit is 19.17%-76.23% of that of the PDC bit.The experimental results contribute to a better understanding of vertical wheels and provide technical support for their use in PDC bits.展开更多
The aggregation behavior of the mixture of cetyltrimethylammonium chloride(CTAC), a cationic surfactant, and moxifloxacin hydrochloride(MFH), a fourth-generation fluoroquinolone antibiotic drug, has been studied using...The aggregation behavior of the mixture of cetyltrimethylammonium chloride(CTAC), a cationic surfactant, and moxifloxacin hydrochloride(MFH), a fourth-generation fluoroquinolone antibiotic drug, has been studied using the conductivity technique in aqueous and alcoholic(EtOH, 1-PrOH, and 2-BuOH)media. The study was performed at several temperatures between 298.15 and 323.15 K at 5 K intervals.The assembly has been characterized by evaluating the micellar parameters, such as the critical micelle concentration(CMC) and the counter ion binding(β), of the CTAC + MFH mixture. The values of the CMC for the assembly of the CTAC + MFH mixture were reliant on the composition of alcohols in the mixed solvents and the temperature. The CMC values of the CTAC + MFH mixture increased with increasing temperature;that is, assembly was delayed by increased temperature. The micellization of the CTAC + MFH mixed system was delayed in alcoholic media. The observed-ΔG0mvalues for the association of the CTAC + MFH mixed system demonstrated a spontaneous aggregation process under all study conditions.Based on the-ΔH^(0)_(m) and +ΔS^(0)_(m) values, the association of the CTAC + MFH mixture is exothermic and the interaction forces acting between the CTAC and MFH species are hydrophobic, ion–dipole, and electrostatic interactions. The transfer properties and enthalpy–entropy compensation were also assessed and described comprehensively.展开更多
There are considered rule-based intelligent systems using fuzzy inference. Comparative analysis of different approaches and algorithms of making decisions on the base of fuzzy logic is given. Using of the parallel cal...There are considered rule-based intelligent systems using fuzzy inference. Comparative analysis of different approaches and algorithms of making decisions on the base of fuzzy logic is given. Using of the parallel calculations can reduce the time of making decision in case of large-scale systems. Effectiveness of parallel calculations depends on the grouping of the rules and variables. Building of the graph of the dependence of the rules and the graph of dependence of the linguistic variables are suggested. On the base of the developed groups of rules and defuzzification of the linguistic variables we suggest to reduce the time of making decision and therefore to increase the effectiveness of the decision making with using of parallel calculations for each group.展开更多
Forest hydrology,the study of water dynamics within forested catchments,is crucial for understanding the intricate relationship between forest cover and water balances across different scales,from ecosystems to landsc...Forest hydrology,the study of water dynamics within forested catchments,is crucial for understanding the intricate relationship between forest cover and water balances across different scales,from ecosystems to landscapes,or from catchment watersheds.The intensified global changes in climate,land use and cover,and pollution that occurred over the past century have brought about adverse impacts on forests and their services in water regulation,signifying the importance of forest hydrological research as a re-emerging topic of scientific interest.This article reviews the literature on recent advances in forest hydrological research,intending to identify leading countries,institutions,and researchers actively engaged in this field,as well as highlighting research hotspots for future exploration.Through a systematic analysis using VOSviewer,drawing from 17,006 articles retrieved from the Web of Science Core Collection spanning 2000–2022,we employed scientometric methods to assess research productivity,identify emerging topics,and analyze academic development.The findings reveal a consistent growth in forest hydrological research over the past two decades,with the United States,Charles T.Driscoll,and the Chinese Academy of Sciences emerging as the most productive country,author,and institution,respectively.The Journal of Hydrology emerges as the most co-cited journal.Analysis of keyword co-occurrence and co-cited references highlights key research areas,including climate change,management strategies,runoff-erosion dynamics,vegetation cover changes,paired catchment experiments,water quality,aquatic biodiversity,forest fire dynamics and hydrological modeling.Based on these findings,our study advocates for an integrated approach to future research,emphasizing the collection of data from diverse sources,utilization of varied methodologies,and collaboration across disciplines and institutions.This holistic strategy is essential for developing sustainable approaches to forested watershed planning and management.Ultimately,our study provides valuable insights for researchers,practitioners,and policymakers,guiding future research directions towards forest hydrological research and applications.展开更多
基金support from the National Natural Science Foundation of China(Nos.12302083,U2267252,12372069,and 12172123)the China Postdoctoral Science Foundation(Nos.2023M731061 and BX20230109)+1 种基金the Natural Science Foundation of Hunan Province(No.2022JJ20001)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20230420).
文摘High-entropy alloys(HEAs)exhibit the excellent elevated-temperature performance and irradiation resistance due to the important core effect of serious lattice distortion for impeding dislocation motion,as candidate materials for nuclear applications.Despite the growth of the nuclear power sector,the effects of high-temperature and high-dose irradiation-induced voids on the mechanical properties of HEA in higher power nuclear reactors remain insufficiently researched,hindering its industrial application.In this study,we establish a consistent parameterization crystal plastic constitutive model for the hardening and creep behaviors of HEA,incorporating the spatial distribution of void size and shape effects,in contrast to traditional creep models that rely on temperature-related fitting parameters of the phenomenological power law equation.The model matches well with experimental data at different temperatures and irradiation doses,demonstrating its robustness.The effects of irradiation dose,temperature,and degree of lattice distortion on irradiation hardening and creep behavior of void-containing HEA are investigated.The results indicate that HEA with high lattice distortion exhibits better creep resistance under higher stress loads.The yield stress of irradiated HEA increases with increasing irradiation dose and temperature.The creep resistance increases with increasing irradiation dose and decreases with increasing irradiation temperature.The increase in irradiation dose causes a specific morphological transformation from spherical to cubic voids.The modeling and results could provide an effective theoretical way for tuning the yield strength and alloy design in advanced HEAs to meet irradiation properties.
基金The Vietnam National Foundation for Science and Technology Development(NAFOSTED)and the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(Grant No.NRF-2022R1A2C1012996)。
文摘Environmental pollution,such as water contamination,is a critical issue that must be absolutely addressed.Here,three different morphologies of tungsten-based photocatalysts(WO_(3)nanorods,WO_(3)/WS_(2)nanobricks,WO_(3)/WS_(2)nanorods)are made using a simple hydrothermal method by changing the solvents(H_(2)O,DMF,aqueous HCl solution).The as-prepared nanocatalysts have excellent thermal stability,large porosity,and high hydrophilicity.The results show all materials have good photocatalytic activity in aqueous media,with WO_(3)/WS_(2)nanorods(NRs)having the best activity in the photodegradation of bisphenol A(BPA)under visible-light irradiation.This may originate from increased migration of charge carriers and effective prevention of electron–hole recombination in WO_(3)/WS_(2)NRs,whereby this photocatalyst is able to generate more reactive·OH and·O_(2)^(–)species,leading to greater photocatalytic activity.About 99.6% of BPA is photodegraded within 60 min when using 1.5 g/L WO_(3)/WS_(2)NRs and 5.0 mg/L BPA at pH 7.0.Additionally,the optimal conditions(pH,catalyst dosage,initial BPA concentration)for WO_(3)/WS_(2)NRs are also elaborately investigated.These rod-like heterostructures are expressed as potential catalysts with excellent photostability,efficient reusability,and highly active effectivity in different types of water.In particular,the removal efficiency of BPA by WO_(3)/WS_(2)NRs reduces by only 1.5% after five recycling runs and even reaches 89.1%in contaminated lake water.This study provides promising insights for the nearly complete removal of BPA from wastewater or different water resources,which is advantageous to various applications in environmental remediation.
文摘In thiswork,the perovskite LaZnO_(3) was synthesized via sol-gel method and applied for photocatalytic treatment of sulfamethizole(SMZ)antibiotics under visible light activation.SMZ was almost completely degraded(99.2%±0.3%)within 4 hr by photocatalyst LaZnO_(3) at the optimal dosage of 1.1 g/L,with amineralization proportion of 58.7%±0.4%.The efficient performance of LaZnO_(3) can be attributed to itswide-range light absorption and the appropriate energy band edge levels,which facilitate the formation of active agents such as·O_(2)^(−),h^(+),and·OH.The integration of RP-HPLC/Q-TOF-MS and DFT-based computational techniques revealed three degradation pathways of SMZ,which were initiated by the deamination reaction at the aniline ring,the breakdown of the sulfonamidemoieties,and a process known as Smile-type rearrangement and SO2 intrusion.Corresponding toxicity of SMZ and the intermediateswere analyzed by quantitative structure activity relationship(QSAR),indicating the effectiveness of LaZnO_(3)-based photocatalysis in preventing secondary pollution of the intermediates to the ecosystem during the degradation process.The visible-light-activated photocatalyst LaZnO_(3) exhibited efficient performance in the occurrence of inorganic anions and maintained high durability across multiple recycling tests,making it a promising candidate for practical antibiotic treatment.
文摘The ground-state phase transition and the phonon dispersion relation of the quantum double-well model are studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction. The single-particle state is taken to be a frozen Jackiw-Kerman wavefunction. Under the condition of minimum uncertainty relation, we obtain an effective classical Hamiltonian for the system and equations of motion for the particle's expectation values. It is shown that the effective substrate potential transits from a symmetric double-well potential to a symmetric single-well potential, and the ground state exhibits a transition from a broken symmetry phase to a restored symmetry phase as increasing the strength of quantum fluctuations. We also obtain the phonon dispersion relations and the phonon gaps at the two phases.
基金This work was supported by the open fund project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation in 2021(Grant No.PLN2021-18)City-school Science and Technology Strategic Cooperation Project of Nanchong City and Southwest Petroleum University(Grant No.SXHZ014)Postdoctoral Science Foundation of China(Grant No.2021M693909).
文摘Polycrystalline diamond compact(PDC)drill bit often performs with low ROP,short service life and poor stability under complicated and difficult to drill formations.Therefore,a vertical wheel PDC bit is proposed,which is a new drill bit technology applying an integrated unit combining the tooth wheel and the rotary shaft thereof.Besides,the experiments on motion and mechanical characteristics of the vertical wheel under the conditions of tooth shape and number of teeth,normal deflection angle of the wheel,and different cutting depth were carried out using variable parameter experimental device,and the movement,force law,and crushing specific work of vertical wheel under different experimental conditions were obtained.The comparative experiments of PDC cutting rock breaking under the conditions of parallel cutting of PDC unit and pre-damage of the wheel were also carried out,and the cutting load of PDC teeth under pre-damage conditions is between 38.72% and 70.95%lower than that of parallel cutting was obtained.Finally,a comparative experiment of indoor drilling between vertical wheel PDC bit and conventional PDC bit was carried out.Results show than when drilling in gravel rock,under the same WOB,the torque response of vertical wheel PDC bit is equivalent to that of the PDC bit,while the ROP of vertical wheel PDC bit is 22.94%-53.33% higher than that of conventional PDC bit,and the threedimensional acceleration of the vertical wheel PDC bit is 19.17%-76.23% of that of the PDC bit.The experimental results contribute to a better understanding of vertical wheels and provide technical support for their use in PDC bits.
基金funded by Institutional Fund Projects (IFPIP:515-961-1443)technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia。
文摘The aggregation behavior of the mixture of cetyltrimethylammonium chloride(CTAC), a cationic surfactant, and moxifloxacin hydrochloride(MFH), a fourth-generation fluoroquinolone antibiotic drug, has been studied using the conductivity technique in aqueous and alcoholic(EtOH, 1-PrOH, and 2-BuOH)media. The study was performed at several temperatures between 298.15 and 323.15 K at 5 K intervals.The assembly has been characterized by evaluating the micellar parameters, such as the critical micelle concentration(CMC) and the counter ion binding(β), of the CTAC + MFH mixture. The values of the CMC for the assembly of the CTAC + MFH mixture were reliant on the composition of alcohols in the mixed solvents and the temperature. The CMC values of the CTAC + MFH mixture increased with increasing temperature;that is, assembly was delayed by increased temperature. The micellization of the CTAC + MFH mixed system was delayed in alcoholic media. The observed-ΔG0mvalues for the association of the CTAC + MFH mixed system demonstrated a spontaneous aggregation process under all study conditions.Based on the-ΔH^(0)_(m) and +ΔS^(0)_(m) values, the association of the CTAC + MFH mixture is exothermic and the interaction forces acting between the CTAC and MFH species are hydrophobic, ion–dipole, and electrostatic interactions. The transfer properties and enthalpy–entropy compensation were also assessed and described comprehensively.
文摘There are considered rule-based intelligent systems using fuzzy inference. Comparative analysis of different approaches and algorithms of making decisions on the base of fuzzy logic is given. Using of the parallel calculations can reduce the time of making decision in case of large-scale systems. Effectiveness of parallel calculations depends on the grouping of the rules and variables. Building of the graph of the dependence of the rules and the graph of dependence of the linguistic variables are suggested. On the base of the developed groups of rules and defuzzification of the linguistic variables we suggest to reduce the time of making decision and therefore to increase the effectiveness of the decision making with using of parallel calculations for each group.
基金supported by Yibin University,Sichuan,China and Hebei University,Baoding,China(Grant No.521100221033).
文摘Forest hydrology,the study of water dynamics within forested catchments,is crucial for understanding the intricate relationship between forest cover and water balances across different scales,from ecosystems to landscapes,or from catchment watersheds.The intensified global changes in climate,land use and cover,and pollution that occurred over the past century have brought about adverse impacts on forests and their services in water regulation,signifying the importance of forest hydrological research as a re-emerging topic of scientific interest.This article reviews the literature on recent advances in forest hydrological research,intending to identify leading countries,institutions,and researchers actively engaged in this field,as well as highlighting research hotspots for future exploration.Through a systematic analysis using VOSviewer,drawing from 17,006 articles retrieved from the Web of Science Core Collection spanning 2000–2022,we employed scientometric methods to assess research productivity,identify emerging topics,and analyze academic development.The findings reveal a consistent growth in forest hydrological research over the past two decades,with the United States,Charles T.Driscoll,and the Chinese Academy of Sciences emerging as the most productive country,author,and institution,respectively.The Journal of Hydrology emerges as the most co-cited journal.Analysis of keyword co-occurrence and co-cited references highlights key research areas,including climate change,management strategies,runoff-erosion dynamics,vegetation cover changes,paired catchment experiments,water quality,aquatic biodiversity,forest fire dynamics and hydrological modeling.Based on these findings,our study advocates for an integrated approach to future research,emphasizing the collection of data from diverse sources,utilization of varied methodologies,and collaboration across disciplines and institutions.This holistic strategy is essential for developing sustainable approaches to forested watershed planning and management.Ultimately,our study provides valuable insights for researchers,practitioners,and policymakers,guiding future research directions towards forest hydrological research and applications.