To realize dynamic statistical publishing and protection of location-based data privacy,this paper proposes a differential privacy publishing algorithm based on adaptive sampling and grid clustering and adjustment.The...To realize dynamic statistical publishing and protection of location-based data privacy,this paper proposes a differential privacy publishing algorithm based on adaptive sampling and grid clustering and adjustment.The PID control strategy is combined with the difference in data variation to realize the dynamic adjustment of the data publishing intervals.The spatial-temporal correlations of the adjacent snapshots are utilized to design the grid clustering and adjustment algorithm,which facilitates saving the execution time of the publishing process.The budget distribution and budget absorption strategies are improved to form the sliding window-based differential privacy statistical publishing algorithm,which realizes continuous statistical publishing and privacy protection and improves the accuracy of published data.Experiments and analysis on large datasets of actual locations show that the privacy protection algorithm proposed in this paper is superior to other existing algorithms in terms of the accuracy of adaptive sampling time,the availability of published data,and the execution efficiency of data publishing methods.展开更多
This paper presents a method for obtaining the displacement of sand particles in a sand–bentonite mixture(SBM)when saturated with water,based on particle tracking velocimetry(PTV).The raw photographs were first conve...This paper presents a method for obtaining the displacement of sand particles in a sand–bentonite mixture(SBM)when saturated with water,based on particle tracking velocimetry(PTV).The raw photographs were first converted into binary images.The sand particles were then detected,and the displacement of the sand particles was obtained by comparing their positions in adjacent images.The swelling strain induced by saturation was also obtained using the proposed PTV method.This method was validated by comparing the result with those obtained using a displacement transducer.Subsequently,a comparative analysis of sand particle displacements was conducted for specimens with varying bentonite content(BC),initial thickness,and water infiltration directions.The experimental results obtained were as follows:(1)For specimens with different BCs,local swelling displacement of sand particles at the top part of the specimen increased with higher BCs;(2)For specimens with various heights(hsp),larger local swelling displacement was generated at lower hsp at the initial state;(3)Local swelling characteristics differed in different water infiltration directions.Top-side infiltration showed a significant downward movement of particles during the first several hours of swelling.An estimation method for the dry density distribution of the specimen was proposed based on PTV data and then verified by slicing dry density and water content measurement results.展开更多
The capacity to predict X-ray transition and K-edge energies in dense finite-temperatur plasmas with high precision is of primary importance for atomic physics of matter under extreme conditions.The dual characteristi...The capacity to predict X-ray transition and K-edge energies in dense finite-temperatur plasmas with high precision is of primary importance for atomic physics of matter under extreme conditions.The dual characteristics of bound and continuum states in dense matter are modeled by a valence-band-like structure in a generalized ion-sphere approach with states that are either bound,free,or mixed.The self-consistent combination of this model with the Dirac wave equations of multielectron bound states allows one to fully respect the Pauli principle and to take into account the exact nonlocal exchange terms.The generalized method allows very high precision without implication of calibration shifts and scaling parameters and therefore has predictive power.This leads to new insights in the analysis of various data.The simple ionization model representing the K-edge is generalized to excitation–ionization phenomena resulting in an advanced interpretation of ionization depression data in near-solid-density plasmas.The model predicts scaling relations along the isoelectronic sequences and the existence of bound M-states that are in excellent agreement with experimental data,whereas other methods have failed.The application to unexplained data from compound materials also gives good agreement without the need to invoke any additional assumptions in the generalized model,whereas other methods have lacked consistency.展开更多
Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-...Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-inflammatory,and immunomodulatory activities.However,its active constituents and mechanisms of action against diabetic foot remain to be elucidated.Methods:In this study,the chemical constituents of Sanhuang Oil were identified using UPLC-QE-Orbitrap-MS.Subsequently,the mechanism by which Sanhuang Oil promotes diabetic foot ulcer healing was predicted by integrating network pharmacology and molecular docking.Additionally,diabetic mouse model was established in ICR mice using a combination of a high-fat diet(HFD)and streptozotocin(STZ)chemical induction.A full-thickness skin defect was created on the dorsum of the mice.Wound healing and the healing rate were observed following Sanhuang Oil intervention.The mechanism underlying Sanhuang Oil’s promotion of diabetic ulcer healing was further investigated using transcriptomics and histopathological examination(H&E staining).Results:A total of 97 active ingredients were identified from Sanhuang Oil.Network pharmacology analysis predicted 543 common targets,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis identified 203 relevant pathways.Molecular docking further confirmed high binding affinity(binding energy≤−5.0 kcal/mol)between specific active components in Sanhuang Oil(e.g.,coptisine,phellodendrine,baicalein)and key targets associated with diabetic foot ulcers(e.g.,EGFR,AKT1,STAT3).In vivo experimental results demonstrated that the wound healing rate was significantly higher in Sanhuang Oil-treated groups compared to the model group(P<0.001).HE staining revealed that the high-dose Sanhuang Oil group exhibited more pronounced epithelial tissue coverage over the wound,reduced inflammatory cell infiltration,and increased collagen deposition and fibroblast proliferation.transcriptomic analysis identified Pdk4,Ttn,Csrp3,Actn2,Myoz2,Tnnc2,Myod1,Myog,Myot,and Myf6 as key regulatory proteins involved in promoting wound healing.Conclusion:Sanhuang Oil promotes wound healing in diabetic ulcer mice,potentially by mitigating inflammation and regulating key targets such as Pdk4 to enhance fibroblast function.These findings provide novel insights into the multi-target,multi-pathway mechanism of Sanhuang Oil for treating diabetic foot ulcers.展开更多
In this study,we investigated improving the performance of a layered double hydroxide(LDH)for the adsorption of As(III)and As(V)by controlling the morphology of LDH crystals.The LDH was synthesized via a simple coprec...In this study,we investigated improving the performance of a layered double hydroxide(LDH)for the adsorption of As(III)and As(V)by controlling the morphology of LDH crystals.The LDH was synthesized via a simple coprecipitation method using barely soluble MgO as a precursor and succinic acid(SA)as a morphological control agent.Doping the LDH crystals with carboxylate ions(RCOO−)derived from SA caused the crystals to develop in a radial direction.This changed the pore characteristics and increased the density of active surface sites.Subsequently,SA/MgFe-LDH showed excellent affinity for As(III)and As(V)with maximum sorption densities of 2.42 and 1.60 mmol/g,respectively.By comparison,the pristine MgFe-LDH had sorption capacities of 1.56 and 1.31 mmol/g for As(III)and As(V),respectively.The LDH was effective over a wide pH range for As(III)adsorption(pH 3-8.5)and As(V)adsorption(pH 3-6.5).Using a combination of spectroscopy and sorption modeling calculations,the main sorption mechanism of As(III)and As(V)on SA/MgFe-LDH was identified as inner-sphere complexation via ligand exchangewith hydroxyl group(-OH)and RCOO−.Specifically,bidentate As-Fe complexeswere proposed for both As(III)and As(V)uptake,with the magnitude of formation varying with the initial As concentration.Importantly,the As-laden adsorbent had satisfactory stability in simulated real landfill leachate.These findings demonstrate that SA/MgFe-LDH exhibits considerable potential for remediation of As-contaminated water.展开更多
This work aims to compare the chemical composition and anti-inflammatory effects on RAW264.7 macrophages of Keemun black tea stems and leaves.A total of 50 volatile compounds were identified in tea stems and leaves,an...This work aims to compare the chemical composition and anti-inflammatory effects on RAW264.7 macrophages of Keemun black tea stems and leaves.A total of 50 volatile compounds were identified in tea stems and leaves,and aldehydes,alcohols,and esters were the main volatile compound categories.There were 11 key volatile compounds,including geraniol,benzeneacetaldehyde,methyl salicylate,linalool,etc.contributed to distinguishing the tea stems from the tea leaves.In the quantitative and liquid chromatography-mass spectrometry(LC-MS)-based metabolomics analysis,higher contents of amino acids,monosaccharides,and quinic acids were found in stems than those in leaves.Inversely,higher contents of tea pigments,flavan-3-ols,gallic acid,purine alkaloids,and flavonol glycosides were present in tea leaves than in stems.LC-MS-based metabolomics also revealed that organic acids were the most critical non-volatile compounds responsible for the differences between tea stems and leaves.Furthermore,tea stems had better inhibiting effects of pro-inflammatory cytokines(interleukin(IL)-1βand IL-6)in lipopolysaccharide-challenged RAW264.7 macrophages than tea leaves,while no significant differences exist between leaves and stems for inhibiting the secretion of tumor necrosis factorα(TNF-α)and NO.In conclusion,our results support using Keemun black tea stems as a novel source of anti-inflammatory compounds.展开更多
Musculoskeletal Symptoms(MSS)often arise from prolonged maintenance of bent postures in the neck and trunk during surgical procedures.To prevent MSS,a passive exoskeleton utilizing carbon fiber beams to offer support ...Musculoskeletal Symptoms(MSS)often arise from prolonged maintenance of bent postures in the neck and trunk during surgical procedures.To prevent MSS,a passive exoskeleton utilizing carbon fiber beams to offer support to the neck and trunk was proposed.The application of support force is intended to reduce muscle forces and joint compression forces.A nonlinear mathematical model for the neck and trunk support beam is presented to estimate the support force.A validation test is subsequently conducted to assess the accuracy of the mathematical model.Finally,a preliminary functional evaluation test is performed to evaluate movement capabilities and support provided by the exoskeleton.The mathematical model demonstrates an accuracy for beam support force within a range of 0.8–1.2 N Root Mean Square Error(RMSE).The exoskeleton was shown to allow sufficient Range of Motion(ROM)for neck and trunk during open surgery training.While the exoskeleton showed potential in reducing musculoskeletal load and task difficulty during simulated surgery tasks,the observed reduction in perceived task difficulty was deemed non-significant.This prompts the recommendation for further optimization in personalized adjustments of beams to facilitate improvements in task difficulty and enhance comfort.展开更多
Polymers of intrinsic microporosity(PIMs)have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades,owing to their highly permeable porous struct...Polymers of intrinsic microporosity(PIMs)have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades,owing to their highly permeable porous structures.However,challenges regarding its relatively low selectivity,physical aging,and plasticisation impede relevant industrial adoptions for gas separation.To address these issues,several strategies including chain modification,post-modification,blending with other polymers,and the addition of fillers,have been developed and explored.PIM-1 is the most investigated PIMs,and hence here we review the stateof-the-arts of the modification strategies of PIM-1 critically and discuss the progress achieved for addressing the aforementioned challenges via meta-analysis.Additionally,the development of PIM-1-based thin film composite membranes is commented as well,shedding light on their potential in industrial gas separation.We hope that the review can be a timely snapshot of the relevant state-of-the-arts of PIMs guiding future design and optimisation of PIMs-based membranes for enhanced performance towards a higher technology readiness level for practical applications.展开更多
There are limited biosecurity measures directed at preventing airborne transmission of viruses in swine.The effectiveness of dust mitigation strategies such as oil sprinkling,to decrease risk of airborne virus transmi...There are limited biosecurity measures directed at preventing airborne transmission of viruses in swine.The effectiveness of dust mitigation strategies such as oil sprinkling,to decrease risk of airborne virus transmission are unknown.Metagenomics and qPCR for common fecal viruses were used to hunt for a ubiquitous virus to serve as a proxy when evaluating the efficiency of mitigation strategies against airborne viral infectious agents.Air particles were collected from swine buildings using high-volume air samplers.Extracted DNA and RNA were used to perform specific RT-qPCR and qPCR and analyzed by highthroughput sequencing.Porcine astroviruses group 2 were common(from 102 to 105 genomic copies per cubic meter of air or gc/m^(3),93%positivity)while no norovirus genogroup II was recovered from air samples.Porcine torque teno sus virus were detected by qPCR in low concentrations(from 101 to 102 gc/m^(3),47%positivity).Among the identified viral families by metagenomics analysis,Herelleviridae,Microviridae,Myoviridae,Podoviridae,and Siphoviridae were dominant.The phage vB_AviM_AVP of Aerococcus was present in all air samples and a newly designed qPCR revealed between 101 and 105 gc/m^(3) among the samples taken for the present study(97%positivity)and banked samples from5-and 15-year old studies(89%positivity).According to the present study,both the porcine astrovirus group 2 and the phage vB_AviM_AVP of Aerococcus could be proxy for airborne viruses of swine buildings.展开更多
Achieving a superior strength-ductility combination for fcc single-phase high entropy alloys(HEAs)is challenging.The present work investigates the in-situ synthesis of Fe_(49.5)Mn_(30)Co_(10)Cr_(10)C_(0.5)interstitial...Achieving a superior strength-ductility combination for fcc single-phase high entropy alloys(HEAs)is challenging.The present work investigates the in-situ synthesis of Fe_(49.5)Mn_(30)Co_(10)Cr_(10)C_(0.5)interstitial solute-strengthened HEA containing 0.5 wt.%Nb(hereafter referred to as iHEA-Nb)using laser melt-ing deposition(LMD),aiming at simultaneously activating multiple strengthening mechanisms.The effect of Nb addition on the microstructure evolution,mechanical properties,strengthening and deformation mechanisms of the as-deposited iHEA-Nb samples was comprehensively evaluated.Multiple levels of het-erogeneity were observed in the LMD-deposited microstructure,including different grain sizes,cellular subgrain structures,various carbide precipitates,as well as elemental segregation.The incorporation of Nb atoms with a large radius leads to lattice distortion,reduces the average grain size,and increases the types and fractions of carbides,aiding in promoting solid solution strengthening,grain boundary strengthening,and precipitation strengthening.Tensile test results show that the Nb addition significantly increases the yield strength and ultimate tensile strength of the iHEA to 1140 and 1450 MPa,respectively,while maintaining the elongation over 30%.Deformation twins were generated in the tensile deformed samples,contributing to the occurrence of twinning-induced plasticity.This outstanding combination of strength and ductility exceeds that for most additively manufactured HEAs reported to date,demon-strating that the present in situ alloying strategy could provide significant advantages for developing and tailoring microstructures and balancing the mechanical properties of HEAs while avoiding conventional complex thermomechanical treatments.In addition,single-crystal micropillar compression tests revealed that although the twining activity is reduced by the Nb addition to the iHEA,the micromechanical prop-erties of grains with different orientations were significantly enhanced.展开更多
With the development of the economy and the increasing demand for environmental protection,the efficient and selective recovery of Gd(Ⅲ)from actual wastewater is of critical importance.In this work,lanthanum-based me...With the development of the economy and the increasing demand for environmental protection,the efficient and selective recovery of Gd(Ⅲ)from actual wastewater is of critical importance.In this work,lanthanum-based metal-organic framework(LaBDC)materials were prepared by a hydrothermal method,and then polyethyleneimine(PEI)and LaBDC were combined by an impregnation method to form a novel LaBDC@xPEI composite.The prepared materials were characterized using Fourier transfo rm infrared spectroscopy(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDX),B runauer-Emmett-Teller(BET),thermogravimetric analysis(TGA)and X-ray photoelectron spectroscopy(XPS).Experiments show that LaBDC@50%PEI has the highest adsorption capacity(181.77 mg/g)among lanthanum-based MOFs with different PEI loadings at pH=5.5,which is about 5.1 times that of bare LaBDC.The adsorption isotherm analysis shows that LaBDC@50%PEI follows the Langmuir model.In addition,the adsorption kinetics of LaBDC@50%PEI follows a pseudo-second-order kinetic model,indicating that the adsorption process is chemical adsorption.It is worth noting that LaBDC@50%PEI maintains good adsorption performance and stability after three recycling tests,and exhibits excellent selectivity in cation interference experiments.Overall,the LaBDC@50%PEI composites possess good stability and hold great promises in rapid recovery of Gd(Ⅲ)from practical aqueous environments.展开更多
Polymers are indispensable to humans in different applications due to their ease of manufacturing and overall performance.However,after a material lifetime,there is a large amount of polymer-based waste,which greatly ...Polymers are indispensable to humans in different applications due to their ease of manufacturing and overall performance.However,after a material lifetime,there is a large amount of polymer-based waste,which greatly contributes to the loss of valuable resources and environmental pollution.Thermoplastics may be readily recycled,but because of their flammability,large amounts of flame retardant(FR)ad-ditives are required for many applications.This results in a significant volume of FR polymeric wastes too,particularly halogenated plastics,which are subject to severe recycling regulations.In general,ther-moplastics containing FRs are raising concerns,as their effective recycling is strongly influenced by the chemical composition,additive content,and physicochemical characteristics of the waste stream.The recycling of FR thermosets is even more challenging due to their crosslinked and cured nature,which makes them resistant to melting and reprocessing.In many cases,traditional mechanical recycling meth-ods,such as grinding and melting,are not applicable to thermosetting polymers.Current recycling meth-ods do not always consider the recovery of the thermosetting/thermoplastic matrix and the presence of toxic FRs in the polymer network.Sorting and solvent washing treatment are important steps,which are usually performed before recycling the FR polymeric waste to reduce contamination in the following steps.展开更多
MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite i...MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.展开更多
In order to achieve ultra-low emissions of SO_(2)and NO_(x),the oxygen blast furnace with sintering flue gas injection is presented as a promising novel process.The CO_(2)emission was examined,and a cost analysis of t...In order to achieve ultra-low emissions of SO_(2)and NO_(x),the oxygen blast furnace with sintering flue gas injection is presented as a promising novel process.The CO_(2)emission was examined,and a cost analysis of the process was conducted.The results show that in the cases when the top gas is not circulated(Cases 1–3),and the volume of injected sintering flue gas per ton of hot metal is below about 1250 m^(3),the total CO_(2)emissions decrease first and then increase as the oxygen content of the blast increases.When the volume of injected sintering flue gas per ton of hot metal exceeds approximately 1250 m^(3),the total CO_(2)emissions gradually decrease.When the recirculating top gas and the vacuum pressure swing adsorption are considered,the benefits of recovered gas can make the ironmaking cost close to or even lower than that of the ordinary blast furnace.Furthermore,the implementation of this approach leads to a substantial reduction in total CO_(2)emissions,with reductions of 69.13%(Case 4),70.60%(Case 5),and 71.07%(Case 6),respectively.By integrating previous research and current findings,the reasonable oxygen blast furnace with sintering flue gas injection can not only realize desulfurization and denitrification,but also achieve the goal of reducing CO_(2)emissions and ironmaking cost.展开更多
Hollow ion X-ray emission is of great interest in high-energy-density research,since negligible opacity allows studies from the interior of very dense objects.In this paper,ionization potential depressions of the isoe...Hollow ion X-ray emission is of great interest in high-energy-density research,since negligible opacity allows studies from the interior of very dense objects.In this paper,ionization potential depressions of the isoelectronic sequences for single and double K-shell vacancies are obtained from a pure ab initio multiconfiguration Hartree-Fock simulation including exact exchange terms and finite temperature dense plasma effects.It is demonstrated that the simultaneous representation of these ab initio data in the form of a map of hollow ion X-ray transition energies enables identification of important steps in the matter evolution and ionization dynamics.Mapping along the isoelectronic sequence as a function of the pumping energy of a X-ray free electron laser also enables visualization of the impact of ionization potential depression on the pathways of hollow ion formation.展开更多
With an elemental composition similar to bone mineral,and the ability to release phosphorus and calcium that benefit bone regeneration,Calcium Phosphate Glass(CPG)serves as a promising component of bone tissue enginee...With an elemental composition similar to bone mineral,and the ability to release phosphorus and calcium that benefit bone regeneration,Calcium Phosphate Glass(CPG)serves as a promising component of bone tissue engineering scaffolds.However,the degradation of CPG composites typically results in increased acidity,and its impact on bone-forming activity is less studied.In this work,we prepared 3D-printed composite scaffolds comprising CPG,Poly-ε-caprolactone(PCL),and various Magnesium Oxide(MgO)contents.Increasing the MgO content effectively suppressed the degradation of CPG,maintaining a physiological pH of the degradation media.While the degradation of CPG/PCL scaffolds resulted in upregulated apoptosis of Rat Bone Marrow-derived Stem Cells(rBMSC),scaffolds containing MgO were free from these negative impacts,and an optimal MgO content of 1 wt%led to the most pronounced osteogenic differentiation of rBMSCs.This work demonstrated that the rapid degradation of CPG impaired the renewability of stem cells through the increased acidity of the surrounding media,and MgO effectively modulated the degradation rate of CPG,thus preventing the negative effects of rapid degradation and supporting the proliferation and osteogenic differentiation of the stem cells.展开更多
This paper proposes a new upper-limb exoskeleton to reduce worker physical strain.The proposed design is based on a novel PRRRP(P-Prismatic;R-Revolute)kinematic chain with 5 passive Degrees of Freedom(DoF).Utilizing a...This paper proposes a new upper-limb exoskeleton to reduce worker physical strain.The proposed design is based on a novel PRRRP(P-Prismatic;R-Revolute)kinematic chain with 5 passive Degrees of Freedom(DoF).Utilizing a magnetic spring,the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture.The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief.This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design.An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks.The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it.展开更多
The red pyterlite of Virolahti is a rapakivi granite from the large Mesoproterozoic Wiborg rapakivi granite batholith of southeastern Finland,with the typical and exclusive appearance of the rapakivi texture and with ...The red pyterlite of Virolahti is a rapakivi granite from the large Mesoproterozoic Wiborg rapakivi granite batholith of southeastern Finland,with the typical and exclusive appearance of the rapakivi texture and with good quality as a natural stone.The extraction of Virolahti pyterlite began on a large scale during the late 1700s for the construction of the city of St.Petersburg,Russia.During the 1700s and 1800s,the pyterlite was extensively used in St.Petersburg in applications such as building foundations,river embankments,street paving,fortress structures and decorative stone.The most famous objects constructed from the pyterlite are the monolith of the Alexander Column and the columns of St.Isaac's Cathedral.Virolahti pyterlite has been widely extracted in the Virolahti area,and a total of over one million cubic metres were exported to St.Petersburg.The pyterlite is an important part of history,as the objects in which the stone has been applied in St.Petersburg belong to a UNESCO World Heritage Site.Today,Virolahti pyterlite is extracted under the commercial name Carmen Red.The stone has been marketed and exported for use in several applications around the world,especially in countries of the Far East and Europe.Among the modern objects constructed using the pyterlite are numerous façades of skyscrapers,including the Central Daily Newspaper Building in Seoul,Korea,and the Arco Tower in Los Angeles,USA.The pyterlite area is still important in the natural stone market,and over a wider area than only Finland.Virolahti pyterlite meets all the criteria for designation as a Heritage Stone presented by the IUGS Subcommission on Heritage Stones.It has been applied in significant works(in a UNESCO World Heritage Site),used in large quantities in highly valuable architectural objects and quarried from 126 historical quarries.It is a focus of development for tourism infrastructure,has wide geographical use and a prolonged cultural history,and is still extracted from 11 present quarries,with global applications.Hence,we will later begin the procedure to propose Virolahti pyterlite as a candidate for designation as a Heritage Stone.展开更多
With the deepening of the curriculum teaching reform in colleges and universities,the teaching reform of art design professional courses is imperative.The study found that the current art design professional font desi...With the deepening of the curriculum teaching reform in colleges and universities,the teaching reform of art design professional courses is imperative.The study found that the current art design professional font design course teaching there are more solidified teaching methods,students operating ability is relatively homogenised,the teaching content to the"westernised"based,resulting in poor adaptability of students and other prominent problems.This paper starts from the"three effects"of"effect","efficiency"and"effectiveness",and adopts a multi-dimensional and emotional thinking perspective to carry out the curriculum of typeface design.This paper starts from the"three effects"of"effect","efficiency"and"effectiveness",and adopts a multi-dimensional and emotional perspective of thinking to carry out the teaching and practice of typeface design in order to strengthen the visual information of Chinese culture,and at the same time,to explore the creative potential of the students,so as to improve the students'innovation and creativity.展开更多
Different proportions of commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy (HEA) powder were ball-milled (BM) for different time. The powder was consolidated by hot extrusion method. The mic...Different proportions of commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy (HEA) powder were ball-milled (BM) for different time. The powder was consolidated by hot extrusion method. The microstructures of the milled powder and bulk alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties of the extruded alloy were examined by mechanical testing machine. The results show that after BM, the particle size and microstructures of the mixed alloy powder change obviously. After 48 h BM, the average size of mixed powder is about 30 nm, and then after hot extrusion, the average size of grains reaches about 70 rim. The compressive strength of the extruded alloy reaches 710 MPa under certain conditions of milling time and composition. As a result of the identification of the nano-/micro-strueture-property relationship of the samples, such high strength is attributed mainly to the nanocrystalline grains of a(Al) and nanoscaled FeNiCrCoAl3 particles, and the fine secondary phase of Al2Cu and Fe-rich phases.展开更多
基金supported by National Nature Science Foundation of China(No.62361036)Nature Science Foundation of Gansu Province(No.22JR5RA279).
文摘To realize dynamic statistical publishing and protection of location-based data privacy,this paper proposes a differential privacy publishing algorithm based on adaptive sampling and grid clustering and adjustment.The PID control strategy is combined with the difference in data variation to realize the dynamic adjustment of the data publishing intervals.The spatial-temporal correlations of the adjacent snapshots are utilized to design the grid clustering and adjustment algorithm,which facilitates saving the execution time of the publishing process.The budget distribution and budget absorption strategies are improved to form the sliding window-based differential privacy statistical publishing algorithm,which realizes continuous statistical publishing and privacy protection and improves the accuracy of published data.Experiments and analysis on large datasets of actual locations show that the privacy protection algorithm proposed in this paper is superior to other existing algorithms in terms of the accuracy of adaptive sampling time,the availability of published data,and the execution efficiency of data publishing methods.
基金support from a Grant-in-Aid for Scientific Research(KAKENHI B),Japan(Project/Area code:23H01505)the Institute for Sustainable Future Society,Waseda Research Institute for Science and Engineering,Research Initiatives in Japansupport from the Chinese Scholar Council for PhD scholarships(Grant No.202206220061)was acknowledged。
文摘This paper presents a method for obtaining the displacement of sand particles in a sand–bentonite mixture(SBM)when saturated with water,based on particle tracking velocimetry(PTV).The raw photographs were first converted into binary images.The sand particles were then detected,and the displacement of the sand particles was obtained by comparing their positions in adjacent images.The swelling strain induced by saturation was also obtained using the proposed PTV method.This method was validated by comparing the result with those obtained using a displacement transducer.Subsequently,a comparative analysis of sand particle displacements was conducted for specimens with varying bentonite content(BC),initial thickness,and water infiltration directions.The experimental results obtained were as follows:(1)For specimens with different BCs,local swelling displacement of sand particles at the top part of the specimen increased with higher BCs;(2)For specimens with various heights(hsp),larger local swelling displacement was generated at lower hsp at the initial state;(3)Local swelling characteristics differed in different water infiltration directions.Top-side infiltration showed a significant downward movement of particles during the first several hours of swelling.An estimation method for the dry density distribution of the specimen was proposed based on PTV data and then verified by slicing dry density and water content measurement results.
基金supported by the NSFC under Grant Nos.11374315 and 12074395the Invited Scientist Program of CNRS at Ecole Polytechnique,Palaiseau,France。
文摘The capacity to predict X-ray transition and K-edge energies in dense finite-temperatur plasmas with high precision is of primary importance for atomic physics of matter under extreme conditions.The dual characteristics of bound and continuum states in dense matter are modeled by a valence-band-like structure in a generalized ion-sphere approach with states that are either bound,free,or mixed.The self-consistent combination of this model with the Dirac wave equations of multielectron bound states allows one to fully respect the Pauli principle and to take into account the exact nonlocal exchange terms.The generalized method allows very high precision without implication of calibration shifts and scaling parameters and therefore has predictive power.This leads to new insights in the analysis of various data.The simple ionization model representing the K-edge is generalized to excitation–ionization phenomena resulting in an advanced interpretation of ionization depression data in near-solid-density plasmas.The model predicts scaling relations along the isoelectronic sequences and the existence of bound M-states that are in excellent agreement with experimental data,whereas other methods have failed.The application to unexplained data from compound materials also gives good agreement without the need to invoke any additional assumptions in the generalized model,whereas other methods have lacked consistency.
基金supported by the Natural Science Foundation of Hubei Provincial Department of Education(D20232101)Shandong Second Medical University 2024 Affiliated Hospital(Teaching Hospital)Scientific Research Development Fund Project(2024FYQ026)+3 种基金the innovative Research Programme of Xiangyang No.1 People’s Hospital(XYY2023ZY01)Faculty Development Grants of Xiangyang No.1 People’s Hospital Affiliated to Hubei University of Medicine(XYY2023D05)Joint supported by Hubei Provincial Natural Science Foundation and Xiangyang of China(2025AFD091)Traditional Chinese Medicine Scientific Research Project of Hubei Provincial Administration of Traditional Chinese Medicine(ZY2025D019).
文摘Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-inflammatory,and immunomodulatory activities.However,its active constituents and mechanisms of action against diabetic foot remain to be elucidated.Methods:In this study,the chemical constituents of Sanhuang Oil were identified using UPLC-QE-Orbitrap-MS.Subsequently,the mechanism by which Sanhuang Oil promotes diabetic foot ulcer healing was predicted by integrating network pharmacology and molecular docking.Additionally,diabetic mouse model was established in ICR mice using a combination of a high-fat diet(HFD)and streptozotocin(STZ)chemical induction.A full-thickness skin defect was created on the dorsum of the mice.Wound healing and the healing rate were observed following Sanhuang Oil intervention.The mechanism underlying Sanhuang Oil’s promotion of diabetic ulcer healing was further investigated using transcriptomics and histopathological examination(H&E staining).Results:A total of 97 active ingredients were identified from Sanhuang Oil.Network pharmacology analysis predicted 543 common targets,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis identified 203 relevant pathways.Molecular docking further confirmed high binding affinity(binding energy≤−5.0 kcal/mol)between specific active components in Sanhuang Oil(e.g.,coptisine,phellodendrine,baicalein)and key targets associated with diabetic foot ulcers(e.g.,EGFR,AKT1,STAT3).In vivo experimental results demonstrated that the wound healing rate was significantly higher in Sanhuang Oil-treated groups compared to the model group(P<0.001).HE staining revealed that the high-dose Sanhuang Oil group exhibited more pronounced epithelial tissue coverage over the wound,reduced inflammatory cell infiltration,and increased collagen deposition and fibroblast proliferation.transcriptomic analysis identified Pdk4,Ttn,Csrp3,Actn2,Myoz2,Tnnc2,Myod1,Myog,Myot,and Myf6 as key regulatory proteins involved in promoting wound healing.Conclusion:Sanhuang Oil promotes wound healing in diabetic ulcer mice,potentially by mitigating inflammation and regulating key targets such as Pdk4 to enhance fibroblast function.These findings provide novel insights into the multi-target,multi-pathway mechanism of Sanhuang Oil for treating diabetic foot ulcers.
文摘In this study,we investigated improving the performance of a layered double hydroxide(LDH)for the adsorption of As(III)and As(V)by controlling the morphology of LDH crystals.The LDH was synthesized via a simple coprecipitation method using barely soluble MgO as a precursor and succinic acid(SA)as a morphological control agent.Doping the LDH crystals with carboxylate ions(RCOO−)derived from SA caused the crystals to develop in a radial direction.This changed the pore characteristics and increased the density of active surface sites.Subsequently,SA/MgFe-LDH showed excellent affinity for As(III)and As(V)with maximum sorption densities of 2.42 and 1.60 mmol/g,respectively.By comparison,the pristine MgFe-LDH had sorption capacities of 1.56 and 1.31 mmol/g for As(III)and As(V),respectively.The LDH was effective over a wide pH range for As(III)adsorption(pH 3-8.5)and As(V)adsorption(pH 3-6.5).Using a combination of spectroscopy and sorption modeling calculations,the main sorption mechanism of As(III)and As(V)on SA/MgFe-LDH was identified as inner-sphere complexation via ligand exchangewith hydroxyl group(-OH)and RCOO−.Specifically,bidentate As-Fe complexeswere proposed for both As(III)and As(V)uptake,with the magnitude of formation varying with the initial As concentration.Importantly,the As-laden adsorbent had satisfactory stability in simulated real landfill leachate.These findings demonstrate that SA/MgFe-LDH exhibits considerable potential for remediation of As-contaminated water.
基金supported by the Natural Science Foundation of China(32122079,32072633)Earmarked Fund for China Agriculture Research System(CARS-19)+2 种基金Anhui Key Research and Development Plan(202104b11020001)Young Elite Scientist Sponsorship Program by National CAST(2016QNRC001)High-level Introduced Talent Sponsorship Program by Anhui Agricultural University(rc352203)。
文摘This work aims to compare the chemical composition and anti-inflammatory effects on RAW264.7 macrophages of Keemun black tea stems and leaves.A total of 50 volatile compounds were identified in tea stems and leaves,and aldehydes,alcohols,and esters were the main volatile compound categories.There were 11 key volatile compounds,including geraniol,benzeneacetaldehyde,methyl salicylate,linalool,etc.contributed to distinguishing the tea stems from the tea leaves.In the quantitative and liquid chromatography-mass spectrometry(LC-MS)-based metabolomics analysis,higher contents of amino acids,monosaccharides,and quinic acids were found in stems than those in leaves.Inversely,higher contents of tea pigments,flavan-3-ols,gallic acid,purine alkaloids,and flavonol glycosides were present in tea leaves than in stems.LC-MS-based metabolomics also revealed that organic acids were the most critical non-volatile compounds responsible for the differences between tea stems and leaves.Furthermore,tea stems had better inhibiting effects of pro-inflammatory cytokines(interleukin(IL)-1βand IL-6)in lipopolysaccharide-challenged RAW264.7 macrophages than tea leaves,while no significant differences exist between leaves and stems for inhibiting the secretion of tumor necrosis factorα(TNF-α)and NO.In conclusion,our results support using Keemun black tea stems as a novel source of anti-inflammatory compounds.
基金funded by China Scholarship Council,Grant Number 201906840121department of rehabilitation medicine,University Medical Center Groningen,University of Groningen,grant number:O/085350.
文摘Musculoskeletal Symptoms(MSS)often arise from prolonged maintenance of bent postures in the neck and trunk during surgical procedures.To prevent MSS,a passive exoskeleton utilizing carbon fiber beams to offer support to the neck and trunk was proposed.The application of support force is intended to reduce muscle forces and joint compression forces.A nonlinear mathematical model for the neck and trunk support beam is presented to estimate the support force.A validation test is subsequently conducted to assess the accuracy of the mathematical model.Finally,a preliminary functional evaluation test is performed to evaluate movement capabilities and support provided by the exoskeleton.The mathematical model demonstrates an accuracy for beam support force within a range of 0.8–1.2 N Root Mean Square Error(RMSE).The exoskeleton was shown to allow sufficient Range of Motion(ROM)for neck and trunk during open surgery training.While the exoskeleton showed potential in reducing musculoskeletal load and task difficulty during simulated surgery tasks,the observed reduction in perceived task difficulty was deemed non-significant.This prompts the recommendation for further optimization in personalized adjustments of beams to facilitate improvements in task difficulty and enhance comfort.
基金funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 872102the China Scholarship Council(CSC,file no.202006240076)-University of Manchester joint studentship for supporting the PhD researchthe special innovation project fund from the Institute of Wenzhou,Zhejiang University(No.XMGL-KJZX-202204)。
文摘Polymers of intrinsic microporosity(PIMs)have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades,owing to their highly permeable porous structures.However,challenges regarding its relatively low selectivity,physical aging,and plasticisation impede relevant industrial adoptions for gas separation.To address these issues,several strategies including chain modification,post-modification,blending with other polymers,and the addition of fillers,have been developed and explored.PIM-1 is the most investigated PIMs,and hence here we review the stateof-the-arts of the modification strategies of PIM-1 critically and discuss the progress achieved for addressing the aforementioned challenges via meta-analysis.Additionally,the development of PIM-1-based thin film composite membranes is commented as well,shedding light on their potential in industrial gas separation.We hope that the review can be a timely snapshot of the relevant state-of-the-arts of PIMs guiding future design and optimisation of PIMs-based membranes for enhanced performance towards a higher technology readiness level for practical applications.
文摘There are limited biosecurity measures directed at preventing airborne transmission of viruses in swine.The effectiveness of dust mitigation strategies such as oil sprinkling,to decrease risk of airborne virus transmission are unknown.Metagenomics and qPCR for common fecal viruses were used to hunt for a ubiquitous virus to serve as a proxy when evaluating the efficiency of mitigation strategies against airborne viral infectious agents.Air particles were collected from swine buildings using high-volume air samplers.Extracted DNA and RNA were used to perform specific RT-qPCR and qPCR and analyzed by highthroughput sequencing.Porcine astroviruses group 2 were common(from 102 to 105 genomic copies per cubic meter of air or gc/m^(3),93%positivity)while no norovirus genogroup II was recovered from air samples.Porcine torque teno sus virus were detected by qPCR in low concentrations(from 101 to 102 gc/m^(3),47%positivity).Among the identified viral families by metagenomics analysis,Herelleviridae,Microviridae,Myoviridae,Podoviridae,and Siphoviridae were dominant.The phage vB_AviM_AVP of Aerococcus was present in all air samples and a newly designed qPCR revealed between 101 and 105 gc/m^(3) among the samples taken for the present study(97%positivity)and banked samples from5-and 15-year old studies(89%positivity).According to the present study,both the porcine astrovirus group 2 and the phage vB_AviM_AVP of Aerococcus could be proxy for airborne viruses of swine buildings.
基金WZ acknowledges the China Scholarship Council for her PhD grant(CSC No.201906250212)YP acknowledges financial support by Samenwerkingsverband Noord-Nederland(SNN)within the pro-gram“3D Print Kompas”+8 种基金JPO and JS acknowledge Fundação para a Ciência e a Tecnologia(FCT-MCTES)for its financial support via the project UID/00667/2020(UNIDEMI)JPO acknowledges fund-ing by national funds from FCT-Fundação para a Ciência e a Tecnologia,I.P.,in the scope of the projects NosLA/P/0037/2020,UIDP/50025/2020,and UIDB/50025/2020 of the Associate Labo-ratory Institute of Nanostructures,Nanomodelling and Nanofabri-cation–i3N.JS acknowledges the China Scholarship Council for her PhD grant(CSC No.201808320394)The authors acknowledge DESY(Hamburg,Germany),a member of the Helmholtz Associ-ation HGF,for the provision of experimental facilities.Beamtime was allocated for proposal I-20210899 ECThe research leading to this result has been supported by the project CALIPSOplus un-der Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020SF acknowledges fi-nancial support from the National Natural Science Foundation of China(No.52105318 and 52311530340)"Chunhui Plan"Col-laborative Research Project of the Ministry of Education,China(HZKY20220023)This research was carried out under project number S17024o in the framework of the Partnership Program of the Materials Innova-tion Institute M2i(www.m2i.nl)the Netherlands Organization for Scientific Research(www.nwo.nl).
文摘Achieving a superior strength-ductility combination for fcc single-phase high entropy alloys(HEAs)is challenging.The present work investigates the in-situ synthesis of Fe_(49.5)Mn_(30)Co_(10)Cr_(10)C_(0.5)interstitial solute-strengthened HEA containing 0.5 wt.%Nb(hereafter referred to as iHEA-Nb)using laser melt-ing deposition(LMD),aiming at simultaneously activating multiple strengthening mechanisms.The effect of Nb addition on the microstructure evolution,mechanical properties,strengthening and deformation mechanisms of the as-deposited iHEA-Nb samples was comprehensively evaluated.Multiple levels of het-erogeneity were observed in the LMD-deposited microstructure,including different grain sizes,cellular subgrain structures,various carbide precipitates,as well as elemental segregation.The incorporation of Nb atoms with a large radius leads to lattice distortion,reduces the average grain size,and increases the types and fractions of carbides,aiding in promoting solid solution strengthening,grain boundary strengthening,and precipitation strengthening.Tensile test results show that the Nb addition significantly increases the yield strength and ultimate tensile strength of the iHEA to 1140 and 1450 MPa,respectively,while maintaining the elongation over 30%.Deformation twins were generated in the tensile deformed samples,contributing to the occurrence of twinning-induced plasticity.This outstanding combination of strength and ductility exceeds that for most additively manufactured HEAs reported to date,demon-strating that the present in situ alloying strategy could provide significant advantages for developing and tailoring microstructures and balancing the mechanical properties of HEAs while avoiding conventional complex thermomechanical treatments.In addition,single-crystal micropillar compression tests revealed that although the twining activity is reduced by the Nb addition to the iHEA,the micromechanical prop-erties of grains with different orientations were significantly enhanced.
基金Project supported by the National Natural Science Foundation of China(41662004)。
文摘With the development of the economy and the increasing demand for environmental protection,the efficient and selective recovery of Gd(Ⅲ)from actual wastewater is of critical importance.In this work,lanthanum-based metal-organic framework(LaBDC)materials were prepared by a hydrothermal method,and then polyethyleneimine(PEI)and LaBDC were combined by an impregnation method to form a novel LaBDC@xPEI composite.The prepared materials were characterized using Fourier transfo rm infrared spectroscopy(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDX),B runauer-Emmett-Teller(BET),thermogravimetric analysis(TGA)and X-ray photoelectron spectroscopy(XPS).Experiments show that LaBDC@50%PEI has the highest adsorption capacity(181.77 mg/g)among lanthanum-based MOFs with different PEI loadings at pH=5.5,which is about 5.1 times that of bare LaBDC.The adsorption isotherm analysis shows that LaBDC@50%PEI follows the Langmuir model.In addition,the adsorption kinetics of LaBDC@50%PEI follows a pseudo-second-order kinetic model,indicating that the adsorption process is chemical adsorption.It is worth noting that LaBDC@50%PEI maintains good adsorption performance and stability after three recycling tests,and exhibits excellent selectivity in cation interference experiments.Overall,the LaBDC@50%PEI composites possess good stability and hold great promises in rapid recovery of Gd(Ⅲ)from practical aqueous environments.
基金the Italian Ministry of Ed-ucation and Research,PON R&I 2014-2020-Asse IV“Istruzione e ricerca per il recupero-REACT-EU”-Azione IV.6-“Contratti di ricerca su tematiche Green”,for the financial support concerning his employment contractThe work was partially supported by funds from the Zuercher Stiftung fuer Textilforshung(Winterthur,Switzerland).
文摘Polymers are indispensable to humans in different applications due to their ease of manufacturing and overall performance.However,after a material lifetime,there is a large amount of polymer-based waste,which greatly contributes to the loss of valuable resources and environmental pollution.Thermoplastics may be readily recycled,but because of their flammability,large amounts of flame retardant(FR)ad-ditives are required for many applications.This results in a significant volume of FR polymeric wastes too,particularly halogenated plastics,which are subject to severe recycling regulations.In general,ther-moplastics containing FRs are raising concerns,as their effective recycling is strongly influenced by the chemical composition,additive content,and physicochemical characteristics of the waste stream.The recycling of FR thermosets is even more challenging due to their crosslinked and cured nature,which makes them resistant to melting and reprocessing.In many cases,traditional mechanical recycling meth-ods,such as grinding and melting,are not applicable to thermosetting polymers.Current recycling meth-ods do not always consider the recovery of the thermosetting/thermoplastic matrix and the presence of toxic FRs in the polymer network.Sorting and solvent washing treatment are important steps,which are usually performed before recycling the FR polymeric waste to reduce contamination in the following steps.
基金supported by the Fundamental Research Grant Scheme by Ministry of Higher Education Malaysia(FRGS/1/2021/STG04/XMU/02/1 and FRGS/1/2022/TK09/XMU/03/2)the Xiamen University Malaysia Research Fund(XMUMRF/2023-C11/IENG/0056)。
文摘MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.
基金the financial supports from Hubei Provincial Key Technologies Research and Development Program(2022BCA058)China Scholarship Council(201908420169)the European Project“Towards Fossil-free Steel”.
文摘In order to achieve ultra-low emissions of SO_(2)and NO_(x),the oxygen blast furnace with sintering flue gas injection is presented as a promising novel process.The CO_(2)emission was examined,and a cost analysis of the process was conducted.The results show that in the cases when the top gas is not circulated(Cases 1–3),and the volume of injected sintering flue gas per ton of hot metal is below about 1250 m^(3),the total CO_(2)emissions decrease first and then increase as the oxygen content of the blast increases.When the volume of injected sintering flue gas per ton of hot metal exceeds approximately 1250 m^(3),the total CO_(2)emissions gradually decrease.When the recirculating top gas and the vacuum pressure swing adsorption are considered,the benefits of recovered gas can make the ironmaking cost close to or even lower than that of the ordinary blast furnace.Furthermore,the implementation of this approach leads to a substantial reduction in total CO_(2)emissions,with reductions of 69.13%(Case 4),70.60%(Case 5),and 71.07%(Case 6),respectively.By integrating previous research and current findings,the reasonable oxygen blast furnace with sintering flue gas injection can not only realize desulfurization and denitrification,but also achieve the goal of reducing CO_(2)emissions and ironmaking cost.
基金supported by the U.S.Department of Energy through the Los Alamos National Laboratory。
文摘Hollow ion X-ray emission is of great interest in high-energy-density research,since negligible opacity allows studies from the interior of very dense objects.In this paper,ionization potential depressions of the isoelectronic sequences for single and double K-shell vacancies are obtained from a pure ab initio multiconfiguration Hartree-Fock simulation including exact exchange terms and finite temperature dense plasma effects.It is demonstrated that the simultaneous representation of these ab initio data in the form of a map of hollow ion X-ray transition energies enables identification of important steps in the matter evolution and ionization dynamics.Mapping along the isoelectronic sequence as a function of the pumping energy of a X-ray free electron laser also enables visualization of the impact of ionization potential depression on the pathways of hollow ion formation.
基金support from the National Key Research and Development Program of China(Grant No.2018YFA0703000)the National Natural Science Foundation of China(Grant Nos.52250006,52075482)+1 种基金the Ningbo Top Medical and Health Research Program(Grant No.2022020304)the Ningbo Key Science and Technology Major Project(Grant No.2022Z143).
文摘With an elemental composition similar to bone mineral,and the ability to release phosphorus and calcium that benefit bone regeneration,Calcium Phosphate Glass(CPG)serves as a promising component of bone tissue engineering scaffolds.However,the degradation of CPG composites typically results in increased acidity,and its impact on bone-forming activity is less studied.In this work,we prepared 3D-printed composite scaffolds comprising CPG,Poly-ε-caprolactone(PCL),and various Magnesium Oxide(MgO)contents.Increasing the MgO content effectively suppressed the degradation of CPG,maintaining a physiological pH of the degradation media.While the degradation of CPG/PCL scaffolds resulted in upregulated apoptosis of Rat Bone Marrow-derived Stem Cells(rBMSC),scaffolds containing MgO were free from these negative impacts,and an optimal MgO content of 1 wt%led to the most pronounced osteogenic differentiation of rBMSCs.This work demonstrated that the rapid degradation of CPG impaired the renewability of stem cells through the increased acidity of the surrounding media,and MgO effectively modulated the degradation rate of CPG,thus preventing the negative effects of rapid degradation and supporting the proliferation and osteogenic differentiation of the stem cells.
基金supported by the European Regional Development Fund and the Romanian Government through the Competitiveness Operational Programme 2014-2020project APOLLO,MySMIS code 155988,contract no.9/1.2.1-PTIap.2/23.02.2023.
文摘This paper proposes a new upper-limb exoskeleton to reduce worker physical strain.The proposed design is based on a novel PRRRP(P-Prismatic;R-Revolute)kinematic chain with 5 passive Degrees of Freedom(DoF).Utilizing a magnetic spring,the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture.The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief.This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design.An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks.The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it.
基金funded by the ENI CBC Programme 2014–2020 between South-East Finland and Russia[Grant:1803095-KS1528]。
文摘The red pyterlite of Virolahti is a rapakivi granite from the large Mesoproterozoic Wiborg rapakivi granite batholith of southeastern Finland,with the typical and exclusive appearance of the rapakivi texture and with good quality as a natural stone.The extraction of Virolahti pyterlite began on a large scale during the late 1700s for the construction of the city of St.Petersburg,Russia.During the 1700s and 1800s,the pyterlite was extensively used in St.Petersburg in applications such as building foundations,river embankments,street paving,fortress structures and decorative stone.The most famous objects constructed from the pyterlite are the monolith of the Alexander Column and the columns of St.Isaac's Cathedral.Virolahti pyterlite has been widely extracted in the Virolahti area,and a total of over one million cubic metres were exported to St.Petersburg.The pyterlite is an important part of history,as the objects in which the stone has been applied in St.Petersburg belong to a UNESCO World Heritage Site.Today,Virolahti pyterlite is extracted under the commercial name Carmen Red.The stone has been marketed and exported for use in several applications around the world,especially in countries of the Far East and Europe.Among the modern objects constructed using the pyterlite are numerous façades of skyscrapers,including the Central Daily Newspaper Building in Seoul,Korea,and the Arco Tower in Los Angeles,USA.The pyterlite area is still important in the natural stone market,and over a wider area than only Finland.Virolahti pyterlite meets all the criteria for designation as a Heritage Stone presented by the IUGS Subcommission on Heritage Stones.It has been applied in significant works(in a UNESCO World Heritage Site),used in large quantities in highly valuable architectural objects and quarried from 126 historical quarries.It is a focus of development for tourism infrastructure,has wide geographical use and a prolonged cultural history,and is still extracted from 11 present quarries,with global applications.Hence,we will later begin the procedure to propose Virolahti pyterlite as a candidate for designation as a Heritage Stone.
基金Research Project on Undergraduate Education Reform at Sichuan Agricultural University in 2023.Project Number:X2023Research on Branding of Sichuan Industrial Cultural Heritage under the Perspective of‘Cultural Confidence’(Project No.WHCY2021B13)Research on Upgrading of Sichuan Tea Brand Based on Service Design Thinking——Taking Qingcheng Tea as an Example(Project No.2205).
文摘With the deepening of the curriculum teaching reform in colleges and universities,the teaching reform of art design professional courses is imperative.The study found that the current art design professional font design course teaching there are more solidified teaching methods,students operating ability is relatively homogenised,the teaching content to the"westernised"based,resulting in poor adaptability of students and other prominent problems.This paper starts from the"three effects"of"effect","efficiency"and"effectiveness",and adopts a multi-dimensional and emotional thinking perspective to carry out the curriculum of typeface design.This paper starts from the"three effects"of"effect","efficiency"and"effectiveness",and adopts a multi-dimensional and emotional perspective of thinking to carry out the teaching and practice of typeface design in order to strengthen the visual information of Chinese culture,and at the same time,to explore the creative potential of the students,so as to improve the students'innovation and creativity.
基金Project(2012CB619503)supported by the Nation Basic Research Program of ChinaProject(2013AA031001)supported by the National High Technology Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science&Technology Cooperation Program of China
文摘Different proportions of commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy (HEA) powder were ball-milled (BM) for different time. The powder was consolidated by hot extrusion method. The microstructures of the milled powder and bulk alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties of the extruded alloy were examined by mechanical testing machine. The results show that after BM, the particle size and microstructures of the mixed alloy powder change obviously. After 48 h BM, the average size of mixed powder is about 30 nm, and then after hot extrusion, the average size of grains reaches about 70 rim. The compressive strength of the extruded alloy reaches 710 MPa under certain conditions of milling time and composition. As a result of the identification of the nano-/micro-strueture-property relationship of the samples, such high strength is attributed mainly to the nanocrystalline grains of a(Al) and nanoscaled FeNiCrCoAl3 particles, and the fine secondary phase of Al2Cu and Fe-rich phases.