A comprehensive numerical investigation into mixed⁃mode delamination is presented in this study.It aims to assess the impact of thermal and friction effects through mixed⁃mode flexure crack propagation testing.Finite ...A comprehensive numerical investigation into mixed⁃mode delamination is presented in this study.It aims to assess the impact of thermal and friction effects through mixed⁃mode flexure crack propagation testing.Finite element analysis was employed to model the delamination process,incorporating a contact cohesive zone model.This model couples the traction⁃separation law,the contact law,and the Coulomb friction law simultaneously.The thermomechanical analysis in this study is performed using a sequentially coupled approach,implemented with the finite element software ABAQUS.The findings underscore the importance of this study.展开更多
This research is devoted to the study of creep behavior of asphalt binder in hot region.This binder was subjected to thermal cycles due to the variation of temperature from day to night.These cycles produce a heating-...This research is devoted to the study of creep behavior of asphalt binder in hot region.This binder was subjected to thermal cycles due to the variation of temperature from day to night.These cycles produce a heating-cooling phenomenon.To evaluate the effect of climate change in laboratory,the DSR(dynamic shear rheometer)was used,and the results found with the nine samples were compared.These thermal cycles led to aging and therefore hardening of the binder.Thus,a rheological model was proposed that can represent the curves obtained experimentally,where it is able to describe the creep behavior of binders tested.A new model is proposed that correlates well with the experimental curves,which is called A+2 K.展开更多
The mining process involves drilling and excavation, resulting in the production of waste rock and tailings. The waste materials are then removed and stored in designated areas. This study aims to evaluate the mechani...The mining process involves drilling and excavation, resulting in the production of waste rock and tailings. The waste materials are then removed and stored in designated areas. This study aims to evaluate the mechanical strength and the environmental and economic impact of using Coltan Mining Waste (CMW) as a substitute for aggregates in concrete and mortar production. To achieve this, the CMW needs to be characterised. The Dreux Gorisse method was primarily used to produce concrete with a strength of 20 MPa at 28 days. The mortars, on the other hand, were formulated according to the NF P 18-452 standard. The environmental impact of using CMW as substitutes for natural aggregates in the production of concrete and mortar was analysed using SimaPro software. The results showed that mortars and concrete made with CMW have comparable compressive strengths to the reference mortar and concrete;reduce the negative impact on ecosystem quality, human health, resources, and climate change. It has also been shown that the substitution of aggregates by CMW reduces the cost of concrete and mortar as a function of the distance from the aggregate footprint.展开更多
In this work, we study existence and uniqueness of solutions for multi-point boundary value problem of nonlinear fractional differential equations with two fractional derivatives. By using the variety of fixed point t...In this work, we study existence and uniqueness of solutions for multi-point boundary value problem of nonlinear fractional differential equations with two fractional derivatives. By using the variety of fixed point theorems, such as Banach’s fixed point theorem, Leray-Schauder’s nonlinear alternative and Leray-Schauder’s degree theory, the existence of solutions is obtained. At the end, some illustrative examples are discussed.展开更多
This study aims to analyze mixed convection in a square cavity with two moving vertical walls by finite volume method.The cavity filled with Non-Newtonian fluid of Bingham model is heated from below and cooled by the ...This study aims to analyze mixed convection in a square cavity with two moving vertical walls by finite volume method.The cavity filled with Non-Newtonian fluid of Bingham model is heated from below and cooled by the other walls.This study has been conducted for certain parameters of Reynolds number(Re=1-100),Richardson number(Ri=1-20),Prandtl number(Pr=1-500),and Bingham number has been studied from 0 to 10.The results indicate that the increase in yield stress drops the heat transfer and the flow become flatter,while increasing Reynolds number augments it.The convective transport is dominant when increasing Richardson number which leads to enhance heat transfer in the cavity for both Newtonian and Non-Newtonian fluid.A correlation of Nusselt number is given in function of different parameters.展开更多
Structural safety of building particularly that are intended for exposure to strong earthquake loads are designed and equipped with high technologies of control to ensure as possible as its protection against this bru...Structural safety of building particularly that are intended for exposure to strong earthquake loads are designed and equipped with high technologies of control to ensure as possible as its protection against this brutal load. One of these technologies used in the protection of structures is the semi-active control using a Magneto Rheological Damper device. But this device need an adequate controller with a robust algorithm of current or tension adjustment to operate which is further discussed in the following of this paper. In this study, a neural network controller is proposed to control the MR damper to eliminate vibrations of 3-story scaled structure exposed to Tohoku 2011 and Boumerdes 2003 earthquakes. The proposed controller is derived from a linear quadratic controller designed to control an MR damper installed in the first floor of the structure. Equipped with a feedback law the proposed control is coupled to a clipped optimal algorithm to adapt the current tension required to the MR damper adjustment. To evaluate the performance control of the proposed design controller, two numerical simulations of the controlled structure and uncontrolled structure are illustrated and compared.展开更多
In any solar adsorption refrigeration system,there are three major components:a solar collector adsorbent bed,a condenser and an evaporator.All of those components operate at different temperature levels.A solar colle...In any solar adsorption refrigeration system,there are three major components:a solar collector adsorbent bed,a condenser and an evaporator.All of those components operate at different temperature levels.A solar collector with a tubular adsorbent configuration is proposed and numerically investigated.In this study,a nonlinear auto-regressive model with exogenous input is applied for the prediction of adsorbent bed temperature during the heating and desorption period.The developed neuronal model uses the MATLAB Network toolbox to obtain a better configuration network,applying multilayer feed-forward,the TANSIG transfer function,and the back-propagation learning algorithm.The input parameters are ambient temperature and the uncontrolled natural factor of solar radiation.The output network contains a variable representing the adsorbent bed temperature.The values obtained from the network model were compared with the experimental data,and the prediction performance of the network model was examined using various performance parameters.The mean square error(MSE)and the statistical coefficient of determination(R2)values are excellent numerical criteria for evaluating the performance of a prediction tool.A well-trained neural network model produces small MSE and higher R2 values.In the current study,the adsorbent bed temperature results obtained from a neural network with a two neuron in hidden layer and the number of the tapped time-delays d=9 provided a reasonable degree of accuracy:MSE=1.0121 and R2=0.99864 and the index of agreement was 0.9988.This network model,based on a high-performance algorithm,provided reliable and high-precision results concerning the predictable temperature of the adsorbent bed.展开更多
文摘A comprehensive numerical investigation into mixed⁃mode delamination is presented in this study.It aims to assess the impact of thermal and friction effects through mixed⁃mode flexure crack propagation testing.Finite element analysis was employed to model the delamination process,incorporating a contact cohesive zone model.This model couples the traction⁃separation law,the contact law,and the Coulomb friction law simultaneously.The thermomechanical analysis in this study is performed using a sequentially coupled approach,implemented with the finite element software ABAQUS.The findings underscore the importance of this study.
文摘This research is devoted to the study of creep behavior of asphalt binder in hot region.This binder was subjected to thermal cycles due to the variation of temperature from day to night.These cycles produce a heating-cooling phenomenon.To evaluate the effect of climate change in laboratory,the DSR(dynamic shear rheometer)was used,and the results found with the nine samples were compared.These thermal cycles led to aging and therefore hardening of the binder.Thus,a rheological model was proposed that can represent the curves obtained experimentally,where it is able to describe the creep behavior of binders tested.A new model is proposed that correlates well with the experimental curves,which is called A+2 K.
文摘The mining process involves drilling and excavation, resulting in the production of waste rock and tailings. The waste materials are then removed and stored in designated areas. This study aims to evaluate the mechanical strength and the environmental and economic impact of using Coltan Mining Waste (CMW) as a substitute for aggregates in concrete and mortar production. To achieve this, the CMW needs to be characterised. The Dreux Gorisse method was primarily used to produce concrete with a strength of 20 MPa at 28 days. The mortars, on the other hand, were formulated according to the NF P 18-452 standard. The environmental impact of using CMW as substitutes for natural aggregates in the production of concrete and mortar was analysed using SimaPro software. The results showed that mortars and concrete made with CMW have comparable compressive strengths to the reference mortar and concrete;reduce the negative impact on ecosystem quality, human health, resources, and climate change. It has also been shown that the substitution of aggregates by CMW reduces the cost of concrete and mortar as a function of the distance from the aggregate footprint.
文摘In this work, we study existence and uniqueness of solutions for multi-point boundary value problem of nonlinear fractional differential equations with two fractional derivatives. By using the variety of fixed point theorems, such as Banach’s fixed point theorem, Leray-Schauder’s nonlinear alternative and Leray-Schauder’s degree theory, the existence of solutions is obtained. At the end, some illustrative examples are discussed.
文摘This study aims to analyze mixed convection in a square cavity with two moving vertical walls by finite volume method.The cavity filled with Non-Newtonian fluid of Bingham model is heated from below and cooled by the other walls.This study has been conducted for certain parameters of Reynolds number(Re=1-100),Richardson number(Ri=1-20),Prandtl number(Pr=1-500),and Bingham number has been studied from 0 to 10.The results indicate that the increase in yield stress drops the heat transfer and the flow become flatter,while increasing Reynolds number augments it.The convective transport is dominant when increasing Richardson number which leads to enhance heat transfer in the cavity for both Newtonian and Non-Newtonian fluid.A correlation of Nusselt number is given in function of different parameters.
文摘Structural safety of building particularly that are intended for exposure to strong earthquake loads are designed and equipped with high technologies of control to ensure as possible as its protection against this brutal load. One of these technologies used in the protection of structures is the semi-active control using a Magneto Rheological Damper device. But this device need an adequate controller with a robust algorithm of current or tension adjustment to operate which is further discussed in the following of this paper. In this study, a neural network controller is proposed to control the MR damper to eliminate vibrations of 3-story scaled structure exposed to Tohoku 2011 and Boumerdes 2003 earthquakes. The proposed controller is derived from a linear quadratic controller designed to control an MR damper installed in the first floor of the structure. Equipped with a feedback law the proposed control is coupled to a clipped optimal algorithm to adapt the current tension required to the MR damper adjustment. To evaluate the performance control of the proposed design controller, two numerical simulations of the controlled structure and uncontrolled structure are illustrated and compared.
文摘In any solar adsorption refrigeration system,there are three major components:a solar collector adsorbent bed,a condenser and an evaporator.All of those components operate at different temperature levels.A solar collector with a tubular adsorbent configuration is proposed and numerically investigated.In this study,a nonlinear auto-regressive model with exogenous input is applied for the prediction of adsorbent bed temperature during the heating and desorption period.The developed neuronal model uses the MATLAB Network toolbox to obtain a better configuration network,applying multilayer feed-forward,the TANSIG transfer function,and the back-propagation learning algorithm.The input parameters are ambient temperature and the uncontrolled natural factor of solar radiation.The output network contains a variable representing the adsorbent bed temperature.The values obtained from the network model were compared with the experimental data,and the prediction performance of the network model was examined using various performance parameters.The mean square error(MSE)and the statistical coefficient of determination(R2)values are excellent numerical criteria for evaluating the performance of a prediction tool.A well-trained neural network model produces small MSE and higher R2 values.In the current study,the adsorbent bed temperature results obtained from a neural network with a two neuron in hidden layer and the number of the tapped time-delays d=9 provided a reasonable degree of accuracy:MSE=1.0121 and R2=0.99864 and the index of agreement was 0.9988.This network model,based on a high-performance algorithm,provided reliable and high-precision results concerning the predictable temperature of the adsorbent bed.