期刊文献+
共找到7,046篇文章
< 1 2 250 >
每页显示 20 50 100
Advances in magnesium-based bioresorbable cardiovascular stents: Surface engineering and clinical prospects 被引量:1
1
作者 Ganesh Kumar Subham Preetam +5 位作者 Arunima Pandey Nick Birbilis Saad Al-Saadi Pooria Pasbakhsh Mikhail Zheludkevich Poovarasi Balan 《Journal of Magnesium and Alloys》 2025年第3期948-981,共34页
Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditi... Magnesium(Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy;offering tem-porary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term com-plications.However,challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption.This review highlights the latest breakthroughs in surface modification,alloying,and coating strategies to enhance the mechanical integrity,corrosion resistance,and biocompatibility of Mg-based stents.Key surface engineering techniques,including polymer and bioactive coatings,are ex-amined for their role in promoting endothelial healing and minimising inflammatory responses.Future directions are proposed,focusing on personalised stent designs to optimize efficacy and long-term outcomes,positioning Mg-based stents as a transformative solution in interventional cardiology. 展开更多
关键词 Magnesium alloy Cardiovascular stent Surface modification Corrosion BIOCOMPATIBILITY Biomedical application
暂未订购
Breaking new ground in colossal permittivity via chemical bonding engineering in high-entropy CaTiO_(3) ceramics
2
作者 Shujun Zhang 《Rare Metals》 2025年第8期5895-5897,共3页
Dielectric materials are essential in modern electronics,serving as the backbone of numerous components across a wide array of electronic devices[1,2].As technology advances,the demand for materials with high permitti... Dielectric materials are essential in modern electronics,serving as the backbone of numerous components across a wide array of electronic devices[1,2].As technology advances,the demand for materials with high permittivity,low dielectric loss,and thermal stability continues to rise.Traditional strategies to enhance permittivity often involve mechanisms such as phase transitions in ferroelectrics or interfacial polarization in boundary layer capacitor(IBLC)systems.However,each comes with trade-offs. 展开更多
关键词 high entropy catio ceramics electronic devices chemical bonding engineering colossal permittivity interfacial polarization phase transitions enhance permittivity dielectric materials
原文传递
Effect of Image Resolution on UAV-Based Photogrammetric Accuracy for Civil Engineering Applications
3
作者 Mostafa Abdel-Bary Ebrahim 《Journal of Civil Engineering and Architecture》 2025年第7期317-326,共10页
This study provides the first systematic evaluation of image resolution’s effect (50-300 PPI, pixels per inch) on UAV (unmanned aerial vehicle)-based digital close-range photogrammetry accuracy in civil engineering a... This study provides the first systematic evaluation of image resolution’s effect (50-300 PPI, pixels per inch) on UAV (unmanned aerial vehicle)-based digital close-range photogrammetry accuracy in civil engineering applications, such as infrastructure monitoring and heritage preservation. Using a high-resolution UAV with a 20 MP (MegaPixels) sensor, four images of a brick wall test field were captured and processed in Agisoft Metashape, with resolutions compared against Leica T2002 theodolite measurements (1.0 mm accuracy). Advanced statistical methods (ANOVA (analysis of variance), Tukey tests, Monte Carlo simulations) and ground control points validated the results. Accuracy improved from 25 mm at 50 PPI to 5 mm at 150 PPI (p < 0.01), plateauing at 4 mm beyond 200 PPI, while 150 PPI reduced processing time by 62% compared to 300 PPI. Unlike prior studies, this research uniquely isolates resolution effects in a controlled civil engineering context, offering a novel 150 PPI threshold that balances precision and efficiency. This threshold supports Saudi Vision 2030’s smart infrastructure goals for megaprojects like NEOM, providing a scalable framework for global applications. Future research should leverage deep learning to optimize resolutions in dynamic environments. 展开更多
关键词 UAV photogrammetry image resolution 3D measurements civil engineering Saudi Vision 2030
在线阅读 下载PDF
A unique bioreactor that offers synchronized physiological-like electrical and mechanical stimuli for cardiac tissue engineering
4
作者 Maskit Gvirtz Markish Udi Sarig +1 位作者 Limor Baruch Marcelle Machluf 《Bio-Design and Manufacturing》 2025年第4期581-594,I0031,I0032,共16页
Cardiac tissue engineering aims to efficiently replace or repair injured heart tissue using scaffolds,relevant cells,or their combination.While the combination of scaffolds and relevant cells holds the potential to ra... Cardiac tissue engineering aims to efficiently replace or repair injured heart tissue using scaffolds,relevant cells,or their combination.While the combination of scaffolds and relevant cells holds the potential to rapidly remuscularize the heart,thereby avoiding the slow process of cell recruitment,the proper ex vivo cellularization of a scaffold poses a substantial challenge.First,proper diffusion of nutrients and oxygen should be provided to the cell-seeded scaffold.Second,to generate a functional tissue construct,cells can benefit from physiological-like conditions.To meet these challenges,we developed a modular bioreactor for the dynamic cellularization of full-thickness cardiac scaffolds under synchronized mechanical and electrical stimuli.In this unique bioreactor system,we designed a cyclic mechanical load that mimics the left ventricle volume inflation,thus achieving a steady stimulus,as well as an electrical stimulus with an action potential profile to mirror the cells’microenvironment and electrical stimuli in the heart.These mechanical and electrical stimuli were synchronized according to cardiac physiology and regulated by constant feedback.When applied to a seeded thick porcine cardiac extracellular matrix(pcECM)scaffold,these stimuli improved the proliferation of mesenchymal stem/stromal cells(MSCs)and induced the formation of a dense tissue-like structure near the scaffold’s surface.Most importantly,after 35 d of cultivation,the MSCs presented the early cardiac progenitor markers Connexin-43 andα-actinin,which were absent in the control cells.Overall,this research developed a new bioreactor system for cellularizing cardiac scaffolds under cardiac-like conditions,aiming to restore a sustainable dynamic living tissue that can bear the essential cardiac excitation–contraction coupling. 展开更多
关键词 Tissue engineering BIOREACTOR Mechanical stimulation Electrical stimulation PERFUSION Excitation-contraction coupling Cardiac regeneration
暂未订购
Fatigue Resistance in Engineering Components:A Comprehensive Review on the Role of Geometry and Its Optimization
5
作者 Ibrahim T.Teke Ahmet H.Ertas 《Computer Modeling in Engineering & Sciences》 2025年第7期201-237,共37页
Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how str... Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how stress affects lifespan,this review offers the first comprehensive,multiscale comparison of strategies that optimize geometry to improve fatigue performance.This includes everything from microscopic features like the shape of graphite nodules to large-scale design elements such as fillets,notches,and overall structural layouts.We analyze and combine various methods,including topology and shape optimization,the ability of additive manufacturing to finetune internal geometries,and reliability-based design approaches.A key new contribution is our proposal of a standard way to evaluate geometry-focused fatigue design,allowing for consistent comparison and encouraging validation across different fields.Furthermore,we highlight important areas for future research,such as incorporating manufacturing flaws,using multiscale models,and integrating machine learning techniques.This work is the first to provide a broad geometric viewpoint in fatigue engineering,laying the groundwork for future design methods that are driven by data and centered on reliability. 展开更多
关键词 Fatigue resistance geometry optimization topology optimization microstructural geometry additive manufacturing crack initiation multiaxial fatigue reliability-based design raster orientation notch effect defect morphology fatigue life prediction
在线阅读 下载PDF
Rapid oxygen vacancy engineering in SiC@Fe_(2)O_(3-x) nanowires for high-performance supercapacitors
6
作者 Gui-Hai Chen Ze-Xi Yang +7 位作者 Shan-Liang Chen Lan Jiang Qiao Liu Lin Wang Wei-You Yang Zhi-Sheng Wu Hui-jun Li Wei-Jun Li 《Rare Metals》 2025年第10期7293-7305,共13页
Transition metal oxides(TMOs),thanks to their elevated theoretical capacitance and pseudocapacitive properties,are of particular interest in exploring the advanced supercapacitor electrode materials.The present work r... Transition metal oxides(TMOs),thanks to their elevated theoretical capacitance and pseudocapacitive properties,are of particular interest in exploring the advanced supercapacitor electrode materials.The present work reports the rapid laser-assisted synthesis of SiC@-Fe_(2)O_(3-x)anode materials with engineered oxygen vacancies in seconds,which improve the charge transport,redox activity,and structural stability,thus facilitating a substantial enhancement in electrochemical performance.As a result,the resultant SiC@Fe_(2)O_(3-x)nanowires exhibit excellent performances with an areal capacitance of 1082.16 at 5 mA cm^(-2),and retain 86.7%capacitance over 10,000 cycles.Furthermore,the assembled asymmetric supercapacitors(ASC),employing SiC@Fe_(2)O_(3-x)as the negative electrode and Ni(OH)2as the positive electrode,delivers a 1.5 V operating voltage,an energy density of 197μWh cm^(-2),and 80.6%capacitance retention after 14,000cycles,representing their promise toward the applications in next-generation energy storage materials. 展开更多
关键词 Laser SIC Fe_(2)O_(3-x) Oxygen vacancy Asymmetric supercapacitors
原文传递
Enhancing medical procurement information extraction with large language models: a prompt engineering approach
7
作者 Zhi-Fei Tan Elaine Yen Nee Oon +1 位作者 Khin Wee Lai Xiang Wu 《Medical Data Mining》 2025年第2期31-47,共17页
Background:Acquiring relevant information about procurement targets is fundamental to procuring medical devices.Although traditional Natural Language Processing(NLP)and Machine Learning(ML)methods have improved inform... Background:Acquiring relevant information about procurement targets is fundamental to procuring medical devices.Although traditional Natural Language Processing(NLP)and Machine Learning(ML)methods have improved information retrieval efficiency to a certain extent,they exhibit significant limitations in adaptability and accuracy when dealing with procurement documents characterized by diverse formats and a high degree of unstructured content.The emergence of Large Language Models(LLMs)offers new possibilities for efficient procurement information processing and extraction.Methods:This study collected procurement transaction documents from public procurement websites,and proposed a procurement Information Extraction(IE)method based on LLMs.Unlike traditional approaches,this study systematically explores the applicability of LLMs in both structured and unstructured entities in procurement documents,addressing the challenges posed by format variability and content complexity.Furthermore,an optimized prompt framework tailored for procurement document extraction tasks is developed to enhance the accuracy and robustness of IE.The aim is to process and extract key information from medical device procurement quickly and accurately,meeting stakeholders'demands for precision and timeliness in information retrieval.Results:Experimental results demonstrate that,compared to traditional methods,the proposed approach achieves an F1 Score of 0.9698,representing a 4.85%improvement over the best baseline model.Moreover,both recall and precision rates are close to 97%,significantly outperforming other models and exhibiting exceptional overall recognition capabilities.Notably,further analysis reveals that the proposed method consistently maintains high performance across both structured and unstructured entities in procurement documents while balancing recall and precision effectively,demonstrating its adaptability in handling varying document formats.The results of ablation experiments validate the effectiveness of the proposed prompting strategy.Conclusion:Additionally,this study explores the challenges and potential improvements of the proposed method in IE tasks and provides insights into its feasibility for real-world deployment and application directions,further clarifying its adaptability and value.This method not only exhibits significant advantages in medical device procurement but also holds promise for providing new approaches to information processing and decision support in various domains. 展开更多
关键词 medical device procurement information extraction large language model
在线阅读 下载PDF
Effective suppression of surface cation segregations on double perovskite oxides through entropy engineering
8
作者 Zhe Wang Mengke Yuan +5 位作者 Juntao Gao Hongru Hao Jingwei Li Lingling Xu Zhe Lv Bo Wei 《Journal of Rare Earths》 2025年第2期345-353,I0005,共10页
Cation segregation on cathode surfaces plays a key role in determining the activity and operational stability of solid oxide fuel cells(SOFCs).The double perovskite oxide PrBa_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(PBCC)has been... Cation segregation on cathode surfaces plays a key role in determining the activity and operational stability of solid oxide fuel cells(SOFCs).The double perovskite oxide PrBa_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(PBCC)has been widely studied as an active cathode but still suffer from serious detrimental segregations.To enhance the cathode stability,a PBCC derived A-site medium-entropy Pr_(0.6)La_(0.1)Nd_(0.1)Sm_(0.1)Gd_(0.1)Ba_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(ME-PBCC)oxide was prepared and its segregation behaviors were investigated under different conditions.Compared with initial PBCC oxide,the segregations of BaO and Co_(3)O_(4)on the surface of ME-PBCC material are significantly suppressed,especially for Co_(3)O_(4),which is attributed to its higher configuration entropy.Our results also confirm the improved electrochemical performance and structural stability of ME-PBCC material,enabling it as a promising cathode for SOFCs. 展开更多
关键词 Solid oxide fuel cells CATHODE Double perovskite Configuration entropy Cation segregation Rare earths
原文传递
Type-I Heavy-Tailed Burr XII Distribution with Applications to Quality Control,Skewed Reliability Engineering Systems and Lifetime Data
9
作者 Okechukwu J.Obulezi Hatem E.Semary +4 位作者 Sadia Nadir Chinyere P.Igbokwe Gabriel O.Orji A.S.Al-Moisheer Mohammed Elgarhy 《Computer Modeling in Engineering & Sciences》 2025年第9期2991-3027,共37页
This study introduces the type-I heavy-tailed Burr XII(TIHTBXII)distribution,a highly flexible and robust statistical model designed to address the limitations of conventional distributions in analyzing data character... This study introduces the type-I heavy-tailed Burr XII(TIHTBXII)distribution,a highly flexible and robust statistical model designed to address the limitations of conventional distributions in analyzing data characterized by skewness,heavy tails,and diverse hazard behaviors.We meticulously develop the TIHTBXII’s mathematical foundations,including its probability density function(PDF),cumulative distribution function(CDF),and essential statistical properties,crucial for theoretical understanding and practical application.A comprehensive Monte Carlo simulation evaluates four parameter estimation methods:maximum likelihood(MLE),maximum product spacing(MPS),least squares(LS),and weighted least squares(WLS).The simulation results consistently show that as sample sizes increase,the Bias and RMSE of all estimators decrease,with WLS and LS often demonstrating superior and more stable performance.Beyond theoretical development,we present a practical application of the TIHTBXII distribution in constructing a group acceptance sampling plan(GASP)for truncated life tests.This application highlights how the TIHTBXII model can optimize quality control decisions by minimizing the average sample number(ASN)while effectively managing consumer and producer risks.Empirical validation using real-world datasets,including“Active Repair Duration,”“Groundwater Contaminant Measurements,”and“Dominica COVID-19 Mortality,”further demonstrates the TIHTBXII’s superior fit compared to existing models.Our findings confirm the TIHTBXII distribution as a powerful and reliable alternative for accurately modeling complex data in fields such as reliability engineering and quality assessment,leading to more informed and robust decision-making. 展开更多
关键词 Acceptance sampling heavy-tailed models parameter estimation reliability engineering
在线阅读 下载PDF
Strain and doping engineerings unlocking power density and cyclability of microspherical TiNb_(2)O_(7)anodes of lithium-ion batteries
10
作者 Yang Li Jing Yang +10 位作者 Tai Su Kai Zhang Yanjie Li Maykel Manawan Dongwei Ma Chengfu Yang Zhongzhu Liu Zhicong Shi Carlos Ponce de León Albarrán Yong-Wei Zhang Jia Hong Pan 《Journal of Energy Chemistry》 2025年第9期827-837,I0022,共12页
The limited ion/electron transport kinetics and insufficient crystalline stability of TiNb_(2)O_(7)(TNO)present significant challenges to the development of high-performance lithium-ion batteries(LIBs)with fastchargin... The limited ion/electron transport kinetics and insufficient crystalline stability of TiNb_(2)O_(7)(TNO)present significant challenges to the development of high-performance lithium-ion batteries(LIBs)with fastcharging capabilities and long cycle life.Here we propose a dual-modification strategy combining Ndoped carbon(NC)coating and Co^(2+)/W^(6+)doping,which not only enhances ionic and electronic conductivity but also effectively regulates volume expansion during electrochemical cycling.Upon Li+ion insertion,a significant reduction in the unit cell expansion coefficient of doped TNO is observed,from 7.48%(pristine TNO)to 5.37%(with 3%W^(6+)doping)and 4.65%(with 3%Co^(2+)doping),alo ng with lowered lattice distortion and improved uniformity in internal strain release.Density functional theory(DFT)simulation demonstrates that Co^(2+)and W^(6+)ions preferentially substitute Ti^(4+)sites in the TNO crystal,leading to the improved electronic conductivity by narrowing the bandgap.Moreover,Co^(2+)doping creates lower electron density and wider Li+ion transport channels than W^(6+)doping.The optimized 3Co-TNO@NC anode delivers a remarkable power density of 11.0 kW kg^(-1)at 20 C while maintaining a high reversible capacity of 150.9 mAh g^(-1)at 10 C after 2000 cycles.It also exhibits excellent compatibility in full cells,paired well with LiFePO_(4)(137.9 mAh g^(-1)after 2000 cycles)and Ni-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)(130.9 mAh g^(-1)after 500cycles)cathodes at 5 C,highlighting its potential as a high-safety,low-strain anode material for highpower LIBs. 展开更多
关键词 TiNb_(2)O_(7)microspheres Volume expansion Lattice strain Doping engineering High-power lithium-ion batteries
在线阅读 下载PDF
Energy Efficiency, Indoor Air Quality and Thermal Comfort Studies at the Faculty of Engineering and Built Environment, University Kebangsaan Malaysia 被引量:1
11
作者 N.L. Teng S.M. Zain +1 位作者 N.E.A. Basri S. Mat 《Journal of Environmental Science and Engineering》 2011年第11期1407-1413,共7页
The study was conducted to identify indoor air quality and the level of thermal comfort in various selected locations in Faculty of Engineering and Built Environment (FKAB), University Kebangsaan Malaysia (UKM) wi... The study was conducted to identify indoor air quality and the level of thermal comfort in various selected locations in Faculty of Engineering and Built Environment (FKAB), University Kebangsaan Malaysia (UKM) with built-up area of 250,936 fie. The indoor air quality and thermal comfort were measured at various selected locations by using indoor air quality equipment (Thermal Comfort SERI). The thermal comfort assessments are based on Malaysian Code of Practice Indoor Air Quality 2005 and Moderate Thermal Environments-Determination of the PMV and PPD indices specification of the condition for thermal comfort (ISO7730:1994) From the data analysis, the FKAB building is considered inadequately vented space. The concentration of CO2 for all sampling area evaluated exceeds the recommended concentration (〉 1000 ppm). The ventilation system used in FKAB building is designed by delivering fix amount of fresh air into building from external building without consideration on the number of occupants. This common ventilation design will increase the amount of CO2 dramatically all day long and these reflect the inefficiency of energy used. The faculty needs to be equipped with a comprehensive energy management system that can allow detailed documentation of continuous performance of all energy system and consumption in the building. 展开更多
关键词 Energy efficiency indoor air quality comfort survey FKAB UKM
在线阅读 下载PDF
Engineering behaviour of in situ cored deep cement mixed marine deposits subjected to undrained and drained shearing 被引量:1
12
作者 Wei Li Chung Yee Kwok 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1749-1760,共12页
The deep cement mixing(DCM)is used to improve the capacity and reduce the settlement of the soft ground by forming cemented clay columns.The investigation on the mechanical behaviour of the DCM samples is limited to e... The deep cement mixing(DCM)is used to improve the capacity and reduce the settlement of the soft ground by forming cemented clay columns.The investigation on the mechanical behaviour of the DCM samples is limited to either laboratory-prepared samples or in-situ samples under unconfined compression.In this study,a series of drained and undrained triaxial shearing tests was performed on the in-situ cored DCM samples with high cement content to assess their mechanical behaviours.It is found that the drainage condition affects significantly the stiffness,peak and residual strengths of the DCM samples,which is mainly due to the state of excess pore water pressure at different strain levels,i.e.being positive before the peak deviatoric stress and negative after the peak deviatoric stress,in the undrained tests.The slope of the failure envelope changes obviously with the confining pressures,being steeper at lower stress levels and flatter at higher stress levels.The strength parameters,effective cohesion and friction angle obtained from lower stress levels(c′0 andφ′0)are 400 kPa and 58°,respectively,which are deemed to be true for design in most DCM applications where the in-situ stress levels are normally at lower values of 50-200 kPa.Additionally,the computed tomography(CT)scanning system was adopted to visualize the internal structures of DCM samples.It is found that the clay pockets existing inside the DCM samples due to uneven mixing affect markedly their stress-strain behaviour,which is one of the main reasons for the high variability of the DCM samples. 展开更多
关键词 Deep cement mixing(DCM) In-situ cored sample Triaxial shearing Drainage condition Confining pressure Computed tomography(CT)
在线阅读 下载PDF
The Scientific Initiation in the Graduation Courses of UEMG's Faculty of Engineering: Disparities and Challenges
13
作者 Filipe Mattos Goncalves Natalia Pereira da Silv +1 位作者 Junia Soares Alexandrino Telma Ellen Drumond Ferreira 《Journal of Mechanics Engineering and Automation》 2017年第2期101-106,共6页
The notoriety of the shortage of qualified professionals in the engineering segment to meet the existing projects and also the future ones is worrying the academic community. These challenges show how the lack of appr... The notoriety of the shortage of qualified professionals in the engineering segment to meet the existing projects and also the future ones is worrying the academic community. These challenges show how the lack of appropriate courses and low expenses with incentives to research and extension programs can affect the formation of the future engineer. Therefore, universities have the mission to develop teaching, research and extension, offering to the students new opportunities for diverse technical training, scientific and humanist formation. It is noted, however, that such activities in many engineering courses, especially scientific research, are not being prioritized by the universities. In light of this, the present paper aims to register measure and evaluate the participation of the students in scientific initiation in the four engineering courses of the Faculty of Engineering of the Minas Gerais State University. Sticking to the disparities presented by the four courses studied, in relation to the participation in research projects, the results showed a greater engagement of students of Environmental Engineering and Mining Engineering courses regarding the other engineering courses. In addition, a better divulgation and a greater involvement of teachers in projects were identified as the main recurring challenges to the access in scientific research by the students of this institution. 展开更多
关键词 CHALLENGES ENGINEERING scientific initiation university.
在线阅读 下载PDF
Geyser Inspired Algorithm:A New Geological-inspired Meta-heuristic for Real-parameter and Constrained Engineering Optimization 被引量:5
14
作者 Mojtaba Ghasemi Mohsen Zare +3 位作者 Amir Zahedi Mohammad-Amin Akbari Seyedali Mirjalili Laith Abualigah 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期374-408,共35页
Over the past years,many efforts have been accomplished to achieve fast and accurate meta-heuristic algorithms to optimize a variety of real-world problems.This study presents a new optimization method based on an unu... Over the past years,many efforts have been accomplished to achieve fast and accurate meta-heuristic algorithms to optimize a variety of real-world problems.This study presents a new optimization method based on an unusual geological phenomenon in nature,named Geyser inspired Algorithm(GEA).The mathematical modeling of this geological phenomenon is carried out to have a better understanding of the optimization process.The efficiency and accuracy of GEA are verified using statistical examination and convergence rate comparison on numerous CEC 2005,CEC 2014,CEC 2017,and real-parameter benchmark functions.Moreover,GEA has been applied to several real-parameter engineering optimization problems to evaluate its effectiveness.In addition,to demonstrate the applicability and robustness of GEA,a comprehensive investigation is performed for a fair comparison with other standard optimization methods.The results demonstrate that GEA is noticeably prosperous in reaching the optimal solutions with a high convergence rate in comparison with other well-known nature-inspired algorithms,including ABC,BBO,PSO,and RCGA.Note that the source code of the GEA is publicly available at https://www.optim-app.com/projects/gea. 展开更多
关键词 Nature-inspired algorithms Real-world and engineering optimization Mathematical modeling Geyser algorithm(GEA)
暂未订购
Introduction to the Special Issue on Computer-Aided Uncertainty Modeling and Reliability Evaluation for Complex Engineering Structures
15
作者 Debiao Meng Abílio Manuel Pinho de Jesus Zeng Meng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期1-5,共5页
1 Summary With the advancement of science and technology,complex engineering structures are widely used in extreme environments[1].In equipment service,many uncertainty factors significantly affect safety and reliabil... 1 Summary With the advancement of science and technology,complex engineering structures are widely used in extreme environments[1].In equipment service,many uncertainty factors significantly affect safety and reliability[2–5].Therefore,ensuring high reliability of structures has become an important research direction in engineering design.At the same time,the importance of equipment health management of complex engineering structures is becoming increasingly prominent[6–8].Computer-aided uncertainty modeling and reliability assessment have become key tools,and finite element simulation and algorithmic innovation play a key role in the reliability analysis of complex equipment[9,10].These techniques can accurately simulate stress and damage accumulation under various operating environments,providing engineers with important decision support and optimization solutions. 展开更多
关键词 EXTREME RELIABILITY environments
在线阅读 下载PDF
Predicting Rock Burst in Underground Engineering Leveraging a Novel Metaheuristic-Based LightGBM Model
16
作者 Kai Wang Biao He +1 位作者 Pijush Samui Jian Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期229-253,共25页
Rock bursts represent a formidable challenge in underground engineering,posing substantial risks to both infrastructure and human safety.These sudden and violent failures of rock masses are characterized by the rapid ... Rock bursts represent a formidable challenge in underground engineering,posing substantial risks to both infrastructure and human safety.These sudden and violent failures of rock masses are characterized by the rapid release of accumulated stress within the rock,leading to severe seismic events and structural damage.Therefore,the development of reliable prediction models for rock bursts is paramount to mitigating these hazards.This study aims to propose a tree-based model—a Light Gradient Boosting Machine(LightGBM)—to predict the intensity of rock bursts in underground engineering.322 actual rock burst cases are collected to constitute an exhaustive rock burst dataset,which serves to train the LightGBMmodel.Two population-basedmetaheuristic algorithms are used to optimize the hyperparameters of the LightGBM model.Finally,the sensitivity analysis is used to identify the predominant factors that may incur the occurrence of rock bursts.The results show that the population-based metaheuristic algorithms have a good ability to search out the optimal hyperparameters of the LightGBM model.The developed LightGBM model yields promising performance in predicting the intensity of rock bursts,with which accuracy on training and testing sets are 0.972 and 0.944,respectively.The sensitivity analysis discloses that the risk of occurring rock burst is significantly sensitive to three factors:uniaxial compressive strength(σc),stress concentration factor(SCF),and elastic strain energy index(Wet).Moreover,this study clarifies the particular impact of these three factors on the intensity of rock bursts through the partial dependence plot. 展开更多
关键词 Rock burst prediction LightGBM coati optimization algorithm pelican optimization algorithm partial dependence plot
在线阅读 下载PDF
Unraveling engineering disturbance effects on deformation in red-bed mudstone railway cuttings:incorporating crack-facilitated moisture diffusion
17
作者 HUANG Kang DAI Zhangjun +3 位作者 YAN Chengzeng YAO Junkai CHI Zecheng CHEN Shanxiong 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1663-1682,共20页
Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses upli... Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses uplift deformation disasters in high-speed railways by employing a moisture diffusion-deformation-fracture coupling model based on the finite-discrete element method(FDEM). The model integrates the influence of cracks on moisture diffusion. The investigation into various excavation depths reveals a direct correlation between depth and the formation of tensile cracks at the bottom of the railway cutting. These cracks expedite moisture migration, significantly impacting the temporal and spatial evolution of the moisture field. Additionally, crack expansion dominates hygroscopic deformation, with the lateral coordinate of the crack zone determining peak vertical displacement. Furthermore, key factors influencing deformation in railway cuttings, including the swelling factor and initial moisture content at the bottom of the cutting, are explored. The number of tensile and shear cracks increases with greater excavation depth, particularly concerning shear cracks. Higher swelling factors and initial moisture contents result in an increased total number of cracks, predominantly shear cracks. Numerical calculations provide valuable insights, offering a scientific foundation and directional guidance for the precise prevention, control, prediction, and comprehensive treatment of mudstone-related issues in high-speed railways. 展开更多
关键词 Red-bed mudstone Railway cutting FDEM Moisture diffusion DEFORMATION CRACK
原文传递
Erratum to:Unraveling engineering disturbance effects on deformation in red-bed mudstone railway cuttings:incorporating crack-facilitated moisture diffusion
18
作者 HUANG Kang DAI Zhangjun +3 位作者 YAN Chengzeng YAO Junkai CHI Zecheng CHEN Shanxiong 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2870-2870,共1页
Erratum to:J.Mt.Sci.(2024)21(5):1663-1682 https://doi.org/10.1007/s11629-023-8561-0 During the production process,the first author’s name was wrongly written as“Rang Huang”in the metadata.The correct name for the f... Erratum to:J.Mt.Sci.(2024)21(5):1663-1682 https://doi.org/10.1007/s11629-023-8561-0 During the production process,the first author’s name was wrongly written as“Rang Huang”in the metadata.The correct name for the first author is“Kang Huang”.The first author’s name in the fulltext pdf is correct. 展开更多
关键词 MOISTURE MUDSTONE diffusion
原文传递
The Effect of Spironolactone Loading on the Properties of 3D-Printed Polycaprolactone/Gold Nanoparticles Composite Scaffolds for Myocardial Tissue Engineering
19
作者 Sharareh Ghaziof Shahrokh Shojaei +2 位作者 Mehdi Mehdikhani Mohammad Khodaei Milad Jafari Nodoushan 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期924-937,共14页
Engineered cardiac constructs(ECC)aid in the progression of regenerative medicine,disease modeling and targeted drug delivery to adjust and aim the release of remedial combination as well as decrease the side effects ... Engineered cardiac constructs(ECC)aid in the progression of regenerative medicine,disease modeling and targeted drug delivery to adjust and aim the release of remedial combination as well as decrease the side effects of drugs.In this research,polycaprolactone/gold nanoparticles(PCL/GNPs)three-dimensional(3D)composite scaffolds were manufactured by 3D printing using the fused deposition modeling(FDM)method and then coated with gelatin/spironolactone(GEL/SPL).Scanning electron microscopy(SEM)and Fourier transform-infrared spectroscopy(FTIR–ATR)were applied to characterize the samples.Furthermore,drug release,biodegradation,behavior of the myoblasts(H9C2)cell line,and cytotoxicity of the 3D scaffolds were evaluated.The microstructural observation of the scaffolds reported interconnected pores with 150–300µm in diameter.The 3D scaffolds were degraded significantly after 28 days of immersion in stimulated body fluid(SBF),with the maximum rate of GEL-coated 3D scaffolds.SPL release from cross-linked GEL coating demonstrated the excess of drug release over time,and according to the control release systems,the drug delivery systems(DDS)went into balance after the 14th day.In addition,cell culture study showed that with the addition of GNPs,the proliferation of(H9C2)was enhanced,and with GEL/SPL coating the cell attachment and viability were improved significantly.These findings suggested that PCL/GNPs 3D scaffolds coated with GEL/SPL can be an appropriate choice for myocardial tissue engineering. 展开更多
关键词 POLYCAPROLACTONE Gold nanoparticles Drug delivery systems SPIRONOLACTONE Cell behavior MYOBLASTS
暂未订购
钛/钢和钛/铜/钢复合板焊接接头组织和性能
20
作者 褚巧玲 王君尧 +3 位作者 杨聃 王中莹 曹齐鲁 YAN Cheng 《焊接学报》 北大核心 2025年第2期25-35,共11页
采用电弧焊接方法(TIG/MIG)进行钛/钢(TA1/Q345)和钛/铜/钢(TA1/T2/Q345)复合板的对接焊接,借助SEM,EBSD,TEM,显微硬度、纳米压痕和拉伸试验系统研究了对接焊缝中的显微结构和力学性能.结果表明,钛/钢对接接头中,Cu-V焊缝主要以铜基固... 采用电弧焊接方法(TIG/MIG)进行钛/钢(TA1/Q345)和钛/铜/钢(TA1/T2/Q345)复合板的对接焊接,借助SEM,EBSD,TEM,显微硬度、纳米压痕和拉伸试验系统研究了对接焊缝中的显微结构和力学性能.结果表明,钛/钢对接接头中,Cu-V焊缝主要以铜基固溶体和铁基固溶体为主,局部生成的Fe_(2)Ti相被韧性较好的铜基固溶体包围;Cu-V/ERTi-1焊缝界面处存在多种Cu-Ti和Fe-Ti金属间化合物;Cu-V焊缝与TA1/Q345界面处,存在Fe-Ti,CuTi_(2)和β-Ti化合物.钛/铜/钢对接接头中,Cu/ERTi-1焊缝界面处分布着多种Cu-Ti金属间化合物,分布范围较广.钛/钢对接焊缝中Fe_(2)Ti脆性相的硬度较高,为20.7GPa,但由于其尺寸相对较小,因此接头的显微硬度分布与钛/铜/钢对接焊缝类似,高硬度区域均在铜基焊缝与ERTi-1焊缝界面处,达到400HV0.3,两种对接接头中大量分布的Cu-Ti化合物的硬度处于8~11GPa.钛/钢异质接头的抗拉强度为440MPa,钛/铜/钢异质接头的抗拉强度为225MPa,断裂位置均在焊缝区域,并且铜基焊缝与ERTi-1焊缝界面处均是脆性断裂特征.钛/钢对接焊缝中不可避免会存在Fe-Ti脆性相,虽然采用钛/铜/钢三层复合板的形式可以避免Fe-Ti脆性相的生成,但是接头中分布较广的Cu-Ti化合物仍旧是接头的一个薄弱区域. 展开更多
关键词 异质接头 钛/钢复合板 钛/铜/钢复合板 金属间化合物 力学性能
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部