The influence of in-port ship emissions on gases and PM10 concentrations has been estimated in the port city of Calais, northern France, one of the busiest harbor in Europe, with numerous rotations of ferries or roll-...The influence of in-port ship emissions on gases and PM10 concentrations has been estimated in the port city of Calais, northern France, one of the busiest harbor in Europe, with numerous rotations of ferries or roll-on/roll-off cargo in average per day. NOx, SO2, O3 and PM10 concentrations were continuously measured over a three-month period, as well as real-time particle size distribution. A rural site located at Cape Gris-Nez, 20 km from Calais, was considered to deduce intrinsic contribution of ship emissions at the harbor city. The average concentrations of the studied species as well as the pattern of the conditional bivariate probability function at the two sites evidenced that in-port shipping, especially during the maneuvering operations, has an important influence on the NOx and SO2 concentrations. The impact of shipping in the harbor of Calais on average concentrations was estimated to 5l% for SO2, 35% for NO, 15% for NO2 and 2% for PM10 in the studied period. Concentration peaks of SO2 and NOx associated with an 03 depletion appeared synchronized with departures and arrivals of ferries. For winds blowing from the harbor, when compared to the background level, the number of particles appeared 10 times higher, with the highest differences in the 30-67 nm and the 109-167 nm size ranges. The average impact of in-port ships on PM10 concentrations was estimated to +28.9 μg/m^3 and concerned mainly the PM1 size fraction (40%). Punctually, PM10 can potentially reach a concentration value close to 100μg/m^3.展开更多
In this paper we present a new version of Chen's system: a piecewise linear (PWL) Chert system of fractional-order. Via a sigmoid-like function, the discontinuous system is transformed into a continuous system. By...In this paper we present a new version of Chen's system: a piecewise linear (PWL) Chert system of fractional-order. Via a sigmoid-like function, the discontinuous system is transformed into a continuous system. By numerical simulations, we reveal chaotic behaviors and also multistability, i.e., the existence of small pararheter windows where, for some fixed bifurcation parameter and depending on initial conditions, coexistence of stable attractors and chaotic attractors is possible. Moreover, we show that by using an algorithm to switch the bifurcation parameter, the stable attractors can be numerically approximated.展开更多
This study aims to investigate the ability of an imidazolium biobased Zwitterionic Ionic Liquids(ZILs)in enhancing the phytoavailability of copper from garden(G)and vineyard(V)soils using the model plant ryegrass.Unco...This study aims to investigate the ability of an imidazolium biobased Zwitterionic Ionic Liquids(ZILs)in enhancing the phytoavailability of copper from garden(G)and vineyard(V)soils using the model plant ryegrass.Uncontaminated and artificially contaminated CuSO_(4) soils,unamended and ZIL-amended soil modalities were designed.The copper/ZIL molar ratio(1/4)introduced was rationally established based on molecular modeling and on the maximal copper concentration in artificially contaminated soil.Higher accumulation of copper in the shoots was detected for the uncontaminated and copper contaminated ZIL amended V soils(18.9 and 23.3 mg/kg,respectively)contrary to G soils together with a ZIL concentration of around 3%(W/W)detected by LC-MS analyses.These data evidenced a Cu-accumulation improvement of 38%and 66%compared to non-amended V soils(13.6 and 13.9 mg/kg respectively).ZIL would be mainly present under Cu(II)-ZIL_(4) complexes in the shoots.The impact on the chemical composition of shoot was also studied.The results show that depending on the soils modalitity,the presence of free copper and/or ZIL led to different chemical compositions in lignin and monomeric sugar contents.In the biorefinery context,performances of enzymatic hydrolysis of shoots were also related to the presence of both ZIL and copper under free or complex forms.Ecotoxicity assessment of the vineyard soil samples indicated that the quantity of copper and ZIL remaining in the soils had no significant toxicity.ZIL amendment in a copper-contaminated soil was demonstrated as being a promising way to promote the valorization of phytoremediation plants.展开更多
This study focuses on the improvement of the thermal stability and flame-retardant performance of polyurethane(PU)foam by using effective flame-retardant additives and nano silica(nSiO_(2))particles from rice husk.The...This study focuses on the improvement of the thermal stability and flame-retardant performance of polyurethane(PU)foam by using effective flame-retardant additives and nano silica(nSiO_(2))particles from rice husk.The addition of non-halogen flame retardants(FRs)including aluminum trihydroxide(ATH),triphenyl phosphate(TPP),and diammonium phosphate(DAP)leads to markedly enhanced thermal sta-bility and fire resistance of the PU/nSiO_(2)/FRs nanocomposites,resulting in achieving UL-94 HB standard.In particular,the nanocomposites met the UL-94 V-0 criteria thanks to the inclusion of DAP at 25 phr.The LOI value of the nanocomposites reached 26%which is much higher than that of PU/nSiO_(2)nanocompos-ite,about 20%.In order to further understand the fire-proof mechanism,the residue char layer remaining of the PU/nSiO_(2)/FRs nanocomposites after being burned was also investigated by scanning electron mi-croscopy(SEM)and Fourier transform infrared(FTIR).In addition,the microstructure,thermal stability,thermal conductivity,and mechanical properties of nanocomposites were also evaluated in this study.展开更多
Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed b...Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed by studying physico-chemical characteristics and mechanisms involved in the toxicity of particulate atmospheric pollution. PM0.3-2.s and PM2.5 including ultrafine particles were sampled in Dunkerque, a French industrialized seaside city. PM samples were characterized from a chemical and toxicological point of view. Physico-chemical characterization evidenced that PM2.5 comes from several sources: natural ones, such as soil resuspension and marine sea-salt emissions, as well as anthropogenic ones, such as shipping traffic, road traffic, and industrial activities. Human BEAS-2B tung cells were exposed to PM0.3-2.5, or to the Extractable Organic Matter (EOM) of PM0.3-2.5 and PM2.s. These exposures induced several mechanisms of action implied in the genotoxicity, such as oxidative DNA adducts and DNA Damage Response. The toxicity of PM-EOM was higher for the sample including the ultrafine fraction (PM2.5) containing also higher concentrations of polycyclic aromatic hydrocarbons. These results evidenced the major role of organic compounds in the toxicity of PM.展开更多
Primary and secondary organic aerosols in PM_(2.5)were investigated over a one-year campaign at Zouk Mikael and Fiaa,Lebanon.The n-alkanes concentrations were quite similar at both sites(26-29 ng/m^(3))and mainly expl...Primary and secondary organic aerosols in PM_(2.5)were investigated over a one-year campaign at Zouk Mikael and Fiaa,Lebanon.The n-alkanes concentrations were quite similar at both sites(26-29 ng/m^(3))and mainly explained by anthropogenic emissions rather than natural ones.The concentrations of total Polycyclic Aromatic Hydrocarbons(PAHs)were nearly three times higher at Zouk Mikael(2.56 ng/m^(3))compared to Fiaa(0.95 ng/m^(3)),especially for indeno[1,2,3-c,d]pyrene linked to the presence of the power plant.A characteristic indeno[1,2,3-c,d]pyrene/(indeno[1,2,3-c,d]pyrene+benzo[g,h,i]perylene)ratio in the range0.8-1.0 was determined for heavy fuel oil combustion from the power plant.Fatty acids and hopanes were also investigated and were assigned to cooking activities and vehicular emissions respectively.Phthalates were identified for the first time in Lebanon with high concentrations at Zouk and Fiaa(106.88 and 97.68 ng/m^(3) respectively).Moreover,the biogenic secondary aerosols revealed higher concentrations in summer.The total terpene concentration varied between 131 ng/m^(3) at Zouk Mikael in winter to 469 ng/m3 at Fiaa in summer.Additionnally,the concentrations of the dicarboxylic acids especially for adipic and phthalic acids were more influenced by anthropogenic sources.The analysis of molecular markers and diagnostic ratios indicated that the sites were strongly affected by anthropogenic sources such as waste open burning,diesel private generators,cooking activities,road transport,power plant,and industrial emissions.Moreover,results showed different pattern during winter and summer seasons.Whereas,higher concentrations of biogenic markers were clearly encountered during the summer period.展开更多
Vanadium nitride (VN) was deposited by DC-sputtering on a vertically aligned carbon nanotube (CNTs) template for the purpose of nano-structuration. This led to the fabrication of hierarchically composite electrode...Vanadium nitride (VN) was deposited by DC-sputtering on a vertically aligned carbon nanotube (CNTs) template for the purpose of nano-structuration. This led to the fabrication of hierarchically composite electrodes consisting of porous and nanostructured VN grown on vertically aligned CNTs in a nano-treelike configuration for micro-supercapacitor application. The electrodes show excellent performance with an areal capacitance as high as 37.5 mF cm^-2 at a scan rate of 2 mV s^-1 in a 0.5 M K2504 mild electrolyte solution. Furthermore, the capacitance decay was only 15% after 20,000 consecutive cycles. Moreover, the capacitance was found to increase with VN deposit thickness. The X-ray photoelectron spectroscopy analyses of the electrodes before and after cycling suggest that the oxide layers that form at the VN surface is the responsible for the redox energy storage in this material. Such electrodes can compete with other transition metal nitride based electrodes for micro-supercapacitors.展开更多
7-(Diethylamino)-3-(4-aminophenyl)coumarin has been synthesized in a new one-pot synthesis by a three-step process starting from 4-(diethylamino)salicylaldehyde and 4-nitrophenylacetonitrile. The product was obt...7-(Diethylamino)-3-(4-aminophenyl)coumarin has been synthesized in a new one-pot synthesis by a three-step process starting from 4-(diethylamino)salicylaldehyde and 4-nitrophenylacetonitrile. The product was obtained in a good yield with a high degree of purity and characterized by NMR, IR and HR-MS. The orange crystals of the title compound were grown from ethyl acetate solution. The solid state structure was established by X-ray crystallography analysis. The crystal belongs to the orthorombic system, space group Pccn with a = 11.1095(5), b = 33.0187(15), c = 17.2865(7) A, V= 6341.1(5) A3, C19H20N2O2, Mr = 308.37, ρcalc = 1.292 g·cm^-3, = 0.085 mm^-1, F(000) = 2624, the final R = 0.0480 and wR = 0.1265 (I〉 2σ(I)).展开更多
Fe(3–x)O4 raspberry shaped nanostructures/graphene nanocomposites were synthesized by a one-step polyol-solvothermal method to be tested as electrode materials for Li-ion battery(LIB). Indeed, Fe(3–x)O4 raspbe...Fe(3–x)O4 raspberry shaped nanostructures/graphene nanocomposites were synthesized by a one-step polyol-solvothermal method to be tested as electrode materials for Li-ion battery(LIB). Indeed, Fe(3–x)O4 raspberry shaped nanostructures consist of original oriented aggregates of Fe(3–x)O4 magnetite nanocrystals, ensuring a low oxidation state of magnetite and a hollow and porous structure, which has been easily combined with graphene sheets. The resulting nanocomposite powder displays a very homogeneous spatial distribution of Fe(3–x)O4 nanostructures at the surface of the graphene sheets. These original nanostructures and their strong interaction with the graphene sheets resulted in very small capacity fading upon Li+ion intercalation. Reversible capacity, as high as 660 m Ah/g, makes this material promising for anode in Li-ion batteries application.展开更多
Nitrate from the application of nitrogen-based fertilizers in intensive agriculture is a notorious waste product, though it lacks cost-effective solutions for its removal from potential drinking water resources. Catal...Nitrate from the application of nitrogen-based fertilizers in intensive agriculture is a notorious waste product, though it lacks cost-effective solutions for its removal from potential drinking water resources. Catalytic reduction appears to be a promising technique for converting nitrates to benign nitrogen gas. Mesoporous silica SBA-15 is a frequently used catalyst support that has large surface areas and highly ordered nanopores. In this work, mesoporous silica SBA-15 bimetallic catalysts for nitrate reduction were investigated. The catalyst was optimized for the selection of promoter metal (Sn and Cu), noble metal (Pd and Pt) and loading ratios of these metals at different temperatures and reduction conditions. The catalysts prepared were characterized by FT-IR, N2 physisorption, XRD, SEM, and ICP. All catalysts showed the presence of cylindrical mesoporous channels and uniform pore structures that remained even after metals loading. In the presence of a CO<sub>2</sub> buffer, the catalysts 4Pd-1Cu/SBA-15 and 1Pt-1Cu/SBA-15 reduced at 100?C under H2 and 1Pd-1Cu/SBA-15 reduced at 200°C under H2 demonstrated very high nitrate conversion. Furthermore, the forementioned Pd catalysts had higher N2 selectivity (88% - 87%) compared to Pt catalyst (80%). Nitrate conversion by the 4Pd-1Cu/SBA-15 catalyst was significantly decreased to 81% in the absence of CO<sub>2</sub>.展开更多
At the end of October 2018,a storm of unprecedented strength severely damaged the forests of the eastern sector of the Italian Alps.The affected forest area covers 42,500 ha.The president of one of the damaged regions...At the end of October 2018,a storm of unprecedented strength severely damaged the forests of the eastern sector of the Italian Alps.The affected forest area covers 42,500 ha.The president of one of the damaged regions asked for help from the University of Padua.After eight months of discussion,the authors of this article wrote a consensus text.The sometimes asper debate brought to light some crucial aspects:1)even experienced specialists may have various opinions based on scientific knowledge that lead to conflicting proposals for action.For some of them there is evidence that to restore a destroyed natural environment it is more judicious to do nothing;2)the soil corresponds to a living structure and every ecosystem’s management should be based on it;3)faced with a catastrophe,people and politicians find themselves unarmed,also because they rarely have the scientific background to understand natural processes.Yet politicians are the only persons who make the key decisions that drive the economy in play and therefore determine the near future of our planet.This article is an attempt to respond directly to the governor of a region who formally and prudently asked a university department called"Land,Environment,Agriculture and Forestry"for help before taking decisions;4)the authors also propose an artistic interpretation of facts(uncontrolled storm)and conclusions(listen to the soil).Briefly,the authors identify the soil as an indispensable source for the renewal of the destroyed forest,give indications on how to prepare a map of the soils of the damaged region,and suggest to anchor on this soil map a series of silvicultural and soil management actions that will promote the soil conservation and the faster recovery of the natural dynamic stability and resilience.展开更多
The computational simulation of the manufacturing process of lithium-ion battery composite electrodes based on mechanistic models allows capturing the influence of manufacturing parameters on electrode properties.Howe...The computational simulation of the manufacturing process of lithium-ion battery composite electrodes based on mechanistic models allows capturing the influence of manufacturing parameters on electrode properties.However,ensuring that these properties match with experimental data is typically computationally expensive.In this work,we tackled this costly procedure by proposing a functional data-driven framework,aiming first to retrieve the early numerical values calculated from a molecular dynamics simulation to predict if the observable being calculated is prone to match with our range of experimental values,and in a second step,recover additional values of the ongoing simulation to predict its final result.We demonstrated this approach in the context of the calculation of electrode slurries viscosities.We report that for various electrode chemistries,the expected mechanistic simulation results can be obtained 11 times faster with respect to the complete simulations,while being accurate with a R^(2)_(score) equals to 0.96.展开更多
MXenes are two-dimensional transition metal carbides and/or nitrides with unique physiochemical properties and have attracted extensive interest in numerous fields.However,current MXene synthesis methods are limited b...MXenes are two-dimensional transition metal carbides and/or nitrides with unique physiochemical properties and have attracted extensive interest in numerous fields.However,current MXene synthesis methods are limited by hazardous synthesis conditions,high production costs,or difficulty in largescale production.Therefore,a general,safe,cost-effective,and scalable synthesis method for MXenes is crucial.Here,we report the fast synthesis of MXenes in the open air using a molten salt-shielded synthesis(MS^(3))method,which uses Lewis-acid salts as etchants and a low-melting-point eutectic salt mixture as the reaction medium and shield to prevent MXene oxidation at high temperatures.Carbide and nitride MXenes,including Ti_(3)C_(2)T_(x),Ti_(2)CT_(x),Ti_(3)CNT_(x),and Ti_(4)N_(3)T_(x),were successfully synthesized using the MS^(3)method.We also present the flexibility of the MS^(3)method by scaling the etching process to large batches of 20 and 60 g of Ti_(3)AlC_(2)MAX precursor in one pot.When used as negative electrodes,the prepared MS^(3)-MXenes delivered excellent electrochemical properties for high-rate Li-ion storage.展开更多
Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lith...Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lithium-ion battery SOH.The Swarm Optimization algorithm(PSO)is used to automatically adjust and optimize the parameters of ELM to improve estimation accuracy.Firstly,collect cyclic aging data of the battery and extract five characteristic quantities related to battery capacity from the battery charging curve and increment capacity curve.Use Grey Relation Analysis(GRA)method to analyze the correlation between battery capacity and five characteristic quantities.Then,an ELM is used to build the capacity estimation model of the lithium-ion battery based on five characteristics,and a PSO is introduced to optimize the parameters of the capacity estimation model.The proposed method is validated by the degradation experiment of the lithium-ion battery under different conditions.The results show that the battery capacity estimation model based on ELM and PSO has better accuracy and stability in capacity estimation,and the average absolute percentage error is less than 1%.展开更多
Recently,multivalent aqueous calcium-ion batteries(CIBs)have attracted considerable attention as a possible alternative to Li-ion batteries.However,traditional Ca-ion storage materials show either limited rate capabil...Recently,multivalent aqueous calcium-ion batteries(CIBs)have attracted considerable attention as a possible alternative to Li-ion batteries.However,traditional Ca-ion storage materials show either limited rate capabilities and poor cycle life or insufficient specific capacity.Here,we tackle these limitations by exploring materials having a large interlayer distance to achieve decent specific capacities and one-dimensional architecture with adequate Ca-ion passages that enable rapid reversible(de)intercalation processes.In this work,we report the high-yield,rapid,and low-cost synthesis of 1D metal oxides MV_(3)O_(8)(M=Li,K),CaV_(2)O_(6),and CaV_(6)O_(16)·7H_(2)O(CVO)via a molten salt method.Firstly,using 1D CVO as electrode materials,we show high capacity 205 mA h g^(-1),long cycle life(>97%capacity retention after 200 cycles at 3.0 C),and high-rate performance(117 mA h g^(-1) at 12 C)for Ca-ion(de)intercalation.This work represents a step forward for the development of the molten salt method to synthesize nanomaterials and to help pave the way for the future growth of Ca-ion batteries.展开更多
Cancer stem cells(CSCs)with their self-renewal ability are accepted as cells which initiate tumors.CSCs are regarded as interesting targets for novel anticancer therapeutic agents because of their association with tum...Cancer stem cells(CSCs)with their self-renewal ability are accepted as cells which initiate tumors.CSCs are regarded as interesting targets for novel anticancer therapeutic agents because of their association with tumor recurrence and resistance to conventional therapies,including radiotherapy and chemotherapy.Chimeric antigen receptor(CAR)-T cells are engineered T cells which express an artificial receptor specific for tumor associated antigens(TAAs)by which they accurately target and kill cancer cells.In recent years,CAR-T cell therapy has shown more efficiency in cancer treatment,particularly regarding blood cancers.The expression of specific markers such as TAAs on CSCs in varied cancer types makes them as potent tools for CAR-T cell therapy.Here we review the CSC markers that have been previously targeted with CAR-T cells,as well as the CSC markers that may be used as possible targets for CAR-T cell therapy in the future.Furthermore,we will detail the most important obstacles against CART cell therapy and suggest solutions.展开更多
Electrode manufacturing process strongly impacts lithium-ion battery characteristics.The electrode slurry properties and the coating parameters are among the main factors influencing the electrode heterogeneity which ...Electrode manufacturing process strongly impacts lithium-ion battery characteristics.The electrode slurry properties and the coating parameters are among the main factors influencing the electrode heterogeneity which impacts the battery cell performance and lifetime.However,the analysis of the impact of electrode manufacturing parameters on the electrode heterogeneity is difficult to be quantified and automatized due to the large number of parameters that can be adjusted in the process.In this work,a data-driven methodology was developed for automatic assessment of the impact of parameters such as the formulation and liquid-to-solid ratio in the slurry,and the gap used for its coating on the current collector,on the electrodes heterogeneity.A dataset generated by experimental measurements was used for training and testing a Machine Learning(ML)classifier namely Gaussian Naives Bayes algorithm,for predicting if an electrode is homogeneous or heterogeneous depending on the manufacturing parameters.Lastly,through a 2D representation,the impact of the manufacturing parameters on the electrode heterogeneity was assessed in detail,paving the way towards a powerful tool for the optimization of next generation of battery electrodes.展开更多
We perform the analysis of the hp finite element approximation for the solution to singularly perturbed transmission problems, using Spectral Boundary Layer Meshes. In [12] it was shown that this method yields robust ...We perform the analysis of the hp finite element approximation for the solution to singularly perturbed transmission problems, using Spectral Boundary Layer Meshes. In [12] it was shown that this method yields robust exponential convergence, as the degree p of the approximating polynomials is increased, when the error is measured in the energy norm associated with the boundary value problem. In the present article we sharpen the result by showing that the hp-Finite Element Method (FEM) on Spectral Boundary Layer Meshes leads to robust exponential convergence in a stronger, more balanced norm. Several numerical results illustrating and extending the theory are also nresented.展开更多
Perovskite SrVO_(3) has been investigated as a promising lithium storage anode where the V cation plays the role of the redox center,combining excellent cycle stability and safe operating potential versus Li metal pla...Perovskite SrVO_(3) has been investigated as a promising lithium storage anode where the V cation plays the role of the redox center,combining excellent cycle stability and safe operating potential versus Li metal plating,with limited capacity.Here,we demonstrate the possibility to boost the lithium storage properties,by reducing the non-redox active Sr cation content and fine-tuning the O anion vacancies while maintaining a non-stoichiometric Sr_(x)VO_(3-δ) perovskite structure.Theoretical investigations suggest that Sr vacancy can work as favorable Li^(+) storage sites and preferential transport channels for vip Li^(+) ions,contributing to the increased specific capacity and rate performance.In contrast,inducing O anion vacancy in Sr_(x)VO_(3-δ) can improve rate performance while compromising the specific capacity.Our experimental results confirm the enhancement of specific capacities by fine adjusting the Sr and O vacancies,with a maximum capacity of 444 mAh g^(-1) achieved with Sr_(0.63)VO_(3-δ),which is a 37%increase versus stoichiometric SrVO_(3).Although rich defects have been induced,Sr_(x)VO_(3-δ) electrodes maintain a stable perovskite structure during cycling versus a LiFePO_(4) cathode,and the full-cell could achieve more than 6000 discharge/charge cycles with 80%capacity retention.This result highlights the possibility to use the cation defective-based engineering approach to design high-capacity perovskite oxide anode materials.展开更多
Bioenergy,currently the largest renewable energy source in the EU(64%of the total renewable energy consumption),has sparked great interest to meet the32%renewable resources for the 2030 bioeconomy goal.The design of i...Bioenergy,currently the largest renewable energy source in the EU(64%of the total renewable energy consumption),has sparked great interest to meet the32%renewable resources for the 2030 bioeconomy goal.The design of innovative cropping systems informed by bioeconomy imperatives requires the evaluate of the effects of introducing crops for bioenergy into conventional crop rotations.This study aimed to assess the impacts of changes in conventional cropping systems in mixed dairy cattle farms redesigned to introduce bioenergy crops either by increasing the biomass production through an increase of cover crops,while keeping main feed/food crops,or by substituting food crops with an increase of the crop rotation length.The assessment is based on the comparison between conventional and innovative systems oriented to feed and biogas production,with and without tillage,to evaluate their agri-environmental performances(biomass production,nitrogen fertilization autonomy,greenhouse gas emissions and biogas production).The result showed higher values in the biogas cropping system than in the conventional and feed ones for all indicators,biomass productivity(27%and20%higher,respectively),nitrogen fertilization autonomy(26%and 73%higher,respectively),methanogenic potential(77%and 41%higher,respectively)and greenhouse gas emissions(15%and 3%higher,respectively).There were no negative impacts of no-till compared to the tillage practice,for all tested variables.The biogas cropping system showed a better potential in terms of agri-environmental performance,although its greenhouse gas emissions were higher.Consequently,it would be appropriate to undertake a multicriteria assessment integrating agri-environmental,economic and social performances.展开更多
基金the Atmosphere Protection Plan funded by the Environment, Planning and Housing Regional Agency (Nord-Pas-de-Calais)The “Unité de Chimie Environnementale et Interactions sur le Vivant”, UCEIV EA4492participates in the CLIMIBIO project, which is financially supported by the Hauts-de-France Region Council, the Ministry of Higher Education and Research, the European Regional Development Funds
文摘The influence of in-port ship emissions on gases and PM10 concentrations has been estimated in the port city of Calais, northern France, one of the busiest harbor in Europe, with numerous rotations of ferries or roll-on/roll-off cargo in average per day. NOx, SO2, O3 and PM10 concentrations were continuously measured over a three-month period, as well as real-time particle size distribution. A rural site located at Cape Gris-Nez, 20 km from Calais, was considered to deduce intrinsic contribution of ship emissions at the harbor city. The average concentrations of the studied species as well as the pattern of the conditional bivariate probability function at the two sites evidenced that in-port shipping, especially during the maneuvering operations, has an important influence on the NOx and SO2 concentrations. The impact of shipping in the harbor of Calais on average concentrations was estimated to 5l% for SO2, 35% for NO, 15% for NO2 and 2% for PM10 in the studied period. Concentration peaks of SO2 and NOx associated with an 03 depletion appeared synchronized with departures and arrivals of ferries. For winds blowing from the harbor, when compared to the background level, the number of particles appeared 10 times higher, with the highest differences in the 30-67 nm and the 109-167 nm size ranges. The average impact of in-port ships on PM10 concentrations was estimated to +28.9 μg/m^3 and concerned mainly the PM1 size fraction (40%). Punctually, PM10 can potentially reach a concentration value close to 100μg/m^3.
基金funded by the European Regional Development Funding via RISC projectby CPER Region Haute Normandie France,the Australian Research Council via a Future Fellowship(FT110100896)Discovery Project(DP140100203)
文摘In this paper we present a new version of Chen's system: a piecewise linear (PWL) Chert system of fractional-order. Via a sigmoid-like function, the discontinuous system is transformed into a continuous system. By numerical simulations, we reveal chaotic behaviors and also multistability, i.e., the existence of small pararheter windows where, for some fixed bifurcation parameter and depending on initial conditions, coexistence of stable attractors and chaotic attractors is possible. Moreover, we show that by using an algorithm to switch the bifurcation parameter, the stable attractors can be numerically approximated.
文摘This study aims to investigate the ability of an imidazolium biobased Zwitterionic Ionic Liquids(ZILs)in enhancing the phytoavailability of copper from garden(G)and vineyard(V)soils using the model plant ryegrass.Uncontaminated and artificially contaminated CuSO_(4) soils,unamended and ZIL-amended soil modalities were designed.The copper/ZIL molar ratio(1/4)introduced was rationally established based on molecular modeling and on the maximal copper concentration in artificially contaminated soil.Higher accumulation of copper in the shoots was detected for the uncontaminated and copper contaminated ZIL amended V soils(18.9 and 23.3 mg/kg,respectively)contrary to G soils together with a ZIL concentration of around 3%(W/W)detected by LC-MS analyses.These data evidenced a Cu-accumulation improvement of 38%and 66%compared to non-amended V soils(13.6 and 13.9 mg/kg respectively).ZIL would be mainly present under Cu(II)-ZIL_(4) complexes in the shoots.The impact on the chemical composition of shoot was also studied.The results show that depending on the soils modalitity,the presence of free copper and/or ZIL led to different chemical compositions in lignin and monomeric sugar contents.In the biorefinery context,performances of enzymatic hydrolysis of shoots were also related to the presence of both ZIL and copper under free or complex forms.Ecotoxicity assessment of the vineyard soil samples indicated that the quantity of copper and ZIL remaining in the soils had no significant toxicity.ZIL amendment in a copper-contaminated soil was demonstrated as being a promising way to promote the valorization of phytoremediation plants.
基金funded by the Vietnam National University Ho Chi Minh City(VNU-HCM)under grant number C2022-18-41.
文摘This study focuses on the improvement of the thermal stability and flame-retardant performance of polyurethane(PU)foam by using effective flame-retardant additives and nano silica(nSiO_(2))particles from rice husk.The addition of non-halogen flame retardants(FRs)including aluminum trihydroxide(ATH),triphenyl phosphate(TPP),and diammonium phosphate(DAP)leads to markedly enhanced thermal sta-bility and fire resistance of the PU/nSiO_(2)/FRs nanocomposites,resulting in achieving UL-94 HB standard.In particular,the nanocomposites met the UL-94 V-0 criteria thanks to the inclusion of DAP at 25 phr.The LOI value of the nanocomposites reached 26%which is much higher than that of PU/nSiO_(2)nanocompos-ite,about 20%.In order to further understand the fire-proof mechanism,the residue char layer remaining of the PU/nSiO_(2)/FRs nanocomposites after being burned was also investigated by scanning electron mi-croscopy(SEM)and Fourier transform infrared(FTIR).In addition,the microstructure,thermal stability,thermal conductivity,and mechanical properties of nanocomposites were also evaluated in this study.
基金supported by the Institut National du Cancer (INCa Convention no. 2010-368)+2 种基金the Hauts-de-France Region (Convention No. 14003399)the French Agency of the Environment and Energy (ADEME Convention no. 1494c008283-84)
文摘Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed by studying physico-chemical characteristics and mechanisms involved in the toxicity of particulate atmospheric pollution. PM0.3-2.s and PM2.5 including ultrafine particles were sampled in Dunkerque, a French industrialized seaside city. PM samples were characterized from a chemical and toxicological point of view. Physico-chemical characterization evidenced that PM2.5 comes from several sources: natural ones, such as soil resuspension and marine sea-salt emissions, as well as anthropogenic ones, such as shipping traffic, road traffic, and industrial activities. Human BEAS-2B tung cells were exposed to PM0.3-2.5, or to the Extractable Organic Matter (EOM) of PM0.3-2.5 and PM2.s. These exposures induced several mechanisms of action implied in the genotoxicity, such as oxidative DNA adducts and DNA Damage Response. The toxicity of PM-EOM was higher for the sample including the ultrafine fraction (PM2.5) containing also higher concentrations of polycyclic aromatic hydrocarbons. These results evidenced the major role of organic compounds in the toxicity of PM.
基金funded by the Research Council and the Faculty of Sciences of Saint Joseph University of Beirut–LebanonThe“Unitéde Chimie Environnementale et Interactions sur le Vivant”(UCEIV-UR4492)participates in the CLIMIBIO project,which is financially supported by the Hauts-de-France Region Council,the French Ministry of Higher Education and Researchthe European Regional Development Funds。
文摘Primary and secondary organic aerosols in PM_(2.5)were investigated over a one-year campaign at Zouk Mikael and Fiaa,Lebanon.The n-alkanes concentrations were quite similar at both sites(26-29 ng/m^(3))and mainly explained by anthropogenic emissions rather than natural ones.The concentrations of total Polycyclic Aromatic Hydrocarbons(PAHs)were nearly three times higher at Zouk Mikael(2.56 ng/m^(3))compared to Fiaa(0.95 ng/m^(3)),especially for indeno[1,2,3-c,d]pyrene linked to the presence of the power plant.A characteristic indeno[1,2,3-c,d]pyrene/(indeno[1,2,3-c,d]pyrene+benzo[g,h,i]perylene)ratio in the range0.8-1.0 was determined for heavy fuel oil combustion from the power plant.Fatty acids and hopanes were also investigated and were assigned to cooking activities and vehicular emissions respectively.Phthalates were identified for the first time in Lebanon with high concentrations at Zouk and Fiaa(106.88 and 97.68 ng/m^(3) respectively).Moreover,the biogenic secondary aerosols revealed higher concentrations in summer.The total terpene concentration varied between 131 ng/m^(3) at Zouk Mikael in winter to 469 ng/m3 at Fiaa in summer.Additionnally,the concentrations of the dicarboxylic acids especially for adipic and phthalic acids were more influenced by anthropogenic sources.The analysis of molecular markers and diagnostic ratios indicated that the sites were strongly affected by anthropogenic sources such as waste open burning,diesel private generators,cooking activities,road transport,power plant,and industrial emissions.Moreover,results showed different pattern during winter and summer seasons.Whereas,higher concentrations of biogenic markers were clearly encountered during the summer period.
基金the Deanship of Scientific Research at King Saud University KSA for its funding of this research through the Research Group(Project No.RGP-283)
文摘Vanadium nitride (VN) was deposited by DC-sputtering on a vertically aligned carbon nanotube (CNTs) template for the purpose of nano-structuration. This led to the fabrication of hierarchically composite electrodes consisting of porous and nanostructured VN grown on vertically aligned CNTs in a nano-treelike configuration for micro-supercapacitor application. The electrodes show excellent performance with an areal capacitance as high as 37.5 mF cm^-2 at a scan rate of 2 mV s^-1 in a 0.5 M K2504 mild electrolyte solution. Furthermore, the capacitance decay was only 15% after 20,000 consecutive cycles. Moreover, the capacitance was found to increase with VN deposit thickness. The X-ray photoelectron spectroscopy analyses of the electrodes before and after cycling suggest that the oxide layers that form at the VN surface is the responsible for the redox energy storage in this material. Such electrodes can compete with other transition metal nitride based electrodes for micro-supercapacitors.
基金The"Groupement Franco-Ukrainien en Chimie Moléculaire"(GDRI)and the Embassy of France in Kyiv are gratefully acknowledged for financial support
文摘7-(Diethylamino)-3-(4-aminophenyl)coumarin has been synthesized in a new one-pot synthesis by a three-step process starting from 4-(diethylamino)salicylaldehyde and 4-nitrophenylacetonitrile. The product was obtained in a good yield with a high degree of purity and characterized by NMR, IR and HR-MS. The orange crystals of the title compound were grown from ethyl acetate solution. The solid state structure was established by X-ray crystallography analysis. The crystal belongs to the orthorombic system, space group Pccn with a = 11.1095(5), b = 33.0187(15), c = 17.2865(7) A, V= 6341.1(5) A3, C19H20N2O2, Mr = 308.37, ρcalc = 1.292 g·cm^-3, = 0.085 mm^-1, F(000) = 2624, the final R = 0.0480 and wR = 0.1265 (I〉 2σ(I)).
基金supported by the funding from the European Research Council(ERCAdvanced Grant,ERC-2011-AdG,Project 291543-IONACES)+2 种基金the Materials Institute Carnot Alsace(MICA)from the Direction Générale de l’Armement(DGA)French-German Research Institute of Saint-Louis(ISL)
文摘Fe(3–x)O4 raspberry shaped nanostructures/graphene nanocomposites were synthesized by a one-step polyol-solvothermal method to be tested as electrode materials for Li-ion battery(LIB). Indeed, Fe(3–x)O4 raspberry shaped nanostructures consist of original oriented aggregates of Fe(3–x)O4 magnetite nanocrystals, ensuring a low oxidation state of magnetite and a hollow and porous structure, which has been easily combined with graphene sheets. The resulting nanocomposite powder displays a very homogeneous spatial distribution of Fe(3–x)O4 nanostructures at the surface of the graphene sheets. These original nanostructures and their strong interaction with the graphene sheets resulted in very small capacity fading upon Li+ion intercalation. Reversible capacity, as high as 660 m Ah/g, makes this material promising for anode in Li-ion batteries application.
文摘Nitrate from the application of nitrogen-based fertilizers in intensive agriculture is a notorious waste product, though it lacks cost-effective solutions for its removal from potential drinking water resources. Catalytic reduction appears to be a promising technique for converting nitrates to benign nitrogen gas. Mesoporous silica SBA-15 is a frequently used catalyst support that has large surface areas and highly ordered nanopores. In this work, mesoporous silica SBA-15 bimetallic catalysts for nitrate reduction were investigated. The catalyst was optimized for the selection of promoter metal (Sn and Cu), noble metal (Pd and Pt) and loading ratios of these metals at different temperatures and reduction conditions. The catalysts prepared were characterized by FT-IR, N2 physisorption, XRD, SEM, and ICP. All catalysts showed the presence of cylindrical mesoporous channels and uniform pore structures that remained even after metals loading. In the presence of a CO<sub>2</sub> buffer, the catalysts 4Pd-1Cu/SBA-15 and 1Pt-1Cu/SBA-15 reduced at 100?C under H2 and 1Pd-1Cu/SBA-15 reduced at 200°C under H2 demonstrated very high nitrate conversion. Furthermore, the forementioned Pd catalysts had higher N2 selectivity (88% - 87%) compared to Pt catalyst (80%). Nitrate conversion by the 4Pd-1Cu/SBA-15 catalyst was significantly decreased to 81% in the absence of CO<sub>2</sub>.
文摘At the end of October 2018,a storm of unprecedented strength severely damaged the forests of the eastern sector of the Italian Alps.The affected forest area covers 42,500 ha.The president of one of the damaged regions asked for help from the University of Padua.After eight months of discussion,the authors of this article wrote a consensus text.The sometimes asper debate brought to light some crucial aspects:1)even experienced specialists may have various opinions based on scientific knowledge that lead to conflicting proposals for action.For some of them there is evidence that to restore a destroyed natural environment it is more judicious to do nothing;2)the soil corresponds to a living structure and every ecosystem’s management should be based on it;3)faced with a catastrophe,people and politicians find themselves unarmed,also because they rarely have the scientific background to understand natural processes.Yet politicians are the only persons who make the key decisions that drive the economy in play and therefore determine the near future of our planet.This article is an attempt to respond directly to the governor of a region who formally and prudently asked a university department called"Land,Environment,Agriculture and Forestry"for help before taking decisions;4)the authors also propose an artistic interpretation of facts(uncontrolled storm)and conclusions(listen to the soil).Briefly,the authors identify the soil as an indispensable source for the renewal of the destroyed forest,give indications on how to prepare a map of the soils of the damaged region,and suggest to anchor on this soil map a series of silvicultural and soil management actions that will promote the soil conservation and the faster recovery of the natural dynamic stability and resilience.
基金The authors acknowledge the European Union’s Horizon 2020 research and innovation program for the funding support through the European Research Council (grant agreement 772873,“ARTISTIC” project: ARTISTIC-ERC.M.D.and A.A.F.acknowledge the ALISTORE European Research Institute for funding support.A.A.F.acknowledges the Institut Universitaire de France for the support.A.A.F.and F.C.acknowledges the European Union’s Horizon 2020 research,and innovation program under grant agreement no.957189 (BIG MAP).
文摘The computational simulation of the manufacturing process of lithium-ion battery composite electrodes based on mechanistic models allows capturing the influence of manufacturing parameters on electrode properties.However,ensuring that these properties match with experimental data is typically computationally expensive.In this work,we tackled this costly procedure by proposing a functional data-driven framework,aiming first to retrieve the early numerical values calculated from a molecular dynamics simulation to predict if the observable being calculated is prone to match with our range of experimental values,and in a second step,recover additional values of the ongoing simulation to predict its final result.We demonstrated this approach in the context of the calculation of electrode slurries viscosities.We report that for various electrode chemistries,the expected mechanistic simulation results can be obtained 11 times faster with respect to the complete simulations,while being accurate with a R^(2)_(score) equals to 0.96.
基金supported by the National Natural Science Foundation of China(Grant No.52072252,No.51902215)Sichuan Science and Technology Program(No.2020ZDZX0005)+4 种基金the Fundamental Research Funds for the Central Universities(YJ201886)the Agence Nationale de la Recherche(Labex STORE-EX)for financial supportsupported by the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(Grant No.2019R01003)Ningbo Top-talent Team Program,Ningbo Municipal Bureau of Science and Technology(Grant No.2018A610005)President’s International Fellowship Initiative of CAS(No.2021DE0002).
文摘MXenes are two-dimensional transition metal carbides and/or nitrides with unique physiochemical properties and have attracted extensive interest in numerous fields.However,current MXene synthesis methods are limited by hazardous synthesis conditions,high production costs,or difficulty in largescale production.Therefore,a general,safe,cost-effective,and scalable synthesis method for MXenes is crucial.Here,we report the fast synthesis of MXenes in the open air using a molten salt-shielded synthesis(MS^(3))method,which uses Lewis-acid salts as etchants and a low-melting-point eutectic salt mixture as the reaction medium and shield to prevent MXene oxidation at high temperatures.Carbide and nitride MXenes,including Ti_(3)C_(2)T_(x),Ti_(2)CT_(x),Ti_(3)CNT_(x),and Ti_(4)N_(3)T_(x),were successfully synthesized using the MS^(3)method.We also present the flexibility of the MS^(3)method by scaling the etching process to large batches of 20 and 60 g of Ti_(3)AlC_(2)MAX precursor in one pot.When used as negative electrodes,the prepared MS^(3)-MXenes delivered excellent electrochemical properties for high-rate Li-ion storage.
基金This work was supported by the State Grid Corporation Headquarters Management Technology Project(SGTYHT/19-JS-215)Southwest Jiaotong University new interdisciplinary cultivation project by(YH1500112432273).
文摘Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lithium-ion battery SOH.The Swarm Optimization algorithm(PSO)is used to automatically adjust and optimize the parameters of ELM to improve estimation accuracy.Firstly,collect cyclic aging data of the battery and extract five characteristic quantities related to battery capacity from the battery charging curve and increment capacity curve.Use Grey Relation Analysis(GRA)method to analyze the correlation between battery capacity and five characteristic quantities.Then,an ELM is used to build the capacity estimation model of the lithium-ion battery based on five characteristics,and a PSO is introduced to optimize the parameters of the capacity estimation model.The proposed method is validated by the degradation experiment of the lithium-ion battery under different conditions.The results show that the battery capacity estimation model based on ELM and PSO has better accuracy and stability in capacity estimation,and the average absolute percentage error is less than 1%.
基金This work was supported by the French Agence Nationale de la Recherche(Labex STOREX program)L.Liu is supported by the China Scholarship Council(CSC).
文摘Recently,multivalent aqueous calcium-ion batteries(CIBs)have attracted considerable attention as a possible alternative to Li-ion batteries.However,traditional Ca-ion storage materials show either limited rate capabilities and poor cycle life or insufficient specific capacity.Here,we tackle these limitations by exploring materials having a large interlayer distance to achieve decent specific capacities and one-dimensional architecture with adequate Ca-ion passages that enable rapid reversible(de)intercalation processes.In this work,we report the high-yield,rapid,and low-cost synthesis of 1D metal oxides MV_(3)O_(8)(M=Li,K),CaV_(2)O_(6),and CaV_(6)O_(16)·7H_(2)O(CVO)via a molten salt method.Firstly,using 1D CVO as electrode materials,we show high capacity 205 mA h g^(-1),long cycle life(>97%capacity retention after 200 cycles at 3.0 C),and high-rate performance(117 mA h g^(-1) at 12 C)for Ca-ion(de)intercalation.This work represents a step forward for the development of the molten salt method to synthesize nanomaterials and to help pave the way for the future growth of Ca-ion batteries.
基金supported by Dr.Kazemi Ashtiani Award of Iran’s National Elites Foundation(INEF,Iran)awarded to Hamid Reza Mirzaei
文摘Cancer stem cells(CSCs)with their self-renewal ability are accepted as cells which initiate tumors.CSCs are regarded as interesting targets for novel anticancer therapeutic agents because of their association with tumor recurrence and resistance to conventional therapies,including radiotherapy and chemotherapy.Chimeric antigen receptor(CAR)-T cells are engineered T cells which express an artificial receptor specific for tumor associated antigens(TAAs)by which they accurately target and kill cancer cells.In recent years,CAR-T cell therapy has shown more efficiency in cancer treatment,particularly regarding blood cancers.The expression of specific markers such as TAAs on CSCs in varied cancer types makes them as potent tools for CAR-T cell therapy.Here we review the CSC markers that have been previously targeted with CAR-T cells,as well as the CSC markers that may be used as possible targets for CAR-T cell therapy in the future.Furthermore,we will detail the most important obstacles against CART cell therapy and suggest solutions.
基金A.A.F.and M.D.acknowledge the European Union’s Horizon 2020 research and innovation programme for the funding support through the European Research Council(grant agreement 772873,ARTISTIC proj-ect)M.D.,E.A.and A.A.F.acknowledge the ALISTORE European Research Institute for funding supportA.A.F.acknowledges the Institut Universitaire de France for the support.We acknowledge Dr.Fernando Caro,postdoctoral researcher at LRCS,for the proofreading of the article and useful comments.
文摘Electrode manufacturing process strongly impacts lithium-ion battery characteristics.The electrode slurry properties and the coating parameters are among the main factors influencing the electrode heterogeneity which impacts the battery cell performance and lifetime.However,the analysis of the impact of electrode manufacturing parameters on the electrode heterogeneity is difficult to be quantified and automatized due to the large number of parameters that can be adjusted in the process.In this work,a data-driven methodology was developed for automatic assessment of the impact of parameters such as the formulation and liquid-to-solid ratio in the slurry,and the gap used for its coating on the current collector,on the electrodes heterogeneity.A dataset generated by experimental measurements was used for training and testing a Machine Learning(ML)classifier namely Gaussian Naives Bayes algorithm,for predicting if an electrode is homogeneous or heterogeneous depending on the manufacturing parameters.Lastly,through a 2D representation,the impact of the manufacturing parameters on the electrode heterogeneity was assessed in detail,paving the way towards a powerful tool for the optimization of next generation of battery electrodes.
文摘We perform the analysis of the hp finite element approximation for the solution to singularly perturbed transmission problems, using Spectral Boundary Layer Meshes. In [12] it was shown that this method yields robust exponential convergence, as the degree p of the approximating polynomials is increased, when the error is measured in the energy norm associated with the boundary value problem. In the present article we sharpen the result by showing that the hp-Finite Element Method (FEM) on Spectral Boundary Layer Meshes leads to robust exponential convergence in a stronger, more balanced norm. Several numerical results illustrating and extending the theory are also nresented.
基金supported by the National Double First-Class Universities Construction Grant of Sichuan University(2020SCUNG201)the National Natural Science Foundation of China (52072252 and 51902215)+4 种基金Fundamental Research Funds for the Central UniversitiesChina (YJ201886)State Key Laboratory of Polymer Materials EngineeringChina(sklpme2021-JX-01)the Agence Nationale de la Recherche (Labex STORE-EX),France for financial support
文摘Perovskite SrVO_(3) has been investigated as a promising lithium storage anode where the V cation plays the role of the redox center,combining excellent cycle stability and safe operating potential versus Li metal plating,with limited capacity.Here,we demonstrate the possibility to boost the lithium storage properties,by reducing the non-redox active Sr cation content and fine-tuning the O anion vacancies while maintaining a non-stoichiometric Sr_(x)VO_(3-δ) perovskite structure.Theoretical investigations suggest that Sr vacancy can work as favorable Li^(+) storage sites and preferential transport channels for vip Li^(+) ions,contributing to the increased specific capacity and rate performance.In contrast,inducing O anion vacancy in Sr_(x)VO_(3-δ) can improve rate performance while compromising the specific capacity.Our experimental results confirm the enhancement of specific capacities by fine adjusting the Sr and O vacancies,with a maximum capacity of 444 mAh g^(-1) achieved with Sr_(0.63)VO_(3-δ),which is a 37%increase versus stoichiometric SrVO_(3).Although rich defects have been induced,Sr_(x)VO_(3-δ) electrodes maintain a stable perovskite structure during cycling versus a LiFePO_(4) cathode,and the full-cell could achieve more than 6000 discharge/charge cycles with 80%capacity retention.This result highlights the possibility to use the cation defective-based engineering approach to design high-capacity perovskite oxide anode materials.
基金project“Bioeconomy Demonstrator Network”(“Réseau de sites démonstrateurs IAR”in French)funded from 2015 to 2020 by the European Union(ERDF)the French State(Commissariat Généralàl’Egalitédes Territoires,CGET)the“Hauts-de-France”Regional Council。
文摘Bioenergy,currently the largest renewable energy source in the EU(64%of the total renewable energy consumption),has sparked great interest to meet the32%renewable resources for the 2030 bioeconomy goal.The design of innovative cropping systems informed by bioeconomy imperatives requires the evaluate of the effects of introducing crops for bioenergy into conventional crop rotations.This study aimed to assess the impacts of changes in conventional cropping systems in mixed dairy cattle farms redesigned to introduce bioenergy crops either by increasing the biomass production through an increase of cover crops,while keeping main feed/food crops,or by substituting food crops with an increase of the crop rotation length.The assessment is based on the comparison between conventional and innovative systems oriented to feed and biogas production,with and without tillage,to evaluate their agri-environmental performances(biomass production,nitrogen fertilization autonomy,greenhouse gas emissions and biogas production).The result showed higher values in the biogas cropping system than in the conventional and feed ones for all indicators,biomass productivity(27%and20%higher,respectively),nitrogen fertilization autonomy(26%and 73%higher,respectively),methanogenic potential(77%and 41%higher,respectively)and greenhouse gas emissions(15%and 3%higher,respectively).There were no negative impacts of no-till compared to the tillage practice,for all tested variables.The biogas cropping system showed a better potential in terms of agri-environmental performance,although its greenhouse gas emissions were higher.Consequently,it would be appropriate to undertake a multicriteria assessment integrating agri-environmental,economic and social performances.