We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung's solution and Olivier's solution. Compared with previous approaches, the main advan...We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung's solution and Olivier's solution. Compared with previous approaches, the main advantage of the present approach is allowing an analytic solution without involving any semi-empirical parameter for the whole non-equilibrium flow regimes. The effects of some important physical quantities therefore can be fully revealed via the analytic solution. By combining the current solution with Ideal Dissociating Gas(IDG) model, we investigate the effects of free stream kinetic energy and free stream dissociation level(which can be very different between different facilities) on the shock stand-off distance.展开更多
We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusi...We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusing on discontinuous spectral element semidis-cretizations,we design new controllers for existing methods and for some new embedded Runge-Kutta pairs.We demonstrate the importance of choosing adequate controller parameters and provide a means to obtain these in practice.We compare a wide range of error-control-based methods,along with the common approach in which step size con-trol is based on the Courant-Friedrichs-Lewy(CFL)number.The optimized methods give improved performance and naturally adopt a step size close to the maximum stable CFL number at loose tolerances,while additionally providing control of the temporal error at tighter tolerances.The numerical examples include challenging industrial CFD applications.展开更多
In this article,discrete variants of several results from vector calculus are studied for clas-sical finite difference summation by parts operators in two and three space dimensions.It is shown that existence theorems...In this article,discrete variants of several results from vector calculus are studied for clas-sical finite difference summation by parts operators in two and three space dimensions.It is shown that existence theorems for scalar/vector potentials of irrotational/solenoidal vector fields cannot hold discretely because of grid oscillations,which are characterised explicitly.This results in a non-vanishing remainder associated with grid oscillations in the discrete Helmholtz Hodge decomposition.Nevertheless,iterative numerical methods based on an interpretation of the Helmholtz Hodge decomposition via orthogonal projections are pro-posed and applied successfully.In numerical experiments,the discrete remainder vanishes and the potentials converge with the same order of accuracy as usual in other first-order partial differential equations.Motivated by the successful application of the Helmholtz Hodge decomposition in theoretical plasma physics,applications to the discrete analysis of magnetohydrodynamic(MHD) wave modes are presented and discussed.展开更多
We study a temporal step size control of explicit Runge-Kutta(RK)methods for com-pressible computational fuid dynamics(CFD),including the Navier-Stokes equations and hyperbolic systems of conservation laws such as the...We study a temporal step size control of explicit Runge-Kutta(RK)methods for com-pressible computational fuid dynamics(CFD),including the Navier-Stokes equations and hyperbolic systems of conservation laws such as the Euler equations.We demonstrate that error-based approaches are convenient in a wide range of applications and compare them to more classical step size control based on a Courant-Friedrichs-Lewy(CFL)number.Our numerical examples show that the error-based step size control is easy to use,robust,and efcient,e.g.,for(initial)transient periods,complex geometries,nonlinear shock captur-ing approaches,and schemes that use nonlinear entropy projections.We demonstrate these properties for problems ranging from well-understood academic test cases to industrially relevant large-scale computations with two disjoint code bases,the open source Julia pack-ages Trixi.jl with OrdinaryDiffEq.jl and the C/Fortran code SSDC based on PETSc.展开更多
基金co-supported by the Research Grants Council of Hong Kong,China(No.C5010-14E)the National Natural Science Foundation of China(No.11372265)
文摘We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung's solution and Olivier's solution. Compared with previous approaches, the main advantage of the present approach is allowing an analytic solution without involving any semi-empirical parameter for the whole non-equilibrium flow regimes. The effects of some important physical quantities therefore can be fully revealed via the analytic solution. By combining the current solution with Ideal Dissociating Gas(IDG) model, we investigate the effects of free stream kinetic energy and free stream dissociation level(which can be very different between different facilities) on the shock stand-off distance.
基金Open Access funding enabled and organized by Projekt DEAL.
文摘We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusing on discontinuous spectral element semidis-cretizations,we design new controllers for existing methods and for some new embedded Runge-Kutta pairs.We demonstrate the importance of choosing adequate controller parameters and provide a means to obtain these in practice.We compare a wide range of error-control-based methods,along with the common approach in which step size con-trol is based on the Courant-Friedrichs-Lewy(CFL)number.The optimized methods give improved performance and naturally adopt a step size close to the maximum stable CFL number at loose tolerances,while additionally providing control of the temporal error at tighter tolerances.The numerical examples include challenging industrial CFD applications.
文摘In this article,discrete variants of several results from vector calculus are studied for clas-sical finite difference summation by parts operators in two and three space dimensions.It is shown that existence theorems for scalar/vector potentials of irrotational/solenoidal vector fields cannot hold discretely because of grid oscillations,which are characterised explicitly.This results in a non-vanishing remainder associated with grid oscillations in the discrete Helmholtz Hodge decomposition.Nevertheless,iterative numerical methods based on an interpretation of the Helmholtz Hodge decomposition via orthogonal projections are pro-posed and applied successfully.In numerical experiments,the discrete remainder vanishes and the potentials converge with the same order of accuracy as usual in other first-order partial differential equations.Motivated by the successful application of the Helmholtz Hodge decomposition in theoretical plasma physics,applications to the discrete analysis of magnetohydrodynamic(MHD) wave modes are presented and discussed.
基金Open Access funding enabled and organized by Projekt DEAL.Andrew Winters was funded through Vetenskapsrådet,Sweden Grant Agreement 2020-03642 VR.Some computations were enabled by resources provided by the Swedish National Infrastructure for Computing(SNIC)at Tetralith,par-tially funded by the Swedish Research Council under Grant Agreement No.2018-05973Hugo Guillermo Castro was funded through the award P2021-0004 of King Abdullah University of Science and Technol-ogy.Some of the simulations were enabled by the Supercomputing Laboratory and the Extreme Comput-ing Research Center at King Abdullah University of Science and Technology.Gregor Gassner acknowl-edges funding through the Klaus-Tschira Stiftung via the project“HiFiLab”.Gregor Gassner and Michael Schlottke-Lakemper acknowledge funding from the Deutsche Forschungsgemeinschaft through the research unit“SNuBIC”(DFG-FOR5409).
文摘We study a temporal step size control of explicit Runge-Kutta(RK)methods for com-pressible computational fuid dynamics(CFD),including the Navier-Stokes equations and hyperbolic systems of conservation laws such as the Euler equations.We demonstrate that error-based approaches are convenient in a wide range of applications and compare them to more classical step size control based on a Courant-Friedrichs-Lewy(CFL)number.Our numerical examples show that the error-based step size control is easy to use,robust,and efcient,e.g.,for(initial)transient periods,complex geometries,nonlinear shock captur-ing approaches,and schemes that use nonlinear entropy projections.We demonstrate these properties for problems ranging from well-understood academic test cases to industrially relevant large-scale computations with two disjoint code bases,the open source Julia pack-ages Trixi.jl with OrdinaryDiffEq.jl and the C/Fortran code SSDC based on PETSc.