The mechanical properties of bedding rock in cold regions are frequently affected by freeze-thaw(F-T)cycles and ani-sotropy.Research on the mechanical characteristics of rock damage under the combined action of F-T an...The mechanical properties of bedding rock in cold regions are frequently affected by freeze-thaw(F-T)cycles and ani-sotropy.Research on the mechanical characteristics of rock damage under the combined action of F-T and bedding angles is limited,and most traditional rock damage models cannot accurately capture these characteristics.We performed axial compression tests to ex-plore the strength characteristics of bedding slates at the bedding angles ofβ=0°,30°,45°,60°,and 90°under various F-T cycles.The experimental findings suggest that the elastic modulus and uniaxial compressive strength of the slate declined exponentially as the number of F-T cycles increased.Axial compressive strength was characterized by a U-shaped tendency with the bedding angle.This study proposes a damage model for the uniaxial compressive strength of transversely isotropic rock,which integrates the F-T effect,utilizing the enhanced anisotropic Hoek-Brown strength criterion and a statistical damage model.This model was validated using experimental data.This statistical damage model can precisely capture the dual attributes of rock mass strength reduction with F-T cy-cles and variations arising from the loading direction.展开更多
Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the enti...Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the entire PHP channel.A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer,and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera.The video images were then analyzed to obtain the flow patterns in the PHP.The heat transfer characteristics of the PHPwere discussed based on the flowpatterns and temperature distributions obtainedwith thermocouples.Before starting heating,because of high wettability,large liquid slugs positioned at the evaporator section of the PHP.After starting heating,since the occurrence of boiling divided the large liquid slugs,oscillatory flowof smaller liquid slugs and vapor plugs was found in the PHP.Clear circulation flow of liquid slugs and vapor plugs was observed when the power input to the PHP was larger than 12.0 W.The flow patterns and temperature distributions confirmed that the circulation flow enhanced the heat transfer from the evaporator section to the condenser section of the PHP.In the circulation flow mode,large growth and contraction of vapor plugs were found one after another in all even-numbered PHP channels.However,the analysis of flow patterns clarified that the phase-change heat transfer rate by large growth and contraction of vapor plugs was 19%of the total heat transfer rate of the PHP.Although the generation of large vapor plugs was found in the PHP,most of the heat was transferred by the sensible heat of the working fluid.展开更多
Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels wi...Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 mm and a height of 1.1 mm.The evaporator and condenser sections were 25 and 50 mm long,respectively,and the adiabatic section in between was 75mmlong.Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene,the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP.The PHP was charged with hydrofluoroether-7100.In the experiments,the evaporator section was heated,and the condenser section was cooled using high-temperature and low-temperature thermostatic baths,respectively.Flow patterns of the working fluid were obtained with temperature distributions of the PHP.A mathematical model was developed to analyze the flow patterns.Themerged liquid slugs were observed in every two channels,and their oscillation characteristics were found to be approximately the same in time and space.It was also found that the oscillations of the merged liquid slugs became slower,but the heat transfer rate of the PHP increased with a decrease in the filling ratio of the working fluid.This is because vapor condensation was enhanced in vapor plugs as the filling ratio decreased.However,the filling ratio had a lower limit,and the heat transfer rate was maximum when the filling ratio was 40.6%in the present experimental range.展开更多
Thermal and fluid-flow characteristics were numerically analyzed for ultra-thin heat pipes.Many studies have been conducted for ultra-thin heat pipes with a centered wick structure,but this study focused on separated ...Thermal and fluid-flow characteristics were numerically analyzed for ultra-thin heat pipes.Many studies have been conducted for ultra-thin heat pipes with a centered wick structure,but this study focused on separated wick structures to increase the evaporation/condensation surface areas within the heat pipe and to reduce the concentration of heat flux within the wick structure.A mathematical heat-pipe model was made in the threedimensional coordinate system,and the model consisted of three regions:a vapor channel,liquid-wick,and container wall regions.The conservation equations for mass,momentum,and energy were solved numerically with boundary conditions by using a code developed by one of the authors.The numerical results with the separated wick structures were compared with those with the centered,which confirmed the effectiveness of the separation of the wick structure.However,the effectiveness of the separation was affected by the position of the separated wick structure.A simple equation was presented to determine the optimum position of the separated wick structures.Numerical analyses were also conducted when the width of the heat pipe was increased with the cooled section,which clarified that the increase in the cooled-section width with the addition of wick structures wasmore effective than the increase in the cooled-section length.A 44%reduction in the total temperature difference of the heat pipe was obtained under the present numerical conditions.Furthermore,a comparison wasmade between experimental results and numerical results.展开更多
Complex evidence theory is a generalized Dempster-Shafer evidence theory,which has the ability to express uncertain information.One of the key issues is the uncertainty measure of Complex Basic Belief Assignment(CBBA)...Complex evidence theory is a generalized Dempster-Shafer evidence theory,which has the ability to express uncertain information.One of the key issues is the uncertainty measure of Complex Basic Belief Assignment(CBBA).However,the research on the uncertainty measure of complex evidence theory is still an open issue.Therefore,in this paper,first,the Fractal-based Complex Belief(FCB)entropy as a generalization of Fractal-based Belief(FB)entropy,which has superiority in uncertainty measurement of CBBA,is proposed.Second,on the basis of FCB entropy,we propose Fractal-based Supremum Complex Belief(FSCB)entropy and Fractal-based Infimum Complex Belief(FICB)entropy,with FSCB entropy as the upper bound and FICB entropy as the lower bound.They are collectively called the proposed FCB entropy.Furthermore,we analyze the properties,physical interpretation and numerical examples to prove the rationality of the proposed method.Finally,a practical information fusion application is proposed to prove that the proposed FCB entropy can reasonably measure the uncertainty of CBBA.The results show that,the proposed FCB entropy can handle the uncertainty measure of CBBA,which can be a reasonable way for uncertainty measure in complex evidence theory.展开更多
This study aims to investigate the benefcial efects of surface retaining elements (SREs) on the mechanical behaviors of bolted rock and roadway stability. 3D printing (3DP) technology is utilized to create rock analog...This study aims to investigate the benefcial efects of surface retaining elements (SREs) on the mechanical behaviors of bolted rock and roadway stability. 3D printing (3DP) technology is utilized to create rock analogue prismatic specimens for conducting this investigation. Uniaxial compression tests with acoustic emission (AE) and digital image correlation techniques have been conducted on 3DP specimens bolted with diferent SREs. The results demonstrate that the strength and modulus of elasticity of the bolted specimens show a positive correlation with the area of the SRE;the AE characteristics of the bolted specimens are higher than those of the unbolted specimen, but they decrease with an increase in SRE area, thus further improving the integrity of the bolted specimens. The reinforcement efect of SREs on the surrounding rock of roadways is further analyzed using numerical modelling and feld test. The results provide a better understanding of the role of SREs in rock bolting and the optimization of rock bolting design. Furthermore, they verify the feasibility of 3DP for rock analogues in rock mechanics tests.展开更多
Induced seismicity is strongly related to various engineering projects that cause anthropogenic in-situ stress change at a great depth.Hence,there is a need to estimate and mitigate the associated risks.In the past,va...Induced seismicity is strongly related to various engineering projects that cause anthropogenic in-situ stress change at a great depth.Hence,there is a need to estimate and mitigate the associated risks.In the past,various simulation methods have been developed and applied to induced seismicity analysis,but there is still a fundamental diference between simulation results and feld observations in terms of the spatial distribution of seismic events and its frequency.The present study aims to develop a method to simulate spatially distributed on-fault seismicity whilst reproducing a complex stress state in the fault zone.Hence,an equivalent continuum model is constructed,based on a discrete fracture network within a fault damage zone,by employing the crack tensor theory.A fault core is simulated at the center of the model as a discontinuous plane.Using the model,a heterogeneous stress state with stress anomalies in the fault zone is frst simulated by applying tractions on the model outer boundaries.Subsequently,the efective normal stress on the fault plane is decreased in a stepwise manner to induce slip.The simulation result is validated in terms of the b-value and other seismic source parameters,hence demonstrating that the model can reproduce spatially and temporally distributed on-fault seismicity.Further analysis on the parameters shows the variation of frequency-magnitude distribution before the occurrence of large seismic events.This variation is found to be consistent with feld observations,thus suggesting the potential use of this simulation method in evaluating the risk for seismic hazards in various engineering projects.展开更多
miRNAs play an important regulatory role in variety of cellular functions and several diseases, including cancer. MicroRNA-21 (miR-21) is overexpressed in almost all types of human cancers. Studies revealed that the k...miRNAs play an important regulatory role in variety of cellular functions and several diseases, including cancer. MicroRNA-21 (miR-21) is overexpressed in almost all types of human cancers. Studies revealed that the knockdown of miR-21 results in reduced tumor cell growth, cell cycle arrest and cell apoptosis. In this study, we evaluated the effect of doxorubicin on miR-21 expression in mcf-7 breast cancer cells. miRNA was extracted from mcf-7 cells treated with doxorubicin and untreated cells using miRNeasy Kit (Qiagen) according to the manufacturer’s instructions. cDNA synthesis was performed using miScript II RT Kit (Qiagen) and Real Time-PCR was performed using Real Q Plus 2x Master Mix Green-(Ampliqon, Denmark). The relative expression of miR-16 and miR-21 was calculated using comparative Ct method. All tests were run in triplicate to minimize the experimental errors. Samples with a Ct > 37 were excluded from the analysis. Statistically, a significant decrease in cell proliferation of mcf-7 cells was found in doxorubicin group compared with control groups 24 hours after transfection, dose dependently (p value< 0.001). After 24 hours, Doxorubicin (100 μm) significantly decreased miR-21 expression in mcf-7 cells (p = 0.0001). Also, the expression of caspase 9 significantly increased after Doxorubicin (100 μm) treatment (p = 0.0003). Together, these findings indicate that miR-21 plays a key role in regulating cell apoptosis in mcf-7 cells and may serve as a target for effective therapies.展开更多
Background:Rubiadin is a type of anthraquinone compound that can be found in Rubiaceae plants,such as Ronas.Nonetheless,only limited research has been done to explore the potential anticancer properties of rubiadin on...Background:Rubiadin is a type of anthraquinone compound that can be found in Rubiaceae plants,such as Ronas.Nonetheless,only limited research has been done to explore the potential anticancer properties of rubiadin on liver cancer cells.Thus,the objective of the present study is to examine how rubiadin affects the viability of liver cancer cells as well as normal cells.Methods:HepG2 and AGO cell lines were assigned into controls(not exposed to rubiadin)and groups with exposure to rubiadin with 12.5,6.25,3.125,1.56,0.78,and 0.39μg/mL concentrations.3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide and reverse transcription-polymerase chain reaction were used to measure cell viability,and one-way analysis of variance was used for data analysis.Results:The viability of liver cancer cells was significantly reduced when exposed to 12.5,6.25,3.125,and 1.56μg/mL concentrations(P<0.01).An IC50 of 44.73μg/mL was reported.Furthermore,the BAX gene’s relative expression(P<0.05)was significantly increased and the BCL2 gene expression(P<0.05)was significantly reduced.The average ratio of BAX gene expression to BCL2 increased significantly(P<0.01).Conclusion:This research showed that rubiadin decreases cell viability by increasing the ratio of BAX gene expression to BCL2.In addition rubiadin has no cytotoxic effect on normal cells.展开更多
Centered or striped wick structures have been used to develop ultrathin heat pipes.Differing from traditional heat pipes,the centered or striped wick structures leave noncontact container surfaces with the wick struct...Centered or striped wick structures have been used to develop ultrathin heat pipes.Differing from traditional heat pipes,the centered or striped wick structures leave noncontact container surfaces with the wick structure.In this study,experiments andnumerical analyseswere conductedtoinvestigate the influenceof thesenoncontact surfaces.In the experiments,a strip-shaped wick structure was placed vertically,the top was sandwiched between wider rods and the bottom was immersed in a working fluid.The rod width was greater than the wick width;thus,noncontact surfaces were left between the rod and the wick structure.The heat was applied from the rod to the wick structure,and the evaporation heat transfer characteristics of the working fluid from the wick structure were evaluated.Water was used as the working fluid.The experiments were conducted by varying the rod and wick widths.The experimental results were obtained when the wick structures were placed separately.In the numerical analyses,the temperature and heat flux distributions in the rod were obtained.From the experimental and numerical results,it was confirmed that the noncontact surfaces caused the heat flux in the rod near both surfaces of the wick structure to concentrate,which increased the evaporation thermal resistance of the wick structure.A reduction in the noncontact surface area by increasing the wick width was found to be effective in decreasing the evaporation thermal resistance and increasing themaximumheat transfer rate of the wick structure.The separation of the wick structure increased the evaporation surface area.However,its effectiveness was limited when the heat transfer rate was small.展开更多
Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship ...Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship between crack geometric parameters and rock mechanics properties in cracked rock is greatly important to the design of engineering rock mass struc‑tures. In this study, computed tomography (CT) scanning was used to extract the internal crack network of coal specimens. Based on the crack size and dominant crack number, the parameters of crack area, volume, length, width, and angle were statistically analyzed by diferent sampling thresholds. In addition, the Pearson correlation coefcients between the crack parameters and uniaxial compression rock mechanics properties (uniaxial compressive strength UCS, elasticity modulus E) were calculated to quantitatively analyze the impact of each parameter. Furthermore, a method based on Pearson coefcients was used to grade the correlation between crack geometric parameters and rock mechanical properties to determine threshold values. The results indicated that the UCS and E of the specimens changed with the varied internal crack structures of the specimens, the crack parameters of area, volume, length and width all showed negative correlations with UCS and E, and the dominant crack played an important role both in weakening strength and stifness. The crack parameters of the angle are all positively correlated with the UCS and E. More crack statistics can signifcantly improve the correlation between the parameters of the crack angle and the rock mechanics properties, and the statistics of the geometric parameters of at least 16 cracks or the area larger than 5 mm2 are suggested for the analysis of complex cracked rock masses or physical reproduction using 3D printing. The results are validated and further analyzed with triaxial tests. The fndings of this study have important reference value for future research regarding the accurate and efcient selection of a few cracks with a signifcant infuence on the rock mechanical properties of surrounding rock mass structures in coal engineering.展开更多
An ultra-thin flattened heat pipe has been developed with a centered wick structure.This structure is essential to make the heat pipe thinner.However,the centered wick structure reduces the evaporation and condensatio...An ultra-thin flattened heat pipe has been developed with a centered wick structure.This structure is essential to make the heat pipe thinner.However,the centered wick structure reduces the evaporation and condensation surface areas of the wick structure because it is sandwiched between heat pipe walls.In this study,because detailed discussion has not been made,heat transfer experiments were conducted for the wick structure sandwiched between two solid walls.This study focused on the evaporation heat transfer characteristics from the sandwiched wick structure.The experiments were conducted with three wick structures,that is,strip-shaped sintered copper powders with thicknesses of 0.5,1.0,and 1.5 mm.Water was used as working fluid.The capillary pumping performance,that is,the liquid lifting velocities of the three wick structures were the same.The experimental results of the three wick structures were compared regarding the relation between the evaporation heat transfer rate and the superheat of the working fluid.The heat transfer experiments were also conducted when one of the solid walls was removed from the wick structure.It was confirmed that even if the wick structure was sandwiched between the solid walls,sufficient evaporation of the working fluid occurred from the thin sides of the wick structure.展开更多
Objectives:Although many studies have suggested the anticancer properties of Galium verum,there is still no accurate information regarding its side effects on normal cells.Accordingly,this study aimed to investigate t...Objectives:Although many studies have suggested the anticancer properties of Galium verum,there is still no accurate information regarding its side effects on normal cells.Accordingly,this study aimed to investigate the dual effects of the whole Galium verummethanolic extract on the normal human fibroblast cell line(AGO)cell line at different concentrations.Methods:The cell line was randomly divided into a control group and groups exposed to concentrations of 12.5 to 400μg/mL.Extraction was performed by the maceration method.In addition,the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide(MTT)method was applied to measure cytotoxicity and flow cytometry.Further,BCL2 associated X(BAX)andB-cell lymphoma 2(BCL2)genes were expressed by the real-time polymerase chain reaction to evaluate apoptosis and reactive oxygen species(ROS).Finally,data were compared between groups using a one-way analysis of variance.Results:A significant reduction was observed in the cell viability of 90%at a concentration of 400μg/mL compared to the control.In comparison,a significant increase was reported in cell viability at concentrations of 25-200μg/mL(P<0.0001).Furthermore,there was a significant 2.87-time increase in apoptosis compared to the control group(P<0.0001),but no significant differences were reported in cellular phases.ROS increased significantly by 5.7 times(P<0.05),and a significant 80-fold increase was found in the BAX/BCL2gene ratio(P<0.05).Conclusion:The whole methanolic extract could lower the viability of human fibroblasts at 400μg/mL and more by increasing apoptosis,thereby increasing BAX/BCL2gene expression and ROS production.However,the extract exerted an increased effect on cell viability in a concentration-dependent manner on AGO and increased cell growth at concentrations less than 400μg/mL,highlighting different effects of the whole extract on the AGO cell line.展开更多
By placing a sample between a heated and a cooled rod, a thermal conductivity of the sample can be evaluated easily with the assumption of a one-dimensional heat flow. However, a three-dimensional constriction/spreadi...By placing a sample between a heated and a cooled rod, a thermal conductivity of the sample can be evaluated easily with the assumption of a one-dimensional heat flow. However, a three-dimensional constriction/spreading heat flow may occur inside the rods when the sample is a composite having different thermal conductivities. In order to investigate the thermal resistance due to the constriction/spreading heat flow, the three-dimensional numerical analyses were conducted on the heat transfer characteristics of the rods. In the present analyses, a polymer-based composite board having thermal vias was sandwiched between the rods. From the numerical results, it was confirmed that the constriction/spreading resistance of the rods was strongly affected by the thermal conductivity of the rods as well as the number and size of the thermal vias. A simple equation was also proposed to evaluate the constriction/spreading resistance of the rods. Fairly good agreements were obtained between the numerical results and the calculated ones by the simple equation. Moreover, the discussion was also made on an effective thermal conductivity of the composite board evaluated with the heated and the cooled rod.展开更多
According to the extent of fungal infections, to be chronic these such diseases and recently the emerging issue of increased antibiotic resistance in fungal infections, most of scientists are going to find a proper wa...According to the extent of fungal infections, to be chronic these such diseases and recently the emerging issue of increased antibiotic resistance in fungal infections, most of scientists are going to find a proper way to replace antibacterial agent by significant semiconductor ZnO nanoparticles (NPs). They are well known to be one of the most important and special metal oxide nanoparticles in pharmaceutical against the most common fungi. ZnO nanoparticles were synthesized using sol-gel, hydrothermal and functionalized surface methods and formulated in water solutions as nanofluids. XRD, FTIR and SEM techniques and UV-Vis absorbance spectroscopy characterized their ZnO modified nanostructures. Also antimycotic potential according to generally tests such as: (MIC) minimum inhibitory concentration, (MFC) minimum fungicidal concentration and normally well diffusion method with standard strains fungi were performed. Among five common fungi strains using in this research, new various ZnO nanofluids showed noticeable results for dermatophyte fungi like Trichophyton mentagrophytes, Microsporum gypseum, Microsporum canis, Candida albicans and Candid tropicalis which had un growth zones in order 70, 40, 35, 30 and 30 mm in comparing with Clotrimazole reference reagent: 30, 25, 25, 18 and 20 mm by well method. The performance of MIC for ZnO nanofluids on fungi was determined to be equal to 0.35, 3.12, 6.25, 6.25 and 6.25 μgr/ml and MFC of nanoproducts showed the 1.5, 12.5, 25, 25 and 25 μgr/ml. Therefore, the designed ZnO nanofluids could reveal the most effect on fungi which cause dermal (ringworm), mucosal (thrush) and vaginal infections, so we are able to apply these surface high energetic ZnO water-based nanofluid formulations as in vitro nanomedicine and nanohygiene for the first time.展开更多
A significant volume of Municipal Solid Waste incineration bottom ash and fly ash (i.e.,incineration residues) are commonly disposed as landfill.Meanwhile,reclamation of landfill sites to create a new land space after...A significant volume of Municipal Solid Waste incineration bottom ash and fly ash (i.e.,incineration residues) are commonly disposed as landfill.Meanwhile,reclamation of landfill sites to create a new land space after their closure becomes an important goal in the current fewer and fewer land availability scenario in many narrow countries.The objective of this study is to reclaim incineration residue materials in the landfill site by using cement and coal fly ash as stabilizers aiming at performing quality check as new developed materials before future construction.Indeed,physical and mechanical properties of these new materials should be initially examined at the micro scale,which is the primary fundamental for construction at larger scale.This research examines quantitative influences of using the combination of cement and coal fly ash at different ratio on the internal structure and ability of strength enhancement of incineration residues when suffering from loading.Couple of industrial and micro-focus X-ray computed tomography (CT) scanners combined with an image analysis technique were utilized to characterize and visualize the behavior and internal structure of the incineration residues-cement-coal fly ash mixture under the series of unconfined compression test and curing period effect.Nine types of cement solidified incineration residues in term of different curing period (i.e.,7,14,28 days) and coal fly ash addition content (i.e.,0%,9%,18%) were scanned before and after unconfined compression tests.It was shown that incineration residues solidified by cement and coal fly ash showed an increase in compression strength and deformation modulus with curing time and coal fly ash content.Three-dimension computed tomography images observation and analysis confirmed that solidified incineration residues including incineration bottom and fly ash as well as cement and coal fly ash have the deliquescent materials.Then,it was studied that stabilized parts play a more important role than spatial void distribution in increment or reduction of compression strength.展开更多
Fidelity plays an important role in quantum information processing,which provides a basic scale for comparing two quantum states.At present,one of the most commonly used fidelities is Uhlmann-Jozsa(U-J)fidelity.Howeve...Fidelity plays an important role in quantum information processing,which provides a basic scale for comparing two quantum states.At present,one of the most commonly used fidelities is Uhlmann-Jozsa(U-J)fidelity.However,U-J fidelity needs to calculate the square root of the matrix,which is not trivial in the case of large or infinite density matrices.Moreover,U-J fidelity is a measure of overlap,which has limitations in some cases and cannot reflect the similarity between quantum states well.Therefore,a novel quantum fidelity measure called quantum Tanimoto coefficient(QTC)fidelity is proposed in this paper.Unlike other existing fidelities,QTC fidelity not only considers the overlap between quantum states,but also takes into account the separation between quantum states for the first time,which leads to a better performance of measure.Specifically,we discuss the properties of the proposed QTC fidelity.QTC fidelity is compared with some existing fidelities through specific examples,which reflects the effectiveness and advantages of QTC fidelity.In addition,based on the QTC fidelity,three discrimination coefficients d_(1)^(QTC),d_(2)^(QTC),and d_^(3)^(QTC)are defined to measure the difference between quantum states.It is proved that the discrimination coefficient d_(3)^(QTC)is a true metric.Finally,we apply the proposed QTC fidelity-based discrimination coefficients to measure the entanglement of quantum states to show their practicability.展开更多
The relationship between the wear behaviour of an ultra-high-molecular-weight polyethylene(GUR1050)pin and surface profile of a Co-28Cr-6Mo alloy(ASTM F-75)disc was investigated.Tribological tests have been performed ...The relationship between the wear behaviour of an ultra-high-molecular-weight polyethylene(GUR1050)pin and surface profile of a Co-28Cr-6Mo alloy(ASTM F-75)disc was investigated.Tribological tests have been performed by pin-on-disc wear testing machine with multi-directional pathways,obtaining the influence of micro slurry-jet erosion(MSE)processed Co–Cr–Mo alloy.The specific wear and the wear particles have been investigated.It was elucidated that the Co–Cr–Mo alloy surface processed by MSE influenced the specific wear rate of polyethylene;however,the morphological aspect of polyethylene wear particles was not drastically changed.The wear particles isolated from the lubricating liquid were added to a culture medium,and human monocyte-derived macrophages were incubated by using an upright/inverted method.The production of TNF-α and IL-6 seemed to have a correlation with the amount of wear particles added,however,the influence of particle size on the production of TNF-α and IL-6 was not obvious.This means that the improvements for the incubation method,i.e.upright/inverted method,need further investigation for the accurate analysis.展开更多
基金supported by the Qingdao Postdoctoral Science Foundation(No.862205040054)the International Research Fellowship from the Japan Society for the Promotion of Science(Postdoctoral Fellowships for Research in Japan(Standard))the National Natural Science Foundation of China(No.52078093).
文摘The mechanical properties of bedding rock in cold regions are frequently affected by freeze-thaw(F-T)cycles and ani-sotropy.Research on the mechanical characteristics of rock damage under the combined action of F-T and bedding angles is limited,and most traditional rock damage models cannot accurately capture these characteristics.We performed axial compression tests to ex-plore the strength characteristics of bedding slates at the bedding angles ofβ=0°,30°,45°,60°,and 90°under various F-T cycles.The experimental findings suggest that the elastic modulus and uniaxial compressive strength of the slate declined exponentially as the number of F-T cycles increased.Axial compressive strength was characterized by a U-shaped tendency with the bedding angle.This study proposes a damage model for the uniaxial compressive strength of transversely isotropic rock,which integrates the F-T effect,utilizing the enhanced anisotropic Hoek-Brown strength criterion and a statistical damage model.This model was validated using experimental data.This statistical damage model can precisely capture the dual attributes of rock mass strength reduction with F-T cy-cles and variations arising from the loading direction.
基金supported by JSPS KAKENHI Grant Number 22K03947.
文摘Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the entire PHP channel.A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer,and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera.The video images were then analyzed to obtain the flow patterns in the PHP.The heat transfer characteristics of the PHPwere discussed based on the flowpatterns and temperature distributions obtainedwith thermocouples.Before starting heating,because of high wettability,large liquid slugs positioned at the evaporator section of the PHP.After starting heating,since the occurrence of boiling divided the large liquid slugs,oscillatory flowof smaller liquid slugs and vapor plugs was found in the PHP.Clear circulation flow of liquid slugs and vapor plugs was observed when the power input to the PHP was larger than 12.0 W.The flow patterns and temperature distributions confirmed that the circulation flow enhanced the heat transfer from the evaporator section to the condenser section of the PHP.In the circulation flow mode,large growth and contraction of vapor plugs were found one after another in all even-numbered PHP channels.However,the analysis of flow patterns clarified that the phase-change heat transfer rate by large growth and contraction of vapor plugs was 19%of the total heat transfer rate of the PHP.Although the generation of large vapor plugs was found in the PHP,most of the heat was transferred by the sensible heat of the working fluid.
基金supported by JSPS KAKENHI Grant Number 22K03947.
文摘Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 mm and a height of 1.1 mm.The evaporator and condenser sections were 25 and 50 mm long,respectively,and the adiabatic section in between was 75mmlong.Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene,the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP.The PHP was charged with hydrofluoroether-7100.In the experiments,the evaporator section was heated,and the condenser section was cooled using high-temperature and low-temperature thermostatic baths,respectively.Flow patterns of the working fluid were obtained with temperature distributions of the PHP.A mathematical model was developed to analyze the flow patterns.Themerged liquid slugs were observed in every two channels,and their oscillation characteristics were found to be approximately the same in time and space.It was also found that the oscillations of the merged liquid slugs became slower,but the heat transfer rate of the PHP increased with a decrease in the filling ratio of the working fluid.This is because vapor condensation was enhanced in vapor plugs as the filling ratio decreased.However,the filling ratio had a lower limit,and the heat transfer rate was maximum when the filling ratio was 40.6%in the present experimental range.
文摘Thermal and fluid-flow characteristics were numerically analyzed for ultra-thin heat pipes.Many studies have been conducted for ultra-thin heat pipes with a centered wick structure,but this study focused on separated wick structures to increase the evaporation/condensation surface areas within the heat pipe and to reduce the concentration of heat flux within the wick structure.A mathematical heat-pipe model was made in the threedimensional coordinate system,and the model consisted of three regions:a vapor channel,liquid-wick,and container wall regions.The conservation equations for mass,momentum,and energy were solved numerically with boundary conditions by using a code developed by one of the authors.The numerical results with the separated wick structures were compared with those with the centered,which confirmed the effectiveness of the separation of the wick structure.However,the effectiveness of the separation was affected by the position of the separated wick structure.A simple equation was presented to determine the optimum position of the separated wick structures.Numerical analyses were also conducted when the width of the heat pipe was increased with the cooled section,which clarified that the increase in the cooled-section width with the addition of wick structures wasmore effective than the increase in the cooled-section length.A 44%reduction in the total temperature difference of the heat pipe was obtained under the present numerical conditions.Furthermore,a comparison wasmade between experimental results and numerical results.
基金supported by the National Natural Science Foundation of China (No. 62473067)Chongqing Talents: Exceptional Young Talents Project, China (No. cstc2022ycjh-bgzxm0070)Chongqing Overseas Scholars Innovation Program, China (No. cx2022024)
文摘Complex evidence theory is a generalized Dempster-Shafer evidence theory,which has the ability to express uncertain information.One of the key issues is the uncertainty measure of Complex Basic Belief Assignment(CBBA).However,the research on the uncertainty measure of complex evidence theory is still an open issue.Therefore,in this paper,first,the Fractal-based Complex Belief(FCB)entropy as a generalization of Fractal-based Belief(FB)entropy,which has superiority in uncertainty measurement of CBBA,is proposed.Second,on the basis of FCB entropy,we propose Fractal-based Supremum Complex Belief(FSCB)entropy and Fractal-based Infimum Complex Belief(FICB)entropy,with FSCB entropy as the upper bound and FICB entropy as the lower bound.They are collectively called the proposed FCB entropy.Furthermore,we analyze the properties,physical interpretation and numerical examples to prove the rationality of the proposed method.Finally,a practical information fusion application is proposed to prove that the proposed FCB entropy can reasonably measure the uncertainty of CBBA.The results show that,the proposed FCB entropy can handle the uncertainty measure of CBBA,which can be a reasonable way for uncertainty measure in complex evidence theory.
基金supported by the Young Scientist Project of National Key Research and Development Program of China(2021YFC2900600)the National Natural Science Foundation of China(52074166)Shandong Province(ZR2021YQ38).
文摘This study aims to investigate the benefcial efects of surface retaining elements (SREs) on the mechanical behaviors of bolted rock and roadway stability. 3D printing (3DP) technology is utilized to create rock analogue prismatic specimens for conducting this investigation. Uniaxial compression tests with acoustic emission (AE) and digital image correlation techniques have been conducted on 3DP specimens bolted with diferent SREs. The results demonstrate that the strength and modulus of elasticity of the bolted specimens show a positive correlation with the area of the SRE;the AE characteristics of the bolted specimens are higher than those of the unbolted specimen, but they decrease with an increase in SRE area, thus further improving the integrity of the bolted specimens. The reinforcement efect of SREs on the surrounding rock of roadways is further analyzed using numerical modelling and feld test. The results provide a better understanding of the role of SREs in rock bolting and the optimization of rock bolting design. Furthermore, they verify the feasibility of 3DP for rock analogues in rock mechanics tests.
文摘Induced seismicity is strongly related to various engineering projects that cause anthropogenic in-situ stress change at a great depth.Hence,there is a need to estimate and mitigate the associated risks.In the past,various simulation methods have been developed and applied to induced seismicity analysis,but there is still a fundamental diference between simulation results and feld observations in terms of the spatial distribution of seismic events and its frequency.The present study aims to develop a method to simulate spatially distributed on-fault seismicity whilst reproducing a complex stress state in the fault zone.Hence,an equivalent continuum model is constructed,based on a discrete fracture network within a fault damage zone,by employing the crack tensor theory.A fault core is simulated at the center of the model as a discontinuous plane.Using the model,a heterogeneous stress state with stress anomalies in the fault zone is frst simulated by applying tractions on the model outer boundaries.Subsequently,the efective normal stress on the fault plane is decreased in a stepwise manner to induce slip.The simulation result is validated in terms of the b-value and other seismic source parameters,hence demonstrating that the model can reproduce spatially and temporally distributed on-fault seismicity.Further analysis on the parameters shows the variation of frequency-magnitude distribution before the occurrence of large seismic events.This variation is found to be consistent with feld observations,thus suggesting the potential use of this simulation method in evaluating the risk for seismic hazards in various engineering projects.
文摘miRNAs play an important regulatory role in variety of cellular functions and several diseases, including cancer. MicroRNA-21 (miR-21) is overexpressed in almost all types of human cancers. Studies revealed that the knockdown of miR-21 results in reduced tumor cell growth, cell cycle arrest and cell apoptosis. In this study, we evaluated the effect of doxorubicin on miR-21 expression in mcf-7 breast cancer cells. miRNA was extracted from mcf-7 cells treated with doxorubicin and untreated cells using miRNeasy Kit (Qiagen) according to the manufacturer’s instructions. cDNA synthesis was performed using miScript II RT Kit (Qiagen) and Real Time-PCR was performed using Real Q Plus 2x Master Mix Green-(Ampliqon, Denmark). The relative expression of miR-16 and miR-21 was calculated using comparative Ct method. All tests were run in triplicate to minimize the experimental errors. Samples with a Ct > 37 were excluded from the analysis. Statistically, a significant decrease in cell proliferation of mcf-7 cells was found in doxorubicin group compared with control groups 24 hours after transfection, dose dependently (p value< 0.001). After 24 hours, Doxorubicin (100 μm) significantly decreased miR-21 expression in mcf-7 cells (p = 0.0001). Also, the expression of caspase 9 significantly increased after Doxorubicin (100 μm) treatment (p = 0.0003). Together, these findings indicate that miR-21 plays a key role in regulating cell apoptosis in mcf-7 cells and may serve as a target for effective therapies.
文摘Background:Rubiadin is a type of anthraquinone compound that can be found in Rubiaceae plants,such as Ronas.Nonetheless,only limited research has been done to explore the potential anticancer properties of rubiadin on liver cancer cells.Thus,the objective of the present study is to examine how rubiadin affects the viability of liver cancer cells as well as normal cells.Methods:HepG2 and AGO cell lines were assigned into controls(not exposed to rubiadin)and groups with exposure to rubiadin with 12.5,6.25,3.125,1.56,0.78,and 0.39μg/mL concentrations.3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide and reverse transcription-polymerase chain reaction were used to measure cell viability,and one-way analysis of variance was used for data analysis.Results:The viability of liver cancer cells was significantly reduced when exposed to 12.5,6.25,3.125,and 1.56μg/mL concentrations(P<0.01).An IC50 of 44.73μg/mL was reported.Furthermore,the BAX gene’s relative expression(P<0.05)was significantly increased and the BCL2 gene expression(P<0.05)was significantly reduced.The average ratio of BAX gene expression to BCL2 increased significantly(P<0.01).Conclusion:This research showed that rubiadin decreases cell viability by increasing the ratio of BAX gene expression to BCL2.In addition rubiadin has no cytotoxic effect on normal cells.
文摘Centered or striped wick structures have been used to develop ultrathin heat pipes.Differing from traditional heat pipes,the centered or striped wick structures leave noncontact container surfaces with the wick structure.In this study,experiments andnumerical analyseswere conductedtoinvestigate the influenceof thesenoncontact surfaces.In the experiments,a strip-shaped wick structure was placed vertically,the top was sandwiched between wider rods and the bottom was immersed in a working fluid.The rod width was greater than the wick width;thus,noncontact surfaces were left between the rod and the wick structure.The heat was applied from the rod to the wick structure,and the evaporation heat transfer characteristics of the working fluid from the wick structure were evaluated.Water was used as the working fluid.The experiments were conducted by varying the rod and wick widths.The experimental results were obtained when the wick structures were placed separately.In the numerical analyses,the temperature and heat flux distributions in the rod were obtained.From the experimental and numerical results,it was confirmed that the noncontact surfaces caused the heat flux in the rod near both surfaces of the wick structure to concentrate,which increased the evaporation thermal resistance of the wick structure.A reduction in the noncontact surface area by increasing the wick width was found to be effective in decreasing the evaporation thermal resistance and increasing themaximumheat transfer rate of the wick structure.The separation of the wick structure increased the evaporation surface area.However,its effectiveness was limited when the heat transfer rate was small.
基金supported by the Young Scientist Project of National Key Research and Development Program of China(2021YFC2900600)National Natural Science Foundation of China(52074166)Shandong Province(ZR2021YQ38).
文摘Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship between crack geometric parameters and rock mechanics properties in cracked rock is greatly important to the design of engineering rock mass struc‑tures. In this study, computed tomography (CT) scanning was used to extract the internal crack network of coal specimens. Based on the crack size and dominant crack number, the parameters of crack area, volume, length, width, and angle were statistically analyzed by diferent sampling thresholds. In addition, the Pearson correlation coefcients between the crack parameters and uniaxial compression rock mechanics properties (uniaxial compressive strength UCS, elasticity modulus E) were calculated to quantitatively analyze the impact of each parameter. Furthermore, a method based on Pearson coefcients was used to grade the correlation between crack geometric parameters and rock mechanical properties to determine threshold values. The results indicated that the UCS and E of the specimens changed with the varied internal crack structures of the specimens, the crack parameters of area, volume, length and width all showed negative correlations with UCS and E, and the dominant crack played an important role both in weakening strength and stifness. The crack parameters of the angle are all positively correlated with the UCS and E. More crack statistics can signifcantly improve the correlation between the parameters of the crack angle and the rock mechanics properties, and the statistics of the geometric parameters of at least 16 cracks or the area larger than 5 mm2 are suggested for the analysis of complex cracked rock masses or physical reproduction using 3D printing. The results are validated and further analyzed with triaxial tests. The fndings of this study have important reference value for future research regarding the accurate and efcient selection of a few cracks with a signifcant infuence on the rock mechanical properties of surrounding rock mass structures in coal engineering.
文摘An ultra-thin flattened heat pipe has been developed with a centered wick structure.This structure is essential to make the heat pipe thinner.However,the centered wick structure reduces the evaporation and condensation surface areas of the wick structure because it is sandwiched between heat pipe walls.In this study,because detailed discussion has not been made,heat transfer experiments were conducted for the wick structure sandwiched between two solid walls.This study focused on the evaporation heat transfer characteristics from the sandwiched wick structure.The experiments were conducted with three wick structures,that is,strip-shaped sintered copper powders with thicknesses of 0.5,1.0,and 1.5 mm.Water was used as working fluid.The capillary pumping performance,that is,the liquid lifting velocities of the three wick structures were the same.The experimental results of the three wick structures were compared regarding the relation between the evaporation heat transfer rate and the superheat of the working fluid.The heat transfer experiments were also conducted when one of the solid walls was removed from the wick structure.It was confirmed that even if the wick structure was sandwiched between the solid walls,sufficient evaporation of the working fluid occurred from the thin sides of the wick structure.
文摘Objectives:Although many studies have suggested the anticancer properties of Galium verum,there is still no accurate information regarding its side effects on normal cells.Accordingly,this study aimed to investigate the dual effects of the whole Galium verummethanolic extract on the normal human fibroblast cell line(AGO)cell line at different concentrations.Methods:The cell line was randomly divided into a control group and groups exposed to concentrations of 12.5 to 400μg/mL.Extraction was performed by the maceration method.In addition,the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide(MTT)method was applied to measure cytotoxicity and flow cytometry.Further,BCL2 associated X(BAX)andB-cell lymphoma 2(BCL2)genes were expressed by the real-time polymerase chain reaction to evaluate apoptosis and reactive oxygen species(ROS).Finally,data were compared between groups using a one-way analysis of variance.Results:A significant reduction was observed in the cell viability of 90%at a concentration of 400μg/mL compared to the control.In comparison,a significant increase was reported in cell viability at concentrations of 25-200μg/mL(P<0.0001).Furthermore,there was a significant 2.87-time increase in apoptosis compared to the control group(P<0.0001),but no significant differences were reported in cellular phases.ROS increased significantly by 5.7 times(P<0.05),and a significant 80-fold increase was found in the BAX/BCL2gene ratio(P<0.05).Conclusion:The whole methanolic extract could lower the viability of human fibroblasts at 400μg/mL and more by increasing apoptosis,thereby increasing BAX/BCL2gene expression and ROS production.However,the extract exerted an increased effect on cell viability in a concentration-dependent manner on AGO and increased cell growth at concentrations less than 400μg/mL,highlighting different effects of the whole extract on the AGO cell line.
文摘By placing a sample between a heated and a cooled rod, a thermal conductivity of the sample can be evaluated easily with the assumption of a one-dimensional heat flow. However, a three-dimensional constriction/spreading heat flow may occur inside the rods when the sample is a composite having different thermal conductivities. In order to investigate the thermal resistance due to the constriction/spreading heat flow, the three-dimensional numerical analyses were conducted on the heat transfer characteristics of the rods. In the present analyses, a polymer-based composite board having thermal vias was sandwiched between the rods. From the numerical results, it was confirmed that the constriction/spreading resistance of the rods was strongly affected by the thermal conductivity of the rods as well as the number and size of the thermal vias. A simple equation was also proposed to evaluate the constriction/spreading resistance of the rods. Fairly good agreements were obtained between the numerical results and the calculated ones by the simple equation. Moreover, the discussion was also made on an effective thermal conductivity of the composite board evaluated with the heated and the cooled rod.
文摘According to the extent of fungal infections, to be chronic these such diseases and recently the emerging issue of increased antibiotic resistance in fungal infections, most of scientists are going to find a proper way to replace antibacterial agent by significant semiconductor ZnO nanoparticles (NPs). They are well known to be one of the most important and special metal oxide nanoparticles in pharmaceutical against the most common fungi. ZnO nanoparticles were synthesized using sol-gel, hydrothermal and functionalized surface methods and formulated in water solutions as nanofluids. XRD, FTIR and SEM techniques and UV-Vis absorbance spectroscopy characterized their ZnO modified nanostructures. Also antimycotic potential according to generally tests such as: (MIC) minimum inhibitory concentration, (MFC) minimum fungicidal concentration and normally well diffusion method with standard strains fungi were performed. Among five common fungi strains using in this research, new various ZnO nanofluids showed noticeable results for dermatophyte fungi like Trichophyton mentagrophytes, Microsporum gypseum, Microsporum canis, Candida albicans and Candid tropicalis which had un growth zones in order 70, 40, 35, 30 and 30 mm in comparing with Clotrimazole reference reagent: 30, 25, 25, 18 and 20 mm by well method. The performance of MIC for ZnO nanofluids on fungi was determined to be equal to 0.35, 3.12, 6.25, 6.25 and 6.25 μgr/ml and MFC of nanoproducts showed the 1.5, 12.5, 25, 25 and 25 μgr/ml. Therefore, the designed ZnO nanofluids could reveal the most effect on fungi which cause dermal (ringworm), mucosal (thrush) and vaginal infections, so we are able to apply these surface high energetic ZnO water-based nanofluid formulations as in vitro nanomedicine and nanohygiene for the first time.
文摘A significant volume of Municipal Solid Waste incineration bottom ash and fly ash (i.e.,incineration residues) are commonly disposed as landfill.Meanwhile,reclamation of landfill sites to create a new land space after their closure becomes an important goal in the current fewer and fewer land availability scenario in many narrow countries.The objective of this study is to reclaim incineration residue materials in the landfill site by using cement and coal fly ash as stabilizers aiming at performing quality check as new developed materials before future construction.Indeed,physical and mechanical properties of these new materials should be initially examined at the micro scale,which is the primary fundamental for construction at larger scale.This research examines quantitative influences of using the combination of cement and coal fly ash at different ratio on the internal structure and ability of strength enhancement of incineration residues when suffering from loading.Couple of industrial and micro-focus X-ray computed tomography (CT) scanners combined with an image analysis technique were utilized to characterize and visualize the behavior and internal structure of the incineration residues-cement-coal fly ash mixture under the series of unconfined compression test and curing period effect.Nine types of cement solidified incineration residues in term of different curing period (i.e.,7,14,28 days) and coal fly ash addition content (i.e.,0%,9%,18%) were scanned before and after unconfined compression tests.It was shown that incineration residues solidified by cement and coal fly ash showed an increase in compression strength and deformation modulus with curing time and coal fly ash content.Three-dimension computed tomography images observation and analysis confirmed that solidified incineration residues including incineration bottom and fly ash as well as cement and coal fly ash have the deliquescent materials.Then,it was studied that stabilized parts play a more important role than spatial void distribution in increment or reduction of compression strength.
基金supported by the National Natural Science Foundation of China(62003280,61976120)Chongqing Talents:Exceptional Young Talents Project(cstc2022ycjh-bgzxm0070)+2 种基金Natural Science Foundation of Chongqing(2022NSCQ-MSX2993)Natural Science Key Foundation of Jiangsu Education Department(21KJA510004)Chongqing Overseas Scholars Innovation Program(cx2022024)。
文摘Fidelity plays an important role in quantum information processing,which provides a basic scale for comparing two quantum states.At present,one of the most commonly used fidelities is Uhlmann-Jozsa(U-J)fidelity.However,U-J fidelity needs to calculate the square root of the matrix,which is not trivial in the case of large or infinite density matrices.Moreover,U-J fidelity is a measure of overlap,which has limitations in some cases and cannot reflect the similarity between quantum states well.Therefore,a novel quantum fidelity measure called quantum Tanimoto coefficient(QTC)fidelity is proposed in this paper.Unlike other existing fidelities,QTC fidelity not only considers the overlap between quantum states,but also takes into account the separation between quantum states for the first time,which leads to a better performance of measure.Specifically,we discuss the properties of the proposed QTC fidelity.QTC fidelity is compared with some existing fidelities through specific examples,which reflects the effectiveness and advantages of QTC fidelity.In addition,based on the QTC fidelity,three discrimination coefficients d_(1)^(QTC),d_(2)^(QTC),and d_^(3)^(QTC)are defined to measure the difference between quantum states.It is proved that the discrimination coefficient d_(3)^(QTC)is a true metric.Finally,we apply the proposed QTC fidelity-based discrimination coefficients to measure the entanglement of quantum states to show their practicability.
文摘The relationship between the wear behaviour of an ultra-high-molecular-weight polyethylene(GUR1050)pin and surface profile of a Co-28Cr-6Mo alloy(ASTM F-75)disc was investigated.Tribological tests have been performed by pin-on-disc wear testing machine with multi-directional pathways,obtaining the influence of micro slurry-jet erosion(MSE)processed Co–Cr–Mo alloy.The specific wear and the wear particles have been investigated.It was elucidated that the Co–Cr–Mo alloy surface processed by MSE influenced the specific wear rate of polyethylene;however,the morphological aspect of polyethylene wear particles was not drastically changed.The wear particles isolated from the lubricating liquid were added to a culture medium,and human monocyte-derived macrophages were incubated by using an upright/inverted method.The production of TNF-α and IL-6 seemed to have a correlation with the amount of wear particles added,however,the influence of particle size on the production of TNF-α and IL-6 was not obvious.This means that the improvements for the incubation method,i.e.upright/inverted method,need further investigation for the accurate analysis.