Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitor...Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitoring.Frequent topology changes,high mobility,and limited energy availability pose significant challenges to maintaining stable and high-performance routing.Traditional routing protocols,such as Ad hoc On-Demand Distance Vector(AODV),Load-Balanced Optimized Predictive Ad hoc Routing(LB-OPAR),and Destination-Sequenced Distance Vector(DSDV),often experience performance degradation under such conditions.To address these limitations,this study evaluates the effectiveness of Dynamic Adaptive Routing(DAR),a protocol designed to adapt routing decisions in real time based on network dynamics and resource constraints.The research utilizes the Network Simulator 3(NS-3)platform to conduct controlled simulations,measuring key performance indicators such as latency,Packet Delivery Ratio(PDR),energy consumption,and throughput.Comparative analysis reveals that DAR consistently outperforms conventional protocols,achieving a 20%-30% reduction in latency,a 25% decrease in energy consumption,and marked improvements in throughput and PDR.These results highlight DAR’s ability to maintain high communication reliability while optimizing resource usage in challenging operational scenarios.By providing empirical evidence of DAR’s advantages in highly dynamic UAV network environments,this study contributes to advancing adaptive routing strategies.The findings not only validate DAR’s robustness and scalability but also lay the groundwork for integrating artificial intelligence-driven decision-making and real-world UAV deployment.Future work will explore cross-layer optimization,multi-UAV coordination,and experimental validation in field trials,aiming to further enhance communication resilience and energy efficiency in next-generation aerial networks.展开更多
The integration of the dynamic adaptive routing(DAR)algorithm in unmanned aerial vehicle(UAV)networks offers a significant advancement in addressing the challenges posed by next-generation communication systems like 6...The integration of the dynamic adaptive routing(DAR)algorithm in unmanned aerial vehicle(UAV)networks offers a significant advancement in addressing the challenges posed by next-generation communication systems like 6G.DAR’s innovative framework incorporates real-time path adjustments,energy-aware routing,and predictive models,optimizing reliability,latency,and energy efficiency in UAV operations.This study demonstrated DAR’s superior performance in dynamic,large-scale environments,proving its adaptability and scalability for real-time applications.As 6G networks evolve,challenges such as bandwidth demands,global spectrum management,security vulnerabilities,and financial feasibility become prominent.DAR aligns with these demands by offering robust solutions that enhance data transmission while ensuring network reliability.However,obstacles like global route optimization and signal interference in urban areas necessitate further refinement.Future directions should explore hybrid approaches,the integration of machine learning,and comprehensive real-world testing to maximize DAR’s capabilities.The findings underscore DAR’s pivotal role in enabling efficient and sustainable UAV communication systems,contributing to the broader landscape of wireless technology and laying a foundation for the seamless transition to 6G networks.展开更多
文摘Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitoring.Frequent topology changes,high mobility,and limited energy availability pose significant challenges to maintaining stable and high-performance routing.Traditional routing protocols,such as Ad hoc On-Demand Distance Vector(AODV),Load-Balanced Optimized Predictive Ad hoc Routing(LB-OPAR),and Destination-Sequenced Distance Vector(DSDV),often experience performance degradation under such conditions.To address these limitations,this study evaluates the effectiveness of Dynamic Adaptive Routing(DAR),a protocol designed to adapt routing decisions in real time based on network dynamics and resource constraints.The research utilizes the Network Simulator 3(NS-3)platform to conduct controlled simulations,measuring key performance indicators such as latency,Packet Delivery Ratio(PDR),energy consumption,and throughput.Comparative analysis reveals that DAR consistently outperforms conventional protocols,achieving a 20%-30% reduction in latency,a 25% decrease in energy consumption,and marked improvements in throughput and PDR.These results highlight DAR’s ability to maintain high communication reliability while optimizing resource usage in challenging operational scenarios.By providing empirical evidence of DAR’s advantages in highly dynamic UAV network environments,this study contributes to advancing adaptive routing strategies.The findings not only validate DAR’s robustness and scalability but also lay the groundwork for integrating artificial intelligence-driven decision-making and real-world UAV deployment.Future work will explore cross-layer optimization,multi-UAV coordination,and experimental validation in field trials,aiming to further enhance communication resilience and energy efficiency in next-generation aerial networks.
文摘The integration of the dynamic adaptive routing(DAR)algorithm in unmanned aerial vehicle(UAV)networks offers a significant advancement in addressing the challenges posed by next-generation communication systems like 6G.DAR’s innovative framework incorporates real-time path adjustments,energy-aware routing,and predictive models,optimizing reliability,latency,and energy efficiency in UAV operations.This study demonstrated DAR’s superior performance in dynamic,large-scale environments,proving its adaptability and scalability for real-time applications.As 6G networks evolve,challenges such as bandwidth demands,global spectrum management,security vulnerabilities,and financial feasibility become prominent.DAR aligns with these demands by offering robust solutions that enhance data transmission while ensuring network reliability.However,obstacles like global route optimization and signal interference in urban areas necessitate further refinement.Future directions should explore hybrid approaches,the integration of machine learning,and comprehensive real-world testing to maximize DAR’s capabilities.The findings underscore DAR’s pivotal role in enabling efficient and sustainable UAV communication systems,contributing to the broader landscape of wireless technology and laying a foundation for the seamless transition to 6G networks.