In the silk-making workshop of a cigarette factory, dust problems will inevitably occur during the processing of tobacco leaves. Generally, each silk-making dust-removing and package dust-removing outlet has a corresp...In the silk-making workshop of a cigarette factory, dust problems will inevitably occur during the processing of tobacco leaves. Generally, each silk-making dust-removing and package dust-removing outlet has a corresponding air suction port to absorb the dust and then centrally treat it. In the past, due to large-scale centralized production, the correlation between equipment was relatively high, and there was basically no no-load situation. In recent years, due to flexible production and group processing technology, even if a production line is used, there is an uneven production load, and no-load energy consumption. The situation is more prominent. Using hardware equipment such as solenoid valves, cylinders, and wind speed sensors, combined with PLC communication and control technology, energy-saving transformation of the dust removal system is simple, low cost, and effective, and can solve the problem of no-load energy consumption of the dust removal system.展开更多
Steel piles at the tidal zone can be seriously corroded. Common protective methods such as painting or coating with rubber or other protective materials, etc. cannot provide full protection when used as supplementary ...Steel piles at the tidal zone can be seriously corroded. Common protective methods such as painting or coating with rubber or other protective materials, etc. cannot provide full protection when used as supplementary protection because these traditional methods require strict pretreatment and sealing of the metallic surface from the corrosive mediums.and time for the protective coatings to solidify. This is very difficult under the severe action of waves and surges on the sea.With our oil-soluble DZ-2 tape, protection efficiency for hanging steel plates at the tidal and splash zones reaches to 82-99%. The protection efficiency of water soluble DZ tape at the tidal zone reaches to 92.9%. The DZ and DZ-2 tapes can rapidly reduce the original corrosion velocity to ten percent and one percent respectively as fully proved by the 500 hour rapid corrosion testing with indoor salt fog and by the relevant electrochemical parameters of instantaneous corrosion velocity,etc.DZ tape absorbs much OH- to cause a pH展开更多
A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It ...A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2)polluted water circulating system (pumping-spraying-collecting); (3)heating system; (4)workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind and air temperature energy). In case, when there is no roof for the carrier system, the polluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard or discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits.展开更多
The application of the analytic hierarchy process (AHP), combined with a ZJ17 cigarette factories wrap workshop equipment management actual volume, respectively, from the personnel factor, equipment factor, material f...The application of the analytic hierarchy process (AHP), combined with a ZJ17 cigarette factories wrap workshop equipment management actual volume, respectively, from the personnel factor, equipment factor, material factor, environmental factors four aspects carries on the analysis, determine the nine main impact indicators, from nine indicators for ZJ17 volume effect the equipment downtime of main influence factors for evaluation. According to the decision goal, the evaluation model is established, the comparative judgment matrix is constructed, the weight coefficient of each index is calculated, the consistency test is carried out, and the evaluation result is finally obtained. Based on the evaluation results, countermeasures and suggestions are put forward: focusing on strengthening the shutdown control system, strengthening equipment spot inspection, and attaching importance to the training of staff work experience.展开更多
Emei Semiconductor Material Factoryincluding Emei Research Institute ofSemiconductor Material is an importantcomplex unit combining factory with insti-tute specialized in production,trial-produc-tion and scientific re...Emei Semiconductor Material Factoryincluding Emei Research Institute ofSemiconductor Material is an importantcomplex unit combining factory with insti-tute specialized in production,trial-produc-tion and scientific research of semiconductormaterials in China.It is not only a key en-terprise in China National Nonferrous Met-als Industry Corporation,but also an im-展开更多
The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion...The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density.展开更多
Cavitation is an unavoidable phenomenon in the operation of centrifugal pumps.Prolonged cavitation can cause significant damage to the components of the flow channel,and in severe cases,it may even interfere with the ...Cavitation is an unavoidable phenomenon in the operation of centrifugal pumps.Prolonged cavitation can cause significant damage to the components of the flow channel,and in severe cases,it may even interfere with the normal energy exchange processes within the pump.Therefore,effective monitoring of cavitation in centrifugal pumps is crucial.This article presents a study that approaches the issue from an acoustic perspective,using experimental methods to gather and analyze acoustic data at the inlet and outlet of centrifugal pumps across various flow rates,with hydrophones as the primary measuring instruments.Results show that flow rate significantly affects noise levels in both non-cavitation and mild cavitation stages,with noise increasing as the flow rate rises.As the cavitation margin(NPSHa)decreases,inlet and outlet noise trends diverge:inlet noise drops sharply,while outlet noise initially increases before sharply decreasing.Both exhibit a distinct zone of abrupt change,where NPSHa values offer earlier cavitation detection than traditional methods.The noise at the pump’s inlet and outlet primarily consists of discrete and broadband noise,with most energy concentrated at discrete frequencies—shaft frequency(24 Hz),blade frequency(144 Hz),and their harmonics.As NPSHa decreases,the inlet’s discrete and broadband noise frequencies decline,while they increase at the outlet.Monitoring changes in these spectrum characteristics provides an additional means of predicting cavitation onset.展开更多
While the deformation behavior of rare-earth magnesium alloys at high temperatures has been extensively studied,the deformation mechanisms under moderate-to-low temperatures and high strain rates remain insufficiently...While the deformation behavior of rare-earth magnesium alloys at high temperatures has been extensively studied,the deformation mechanisms under moderate-to-low temperatures and high strain rates remain insufficiently understood.To address this gap,hot compression tests were conducted on a Mg-11Gd-3Y-0.5Zr(wt.%)alloy over a temperature range of 150℃–450℃under strain rates of 10^(-3) s^(-1)(low strain rate(LSR))and 10 s^(-1)(high strain rate(HSR))to explore the strain rate-temperature coupling effects during hot deformation.The results revealed an anomalous increase in peak stress at 150℃–250℃as the strain rate decreased,attributed to the combined effects of nano-precipitates,dislocation cell structures,and serrated flow induced by dynamic strain aging.At higher temperatures,strain rate influences softening pathways:under HSR at 450℃,the effect of twinning shifts from strengthening to facilitating dynamic recrystallization(DRX),resulting in substantial grain refinement(-4 μm,81%area fraction at a strain of 0.6).In contrast,at LSR,softening is dominated by dynamic recovery at 350℃,with limited DRX(-4 μm grains,10%area fraction at a strain of 0.6)occurs at 400℃.These findings clarify the dual role of twinning and its interaction with rate-temperature conditions,providing valuable insights into optimizing the hot processing of rare-earth magnesium alloys.展开更多
The Malvaceae family,the most diverse family in the order Malvales,consists of nine subfamilies.Within the Firmiana genus of the Sterculioideae subfamily,most species are considered globally vulnerable,yet their genom...The Malvaceae family,the most diverse family in the order Malvales,consists of nine subfamilies.Within the Firmiana genus of the Sterculioideae subfamily,most species are considered globally vulnerable,yet their genomes remain unexplored.Here,we present a chromosome-level genome assembly for a representative Firmiana species,F.hainanensis,2n=40,totaling 1536 Mb.Phylogenomic analysis shows that F.hainanensis and Durio zibethinus have the closest evolutionary relationship,with an estimated divergence time of approximately 21 millions of years ago(MYA)and distinct polyploidization events in their histories.Evolutionary trajectory analyses indicate that fissions and fusions may play a crucial role in chromosome number variation(2n=14 to 2n=96).Analysis of repetitive elements among Malvaceae reveals that the Tekay subfamily(belonging to the Gypsy group)contributes to variation in genome size(ranging from 324 Mb to 1620 Mb).Additionally,genes associated with P450,peroxidase,and microtubules,and thereby related to cell wall biosynthesis,are significantly contracted in F.hainanensis,potentially leading to its lower wood density relative to Hopea hainanensis.Overall,our study provides insights into the evolution of chromosome number,genome size,and the genetic basis of cell wall biosynthesis in Malvaceae species.展开更多
The effects of accumulative hot rolling followed by solution treatment on the microstructural evolution and fracture behavior of 30CrMo/316L multilayered composites have been investigated.A scanning electron microscop...The effects of accumulative hot rolling followed by solution treatment on the microstructural evolution and fracture behavior of 30CrMo/316L multilayered composites have been investigated.A scanning electron microscope equipped with an electron backscatter diffraction probe,a laser confocal microscope,an electron probe microanalysis,and a universal testing machine were employed to characterize the microstructures and mechanical properties.The results indicate that solution treatment transformed the microstructure of the 30CrMo layer from ferrite to martensite,while the 316L layer remained austenitic but transitioned from the rolled to the recrystallized state.Additionally,solution treatment significantly enhanced the mechanical properties of the composite,leading to an increase in yield strength and ultimate tensile strength to 744 and 1106 MPa,respectively—258 and 276 MPa higher than those of the hot-rolled plate.The enhancement in strength is primarily attributed to the formation of high-strength martensite in the 30CrMo layer.During deformation,the composite interface effectively impeded crack propagation and induced step-like deflection.However,the formation of cross-layer grains facilitated crack nucleation at grain boundaries,leading to rapid crack propagation and instantaneous fracture.Therefore,preventing the formation of cross-layer grains during the heat treatment process is crucial,as their presence weakens the interfacial strengthening effect of the composite plate.This study provides valuable insights for the design and development of multi-layered steels.展开更多
In modern engineering,enhancing boiling heat transfer efficiency is crucial for optimizing energy use and several industrial processes involving different types of materials.This study explores the enhancement of pool...In modern engineering,enhancing boiling heat transfer efficiency is crucial for optimizing energy use and several industrial processes involving different types of materials.This study explores the enhancement of pool boiling heat transfer potentially induced by combining perforated copper particles on a heated surface with a sodium dodecyl sulfate(SDS)surfactant in saturated deionized water.Experiments were conducted at standard atmospheric pressure,with heat flux ranging from 20 to 100 kW/m2.The heating surface,positioned below the layer of freely moving copper beads,allowed the particle layer to shift due to liquid convection and steam nucleation.The study reports on the influence of copper bead diameter(2,3,4,and 5 mm),particle quantity,arrangement,and SDS concentration(20,200,and 500 ppm).It is shown that the combination of 5 mm particles and a 500 ppm SDS concentration can yield a remarkable 139%improvement in heat transfer efficiency.As demonstrated by direct flow visualization,bubble formation occurs primarily in the gaps between the particles and the heated surface,with the presence of SDS reducing bubble size and accelerating bubble detachment.展开更多
In traditional meander line coil electromagnetic acoustic transducer(MLC-EMAT)structures,the bias magnetic field is usually set to be along the normal direction of plate surface.However,since the particle vibration of...In traditional meander line coil electromagnetic acoustic transducer(MLC-EMAT)structures,the bias magnetic field is usually set to be along the normal direction of plate surface.However,since the particle vibration of the antisymmetric Lamb wave is always dominated by out-of-plane components,using bias magnetic field perpendicular to plate surface is kind of inefficient.In this paper,the performance of both the normal bias magnetic field EMAT(NB-EMAT)and the parallel bias magnetic field EMAT(PB-EMAT)for transmitting and receiving A0 mode Lamb waves are thoroughly studied.The mechanisms of these two structures are elaborated.First,the finite element models of both structures are established.The magnetic fields of these two EMATs are numerically calculated and the results are compared with experiments.Then,the Lorentz force distributions excited by the two EMATs are compared to prove the feasibility of improving the excitation efficiency of MLC-EMAT by selecting the direction of bias magnetic field.Furthermore,the excitation efficiencies of NB-EMAT and PB-EMAT are quantitatively analyzed and compared in simulation software.Results show that the excitation efficiency of PB-EMAT is 108%higher than NB-EMAT.Finally,several groups of comparative experiments are conducted to verify the conclusion obtained through numerical calculation.Experimental results show that by simply replacing the tradition NB-EMAT with PB-EMAT,the excitation efficiency can be greatly increased by more than 50%.If PB-EMATs are used as both the receiver and transmitter,the excitation efficiency can be further increased by 113%.展开更多
Solar-induced water oxidation reaction(WOR)for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages.WOR is also associate...Solar-induced water oxidation reaction(WOR)for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages.WOR is also associated with important reduction reactions,such as oxygen reduction reaction(ORR),which leads to the production of hydrogen peroxide(H_(2)O_(2)).These transitions are instrumental in the emergence and evolution of life.In this study,transition metals were loaded onto nitrogen-doped carbon(NDC)prepared under the primitive Earth's atmospheric conditions.These metal-loaded NDC samples were found to catalyze both WOR and ORR under light illumination.The chemical pathways initiated by the pristine and metal-loaded NDC were investigated.This study provides valuable insights into potential mechanisms relevant to the early evolution of our planet.展开更多
In this study,laser-assisted plasma electrolytic oxidation(Laser/PEO)coating was prepared on AZ31B magnesium alloy for corrosion protection,due to insufficient corrosion protection caused by the inherent defects,crack...In this study,laser-assisted plasma electrolytic oxidation(Laser/PEO)coating was prepared on AZ31B magnesium alloy for corrosion protection,due to insufficient corrosion protection caused by the inherent defects,cracks and poor quality of PEO coatings.The plasma discharge evolution,morphological characteristics,elemental composition during coating growth were characterized by high-speed camera,SEM,EDX,XRD and XPS,respectively.Meanwhile,Mott Schottky(M-S)curves,potentiodynamic polarization(PDP)curves and electrochemical impedance spectroscopy(EIS)tests characterized the oxygen vacancy defects and corrosion resistance of the coatings.The results demonstrated that laser-assisted irradiation not only induced plasma discharge on the anode surface,but also limited the plasma discharge size in the post-processing stage,which significantly increased the proportion of corrosion-resistant phase Mg_(2)SiO_(4)(the proportion of Mg_(2)SiO_(4)increased from 23.70%to 39.22%),thickness and density in the coating,and obviously reduced the oxygen vacancy defects and microcracks in the coating.As a result,the corrosion resistance of the Laser/PEO coating(9.29(±0.76)×10^(-7)A·cm^(-2))was further enhanced in comparation with the PEO coating(3.06(±0.19)×10^(-6) A·cm^(-2)).展开更多
The third member of Shahejie Formation(also referred to as Sha 3 Member)in Dongpu Depression,China,a volatile,low-permeability oil reservoir with complex fluid compositions,is subjected to high temperature and high pr...The third member of Shahejie Formation(also referred to as Sha 3 Member)in Dongpu Depression,China,a volatile,low-permeability oil reservoir with complex fluid compositions,is subjected to high temperature and high pressure(HPHT),which poses significant challenges to conventional water injection.To elucidate flow mechanisms and optimize development strategies,this study integrates constant-rate mercury injection(CRMI),nuclear magnetic resonance(NMR),and HPHT three-phase oil/gas/water relative permeability experiments to analyze pore-throat structures,movable fluid characteristics,and relative permeability.The CRMI results indicate that the reservoir exhibits low porosity and low permeability,with dominant throat radius ranging from 0.6 to 5.0μm,and mean pore-throat radius ratio ranging from 40.303 to 278.320,demonstrating significant microscopic heterogeneity.The NMR results reveal that water-alternating-gas(WAG)injection enhances oil recovery by 16.28%(Sample W1)and 13.52%(Sample W2)compared to conventional water injection,primarily due to the gas phase's low viscosity and high mobility,enabling access to micropores unreachable by water phases.The HPHT three-phase relative permeability tests demonstrate positive correlations between saturation and relative permeability,with oil permeability significantly influenced by three-phase saturation and rock wettability.These findings establish a microscopic seepage model for optimizing enhanced oil recovery(EOR)strategies in volatile reservoirs.展开更多
Aqueous batteries,renowned for their cost-effectiveness and non-flammability,have attracted considerable attention in the realm of batteries featuring Zn-based and Sn-based configurations.These configurations employ Z...Aqueous batteries,renowned for their cost-effectiveness and non-flammability,have attracted considerable attention in the realm of batteries featuring Zn-based and Sn-based configurations.These configurations employ Zn and Sn metal anodes,respectively.While the growth patterns of Zn under various current densities have been extensively studied,there has been a scarcity of research on Sn dendrite growth.Our operando imaging analysis reveals that,unlike Zn,Sn forms sharp dendrites at high current density emphasizing the crucial necessity for implementing strategies to suppress the dendrites formation.To address this issue,we introduced a carbon nanotube(CNT)layer on copper foil,effectively preventing the formation of Sn dendrites under high current density,thus enabling the high-current operation of Sn metal batteries.We believe that our work highlights the importance of suppressing dendrite formation in aqueous Sn metal batteries operating at high current density and introduces a fresh perspective on mitigating Sn dendrite formation.展开更多
Nanoparticles-incorporated hydrogel microneedles(NPs-HMN)have attracted significant attention due to their exceptional biomedical applications.The arrayed needle tips of NPsHMN effectively penetrate the skin or tissue...Nanoparticles-incorporated hydrogel microneedles(NPs-HMN)have attracted significant attention due to their exceptional biomedical applications.The arrayed needle tips of NPsHMN effectively penetrate the skin or tissue,enabling minimally invasive and painless delivery of therapeutic molecules into the tissue microenvironment.This approach has shown significant improvements in bioavailability and patient compliance.Moreover,the functionalized hydrogel materials of NPs-HMN exhibit a three-dimensional network structure resembling the extracellular matrix,along with controllable drug release,exceptional swelling ability,hydrophilicity,and biocompatibility.These characteristics broaden the potential applications of HMN in therapeutic and biosensing contexts.In addition,the incorporation of nanoparticles(NPs)has been shown to improve the solubility of hydrophobic drugs,enhance mechanical properties,enable intelligent drug release,and facilitate precise targeting of HMN.The versatility and diversity of treatment options afforded by NPs-HMN contribute to significant advancements in animal models and clinical settings,as well as offer valuable insights for biomaterial development.This review provides a comprehensive examination of the fabrication strategies of NPs-HMN and their recent advancements in biomedical applications.We also analyze the mechanisms,advantages,challenges,and future prospects of this system in enhancing drug delivery efficiency to provide theoretical references for further breakthroughs in novel delivery platforms.展开更多
Heat and mass transfer within an electric arc furnace are strongly influenced by extreme temperatures and complex electromagnetic fields.Variations in temperature distribution play a crucial role in determining melt f...Heat and mass transfer within an electric arc furnace are strongly influenced by extreme temperatures and complex electromagnetic fields.Variations in temperature distribution play a crucial role in determining melt flow patterns and in the formation of stagnant regions,commonly referred to as dead zones.To better understand the internal flow dynamics and thermal behavior of the furnace,this study develops a multiphysics coupled model that integrates fluid heat transfer with Maxwell’s electromagnetic field equations.Numerical simulations are conducted to systematically examine how key operational parameters,such as electric current and arc characteristics,affect the heat transfer performance inside the furnace.The analysis reveals that arc length is the dominant factor governing both current density and heat distribution in the molten bath.Specifically,increasing the arc length from 200 mm to 400 mm results in a 16.1%rise in maximum current density within the titanium slag layer,from 7128 A/m^(2) to 8270 A/m^(2).However,a longer arc also introduces higher interfacial thermal resistance,which impedes heat transfer efficiency and leads to a significant drop in the peak temperature of the titanium slag,from 2618 K to 2125 K.These findings underscore the dual impact of arc length on both electrical and thermal behavior,highlighting the need for careful optimization.展开更多
文摘In the silk-making workshop of a cigarette factory, dust problems will inevitably occur during the processing of tobacco leaves. Generally, each silk-making dust-removing and package dust-removing outlet has a corresponding air suction port to absorb the dust and then centrally treat it. In the past, due to large-scale centralized production, the correlation between equipment was relatively high, and there was basically no no-load situation. In recent years, due to flexible production and group processing technology, even if a production line is used, there is an uneven production load, and no-load energy consumption. The situation is more prominent. Using hardware equipment such as solenoid valves, cylinders, and wind speed sensors, combined with PLC communication and control technology, energy-saving transformation of the dust removal system is simple, low cost, and effective, and can solve the problem of no-load energy consumption of the dust removal system.
文摘Steel piles at the tidal zone can be seriously corroded. Common protective methods such as painting or coating with rubber or other protective materials, etc. cannot provide full protection when used as supplementary protection because these traditional methods require strict pretreatment and sealing of the metallic surface from the corrosive mediums.and time for the protective coatings to solidify. This is very difficult under the severe action of waves and surges on the sea.With our oil-soluble DZ-2 tape, protection efficiency for hanging steel plates at the tidal and splash zones reaches to 82-99%. The protection efficiency of water soluble DZ tape at the tidal zone reaches to 92.9%. The DZ and DZ-2 tapes can rapidly reduce the original corrosion velocity to ten percent and one percent respectively as fully proved by the 500 hour rapid corrosion testing with indoor salt fog and by the relevant electrochemical parameters of instantaneous corrosion velocity,etc.DZ tape absorbs much OH- to cause a pH
基金ThisprojecthadobtainedChinaPatent (No .ZL98 2 2 6 785 .1)
文摘A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2)polluted water circulating system (pumping-spraying-collecting); (3)heating system; (4)workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind and air temperature energy). In case, when there is no roof for the carrier system, the polluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard or discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits.
文摘The application of the analytic hierarchy process (AHP), combined with a ZJ17 cigarette factories wrap workshop equipment management actual volume, respectively, from the personnel factor, equipment factor, material factor, environmental factors four aspects carries on the analysis, determine the nine main impact indicators, from nine indicators for ZJ17 volume effect the equipment downtime of main influence factors for evaluation. According to the decision goal, the evaluation model is established, the comparative judgment matrix is constructed, the weight coefficient of each index is calculated, the consistency test is carried out, and the evaluation result is finally obtained. Based on the evaluation results, countermeasures and suggestions are put forward: focusing on strengthening the shutdown control system, strengthening equipment spot inspection, and attaching importance to the training of staff work experience.
文摘Emei Semiconductor Material Factoryincluding Emei Research Institute ofSemiconductor Material is an importantcomplex unit combining factory with insti-tute specialized in production,trial-produc-tion and scientific research of semiconductormaterials in China.It is not only a key en-terprise in China National Nonferrous Met-als Industry Corporation,but also an im-
基金financially supported by the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3055)the Natural Science Foundation of Hunan Province,China(Nos.2023JJ30671,2020JJ4114)+5 种基金the Natural Science Foundation of Changsha City,China(No.Kq2208264)National Key Project of Research and Development Plan of China(Nos.2021YFC1910505,2021YFC1910504)the Young Core Teacher Foundation of Hunan Province,China(No.150220001)Key Research and Development Program of Guangdong Province,China(No.2020B010186002)the National Natural Science Foundation of China(No.51601229)the Key-Area Research and Development Program of Foshan City,China(No.2230032004640).
文摘The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density.
基金supported by the National Natural Science Foundation of China(Research Project No.52169018).
文摘Cavitation is an unavoidable phenomenon in the operation of centrifugal pumps.Prolonged cavitation can cause significant damage to the components of the flow channel,and in severe cases,it may even interfere with the normal energy exchange processes within the pump.Therefore,effective monitoring of cavitation in centrifugal pumps is crucial.This article presents a study that approaches the issue from an acoustic perspective,using experimental methods to gather and analyze acoustic data at the inlet and outlet of centrifugal pumps across various flow rates,with hydrophones as the primary measuring instruments.Results show that flow rate significantly affects noise levels in both non-cavitation and mild cavitation stages,with noise increasing as the flow rate rises.As the cavitation margin(NPSHa)decreases,inlet and outlet noise trends diverge:inlet noise drops sharply,while outlet noise initially increases before sharply decreasing.Both exhibit a distinct zone of abrupt change,where NPSHa values offer earlier cavitation detection than traditional methods.The noise at the pump’s inlet and outlet primarily consists of discrete and broadband noise,with most energy concentrated at discrete frequencies—shaft frequency(24 Hz),blade frequency(144 Hz),and their harmonics.As NPSHa decreases,the inlet’s discrete and broadband noise frequencies decline,while they increase at the outlet.Monitoring changes in these spectrum characteristics provides an additional means of predicting cavitation onset.
基金financially supported by the National Natural Science Foundation of China (grants 52301146 and 52275308)the Fundamental Research Funds for the Central Universities (grant 2023JG007)China Postdoctoral Science Foundation (grant 8206300226)。
文摘While the deformation behavior of rare-earth magnesium alloys at high temperatures has been extensively studied,the deformation mechanisms under moderate-to-low temperatures and high strain rates remain insufficiently understood.To address this gap,hot compression tests were conducted on a Mg-11Gd-3Y-0.5Zr(wt.%)alloy over a temperature range of 150℃–450℃under strain rates of 10^(-3) s^(-1)(low strain rate(LSR))and 10 s^(-1)(high strain rate(HSR))to explore the strain rate-temperature coupling effects during hot deformation.The results revealed an anomalous increase in peak stress at 150℃–250℃as the strain rate decreased,attributed to the combined effects of nano-precipitates,dislocation cell structures,and serrated flow induced by dynamic strain aging.At higher temperatures,strain rate influences softening pathways:under HSR at 450℃,the effect of twinning shifts from strengthening to facilitating dynamic recrystallization(DRX),resulting in substantial grain refinement(-4 μm,81%area fraction at a strain of 0.6).In contrast,at LSR,softening is dominated by dynamic recovery at 350℃,with limited DRX(-4 μm grains,10%area fraction at a strain of 0.6)occurs at 400℃.These findings clarify the dual role of twinning and its interaction with rate-temperature conditions,providing valuable insights into optimizing the hot processing of rare-earth magnesium alloys.
基金supported by the National Key R&D Program of China(2022YFF1001400)postdoctoral innovative talents support program(517000-X92308)+2 种基金the specific research fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202154,YSPTZX202139)the Research Startup Funding from Hainan Institute of Zhejiang University(0202-6602-A12201)the Distinguished Discipline Support Program of Zhejiang University(226-2024-00205,226-2022-00100).
文摘The Malvaceae family,the most diverse family in the order Malvales,consists of nine subfamilies.Within the Firmiana genus of the Sterculioideae subfamily,most species are considered globally vulnerable,yet their genomes remain unexplored.Here,we present a chromosome-level genome assembly for a representative Firmiana species,F.hainanensis,2n=40,totaling 1536 Mb.Phylogenomic analysis shows that F.hainanensis and Durio zibethinus have the closest evolutionary relationship,with an estimated divergence time of approximately 21 millions of years ago(MYA)and distinct polyploidization events in their histories.Evolutionary trajectory analyses indicate that fissions and fusions may play a crucial role in chromosome number variation(2n=14 to 2n=96).Analysis of repetitive elements among Malvaceae reveals that the Tekay subfamily(belonging to the Gypsy group)contributes to variation in genome size(ranging from 324 Mb to 1620 Mb).Additionally,genes associated with P450,peroxidase,and microtubules,and thereby related to cell wall biosynthesis,are significantly contracted in F.hainanensis,potentially leading to its lower wood density relative to Hopea hainanensis.Overall,our study provides insights into the evolution of chromosome number,genome size,and the genetic basis of cell wall biosynthesis in Malvaceae species.
基金supported by the National Key Research and Development Program of China(No.2018YFA0707304).
文摘The effects of accumulative hot rolling followed by solution treatment on the microstructural evolution and fracture behavior of 30CrMo/316L multilayered composites have been investigated.A scanning electron microscope equipped with an electron backscatter diffraction probe,a laser confocal microscope,an electron probe microanalysis,and a universal testing machine were employed to characterize the microstructures and mechanical properties.The results indicate that solution treatment transformed the microstructure of the 30CrMo layer from ferrite to martensite,while the 316L layer remained austenitic but transitioned from the rolled to the recrystallized state.Additionally,solution treatment significantly enhanced the mechanical properties of the composite,leading to an increase in yield strength and ultimate tensile strength to 744 and 1106 MPa,respectively—258 and 276 MPa higher than those of the hot-rolled plate.The enhancement in strength is primarily attributed to the formation of high-strength martensite in the 30CrMo layer.During deformation,the composite interface effectively impeded crack propagation and induced step-like deflection.However,the formation of cross-layer grains facilitated crack nucleation at grain boundaries,leading to rapid crack propagation and instantaneous fracture.Therefore,preventing the formation of cross-layer grains during the heat treatment process is crucial,as their presence weakens the interfacial strengthening effect of the composite plate.This study provides valuable insights for the design and development of multi-layered steels.
基金supported by the National Natural Science Foundation of China(Project No.52166004)the National Key Research and Development Program of China(Project No.2022YFC3902000)+2 种基金the Major Science and Technology Special Project of Yunnan Province(Project Nos.202202AG050007202202AG050002)the Research on the Development of Complete Sets of Technology for Extraction of Aromatic Substances from Tobacco Waste and Its Application,Applied Research-Pyrolysis Process Technology Research(2023QT01).
文摘In modern engineering,enhancing boiling heat transfer efficiency is crucial for optimizing energy use and several industrial processes involving different types of materials.This study explores the enhancement of pool boiling heat transfer potentially induced by combining perforated copper particles on a heated surface with a sodium dodecyl sulfate(SDS)surfactant in saturated deionized water.Experiments were conducted at standard atmospheric pressure,with heat flux ranging from 20 to 100 kW/m2.The heating surface,positioned below the layer of freely moving copper beads,allowed the particle layer to shift due to liquid convection and steam nucleation.The study reports on the influence of copper bead diameter(2,3,4,and 5 mm),particle quantity,arrangement,and SDS concentration(20,200,and 500 ppm).It is shown that the combination of 5 mm particles and a 500 ppm SDS concentration can yield a remarkable 139%improvement in heat transfer efficiency.As demonstrated by direct flow visualization,bubble formation occurs primarily in the gaps between the particles and the heated surface,with the presence of SDS reducing bubble size and accelerating bubble detachment.
基金supported by the Foundation of Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology(No.17-259-05-005Z)Innovation Project of GUET Graduate Education(No.2025YCXS016)。
文摘In traditional meander line coil electromagnetic acoustic transducer(MLC-EMAT)structures,the bias magnetic field is usually set to be along the normal direction of plate surface.However,since the particle vibration of the antisymmetric Lamb wave is always dominated by out-of-plane components,using bias magnetic field perpendicular to plate surface is kind of inefficient.In this paper,the performance of both the normal bias magnetic field EMAT(NB-EMAT)and the parallel bias magnetic field EMAT(PB-EMAT)for transmitting and receiving A0 mode Lamb waves are thoroughly studied.The mechanisms of these two structures are elaborated.First,the finite element models of both structures are established.The magnetic fields of these two EMATs are numerically calculated and the results are compared with experiments.Then,the Lorentz force distributions excited by the two EMATs are compared to prove the feasibility of improving the excitation efficiency of MLC-EMAT by selecting the direction of bias magnetic field.Furthermore,the excitation efficiencies of NB-EMAT and PB-EMAT are quantitatively analyzed and compared in simulation software.Results show that the excitation efficiency of PB-EMAT is 108%higher than NB-EMAT.Finally,several groups of comparative experiments are conducted to verify the conclusion obtained through numerical calculation.Experimental results show that by simply replacing the tradition NB-EMAT with PB-EMAT,the excitation efficiency can be greatly increased by more than 50%.If PB-EMATs are used as both the receiver and transmitter,the excitation efficiency can be further increased by 113%.
基金supported by the National Key Technologies R&D Program of China(Nos.2022YFE0114800 and 2021YFA1502100)National Natural Science Foundation of China(Nos.22075047,22032002,U1905214,21961142019)the 111 Project(Nos.D16008)。
文摘Solar-induced water oxidation reaction(WOR)for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages.WOR is also associated with important reduction reactions,such as oxygen reduction reaction(ORR),which leads to the production of hydrogen peroxide(H_(2)O_(2)).These transitions are instrumental in the emergence and evolution of life.In this study,transition metals were loaded onto nitrogen-doped carbon(NDC)prepared under the primitive Earth's atmospheric conditions.These metal-loaded NDC samples were found to catalyze both WOR and ORR under light illumination.The chemical pathways initiated by the pristine and metal-loaded NDC were investigated.This study provides valuable insights into potential mechanisms relevant to the early evolution of our planet.
基金The National Natural Science Foundation of China(U2130122,U22A20199,and 51975533)Natural Science Foundation of Zhejiang Province(LGJ22E050002)+1 种基金Equipment pre-research joint fund project of the Ministry of Education(8091B022215)China Postdoctoral Science Foundation(2023M733147)funded this research.
文摘In this study,laser-assisted plasma electrolytic oxidation(Laser/PEO)coating was prepared on AZ31B magnesium alloy for corrosion protection,due to insufficient corrosion protection caused by the inherent defects,cracks and poor quality of PEO coatings.The plasma discharge evolution,morphological characteristics,elemental composition during coating growth were characterized by high-speed camera,SEM,EDX,XRD and XPS,respectively.Meanwhile,Mott Schottky(M-S)curves,potentiodynamic polarization(PDP)curves and electrochemical impedance spectroscopy(EIS)tests characterized the oxygen vacancy defects and corrosion resistance of the coatings.The results demonstrated that laser-assisted irradiation not only induced plasma discharge on the anode surface,but also limited the plasma discharge size in the post-processing stage,which significantly increased the proportion of corrosion-resistant phase Mg_(2)SiO_(4)(the proportion of Mg_(2)SiO_(4)increased from 23.70%to 39.22%),thickness and density in the coating,and obviously reduced the oxygen vacancy defects and microcracks in the coating.As a result,the corrosion resistance of the Laser/PEO coating(9.29(±0.76)×10^(-7)A·cm^(-2))was further enhanced in comparation with the PEO coating(3.06(±0.19)×10^(-6) A·cm^(-2)).
基金supported by the Key R&D Plan of Shaanxi Province[key industrial innovation chain(Group)](No.2022ZDLSF07-04).
文摘The third member of Shahejie Formation(also referred to as Sha 3 Member)in Dongpu Depression,China,a volatile,low-permeability oil reservoir with complex fluid compositions,is subjected to high temperature and high pressure(HPHT),which poses significant challenges to conventional water injection.To elucidate flow mechanisms and optimize development strategies,this study integrates constant-rate mercury injection(CRMI),nuclear magnetic resonance(NMR),and HPHT three-phase oil/gas/water relative permeability experiments to analyze pore-throat structures,movable fluid characteristics,and relative permeability.The CRMI results indicate that the reservoir exhibits low porosity and low permeability,with dominant throat radius ranging from 0.6 to 5.0μm,and mean pore-throat radius ratio ranging from 40.303 to 278.320,demonstrating significant microscopic heterogeneity.The NMR results reveal that water-alternating-gas(WAG)injection enhances oil recovery by 16.28%(Sample W1)and 13.52%(Sample W2)compared to conventional water injection,primarily due to the gas phase's low viscosity and high mobility,enabling access to micropores unreachable by water phases.The HPHT three-phase relative permeability tests demonstrate positive correlations between saturation and relative permeability,with oil permeability significantly influenced by three-phase saturation and rock wettability.These findings establish a microscopic seepage model for optimizing enhanced oil recovery(EOR)strategies in volatile reservoirs.
基金supported by the Institute for Basic Science,south korea(IBS-R006-A2)supproted by the Basic Science Research Program through the National Research Foundation of Korea(NRF),south korea funded by the Ministry of Education(2018R1D1A3B05042787)+1 种基金supported by the National Research Foundation of Korea(NRF),south korea grant funded by the Korea Government(MSIT)(RS-2025-00518953)the National Research Foundation of Korea(NRF),south korea grant funded by the Korea Government(MSIT)(RS-202400422387)。
文摘Aqueous batteries,renowned for their cost-effectiveness and non-flammability,have attracted considerable attention in the realm of batteries featuring Zn-based and Sn-based configurations.These configurations employ Zn and Sn metal anodes,respectively.While the growth patterns of Zn under various current densities have been extensively studied,there has been a scarcity of research on Sn dendrite growth.Our operando imaging analysis reveals that,unlike Zn,Sn forms sharp dendrites at high current density emphasizing the crucial necessity for implementing strategies to suppress the dendrites formation.To address this issue,we introduced a carbon nanotube(CNT)layer on copper foil,effectively preventing the formation of Sn dendrites under high current density,thus enabling the high-current operation of Sn metal batteries.We believe that our work highlights the importance of suppressing dendrite formation in aqueous Sn metal batteries operating at high current density and introduces a fresh perspective on mitigating Sn dendrite formation.
基金supported by China Postdoctoral Science Foundation(2023M740789)Guangdong Basic and Applied Basic Research Foundation(2023A1515110441,2024A1515011248,2024A1515030104)+1 种基金Guangzhou S&T Programme Foundation(202206010051,202205110009)Young Talent Support Project of Guangzhou Association for S&T(QT20220101041).
文摘Nanoparticles-incorporated hydrogel microneedles(NPs-HMN)have attracted significant attention due to their exceptional biomedical applications.The arrayed needle tips of NPsHMN effectively penetrate the skin or tissue,enabling minimally invasive and painless delivery of therapeutic molecules into the tissue microenvironment.This approach has shown significant improvements in bioavailability and patient compliance.Moreover,the functionalized hydrogel materials of NPs-HMN exhibit a three-dimensional network structure resembling the extracellular matrix,along with controllable drug release,exceptional swelling ability,hydrophilicity,and biocompatibility.These characteristics broaden the potential applications of HMN in therapeutic and biosensing contexts.In addition,the incorporation of nanoparticles(NPs)has been shown to improve the solubility of hydrophobic drugs,enhance mechanical properties,enable intelligent drug release,and facilitate precise targeting of HMN.The versatility and diversity of treatment options afforded by NPs-HMN contribute to significant advancements in animal models and clinical settings,as well as offer valuable insights for biomaterial development.This review provides a comprehensive examination of the fabrication strategies of NPs-HMN and their recent advancements in biomedical applications.We also analyze the mechanisms,advantages,challenges,and future prospects of this system in enhancing drug delivery efficiency to provide theoretical references for further breakthroughs in novel delivery platforms.
基金support from National Natural Science Foundation of China under Contract(NO.51966005)Yunnan Fundamental Research Projects(NO.202301AT070469)Yunnan Major Scientific and Technological Projects(NO.202202AG050002).
文摘Heat and mass transfer within an electric arc furnace are strongly influenced by extreme temperatures and complex electromagnetic fields.Variations in temperature distribution play a crucial role in determining melt flow patterns and in the formation of stagnant regions,commonly referred to as dead zones.To better understand the internal flow dynamics and thermal behavior of the furnace,this study develops a multiphysics coupled model that integrates fluid heat transfer with Maxwell’s electromagnetic field equations.Numerical simulations are conducted to systematically examine how key operational parameters,such as electric current and arc characteristics,affect the heat transfer performance inside the furnace.The analysis reveals that arc length is the dominant factor governing both current density and heat distribution in the molten bath.Specifically,increasing the arc length from 200 mm to 400 mm results in a 16.1%rise in maximum current density within the titanium slag layer,from 7128 A/m^(2) to 8270 A/m^(2).However,a longer arc also introduces higher interfacial thermal resistance,which impedes heat transfer efficiency and leads to a significant drop in the peak temperature of the titanium slag,from 2618 K to 2125 K.These findings underscore the dual impact of arc length on both electrical and thermal behavior,highlighting the need for careful optimization.