期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Size effects on electrical properties of sol–gel grown chromium doped zinc oxide nanoparticles 被引量:1
1
作者 Zalak Joshi Davit Dhruv +5 位作者 K.N.Rathod J.H.Markna A.Satyaprasad A.D.Joshi P.S.Solanki N.A.Shah 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第3期488-495,共8页
In this communication, we report the results of the studies on electrical properties of Zn0.95Cr0.05O nanoparticles synthesized using sol-gel method. X-ray diffraction (XRD) and transmission electron microscopy (TE... In this communication, we report the results of the studies on electrical properties of Zn0.95Cr0.05O nanoparticles synthesized using sol-gel method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements were performed for the structural and microstructural behaviors of the nanoparticles. Rietveld analysis was carried out to confirm the single phasic nature. High resolution TEM (HRTEM) confirms the nanoscale nature and polycrystalline orientations in the samples. Dielectric response has been understood in the context of universal dielectric response (UDR) model along with the Koop's theory and Maxwell - Wagner (M-W) mechanism. Variation in ac conductivity with frequency has been discussed in detail in terms of power law fits. Results of the impedance measurements have been explained on the basis of crystal cores and crystal boundary density. Cole - cole behavior has been studied for the impedance data. For potential application of nanoparticles, average normalized change (ANC) in impedance has been estimated and discussed in the light of size effects and oxygen vacancies. 展开更多
关键词 Size effects Electrical properties Sol-gelZinc oxide Nanoparticles
原文传递
Investigation of Surface Free Energy for PTFE Polymer by Bipolar Argon Plasma Treatment
2
作者 S. M. Pelagade N. L. Singh +4 位作者 R. S. Rane S. Mukherjee U. P. Deshpande V. Ganesan T. Shripathi 《Journal of Surface Engineered Materials and Advanced Technology》 2012年第2期132-136,共5页
The low ion energy argon plasma was used for surface modification of Poly tetra fluoroethylene (PTFE) polymer. The plasma was generated between two plane metal electrode by using 50 kHz bipolar power supply. The plasm... The low ion energy argon plasma was used for surface modification of Poly tetra fluoroethylene (PTFE) polymer. The plasma was generated between two plane metal electrode by using 50 kHz bipolar power supply. The plasma treated surface was characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The surface free energy (SFE) of plasma treated surface was calculated from contact angle measurement. SFE increases from 33.39 mJ/m2 to 41.40 mJ/m2 with the increase in plasma treatment time and the corresponding contact angle changed from 76? to 60?. XPS study shows that F/C ratio change from 1.8 (untreated) to 1.3 (treated) and O/C ratio changes from 0.094 (untreated) to 0.148 (treated). The XPS analysis shows that both F1s and the C1s spectra for PTFE are marginally modified by plasma treatment. AFM study shows that the average surface roughness (Ra) increased from 8.5 nm to 22.8 nm after plasma treatment. Vicker’s micro hardness of the film increases upon plasma treatment. The increase in SFE after plasma treatment is attributed to the functionalization of the polymer surface with hydrophilic groups as supported from the above observations. 展开更多
关键词 PTFE Surface Energy XPS AFM MICROHARDNESS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部