A comprehensive numerical investigation into mixed⁃mode delamination is presented in this study.It aims to assess the impact of thermal and friction effects through mixed⁃mode flexure crack propagation testing.Finite ...A comprehensive numerical investigation into mixed⁃mode delamination is presented in this study.It aims to assess the impact of thermal and friction effects through mixed⁃mode flexure crack propagation testing.Finite element analysis was employed to model the delamination process,incorporating a contact cohesive zone model.This model couples the traction⁃separation law,the contact law,and the Coulomb friction law simultaneously.The thermomechanical analysis in this study is performed using a sequentially coupled approach,implemented with the finite element software ABAQUS.The findings underscore the importance of this study.展开更多
The mining process involves drilling and excavation, resulting in the production of waste rock and tailings. The waste materials are then removed and stored in designated areas. This study aims to evaluate the mechani...The mining process involves drilling and excavation, resulting in the production of waste rock and tailings. The waste materials are then removed and stored in designated areas. This study aims to evaluate the mechanical strength and the environmental and economic impact of using Coltan Mining Waste (CMW) as a substitute for aggregates in concrete and mortar production. To achieve this, the CMW needs to be characterised. The Dreux Gorisse method was primarily used to produce concrete with a strength of 20 MPa at 28 days. The mortars, on the other hand, were formulated according to the NF P 18-452 standard. The environmental impact of using CMW as substitutes for natural aggregates in the production of concrete and mortar was analysed using SimaPro software. The results showed that mortars and concrete made with CMW have comparable compressive strengths to the reference mortar and concrete;reduce the negative impact on ecosystem quality, human health, resources, and climate change. It has also been shown that the substitution of aggregates by CMW reduces the cost of concrete and mortar as a function of the distance from the aggregate footprint.展开更多
Structural safety of building particularly that are intended for exposure to strong earthquake loads are designed and equipped with high technologies of control to ensure as possible as its protection against this bru...Structural safety of building particularly that are intended for exposure to strong earthquake loads are designed and equipped with high technologies of control to ensure as possible as its protection against this brutal load. One of these technologies used in the protection of structures is the semi-active control using a Magneto Rheological Damper device. But this device need an adequate controller with a robust algorithm of current or tension adjustment to operate which is further discussed in the following of this paper. In this study, a neural network controller is proposed to control the MR damper to eliminate vibrations of 3-story scaled structure exposed to Tohoku 2011 and Boumerdes 2003 earthquakes. The proposed controller is derived from a linear quadratic controller designed to control an MR damper installed in the first floor of the structure. Equipped with a feedback law the proposed control is coupled to a clipped optimal algorithm to adapt the current tension required to the MR damper adjustment. To evaluate the performance control of the proposed design controller, two numerical simulations of the controlled structure and uncontrolled structure are illustrated and compared.展开更多
文摘A comprehensive numerical investigation into mixed⁃mode delamination is presented in this study.It aims to assess the impact of thermal and friction effects through mixed⁃mode flexure crack propagation testing.Finite element analysis was employed to model the delamination process,incorporating a contact cohesive zone model.This model couples the traction⁃separation law,the contact law,and the Coulomb friction law simultaneously.The thermomechanical analysis in this study is performed using a sequentially coupled approach,implemented with the finite element software ABAQUS.The findings underscore the importance of this study.
文摘The mining process involves drilling and excavation, resulting in the production of waste rock and tailings. The waste materials are then removed and stored in designated areas. This study aims to evaluate the mechanical strength and the environmental and economic impact of using Coltan Mining Waste (CMW) as a substitute for aggregates in concrete and mortar production. To achieve this, the CMW needs to be characterised. The Dreux Gorisse method was primarily used to produce concrete with a strength of 20 MPa at 28 days. The mortars, on the other hand, were formulated according to the NF P 18-452 standard. The environmental impact of using CMW as substitutes for natural aggregates in the production of concrete and mortar was analysed using SimaPro software. The results showed that mortars and concrete made with CMW have comparable compressive strengths to the reference mortar and concrete;reduce the negative impact on ecosystem quality, human health, resources, and climate change. It has also been shown that the substitution of aggregates by CMW reduces the cost of concrete and mortar as a function of the distance from the aggregate footprint.
文摘Structural safety of building particularly that are intended for exposure to strong earthquake loads are designed and equipped with high technologies of control to ensure as possible as its protection against this brutal load. One of these technologies used in the protection of structures is the semi-active control using a Magneto Rheological Damper device. But this device need an adequate controller with a robust algorithm of current or tension adjustment to operate which is further discussed in the following of this paper. In this study, a neural network controller is proposed to control the MR damper to eliminate vibrations of 3-story scaled structure exposed to Tohoku 2011 and Boumerdes 2003 earthquakes. The proposed controller is derived from a linear quadratic controller designed to control an MR damper installed in the first floor of the structure. Equipped with a feedback law the proposed control is coupled to a clipped optimal algorithm to adapt the current tension required to the MR damper adjustment. To evaluate the performance control of the proposed design controller, two numerical simulations of the controlled structure and uncontrolled structure are illustrated and compared.