期刊文献+
共找到5,452篇文章
< 1 2 250 >
每页显示 20 50 100
Assessing the feasibility and environmental benefits of electrifying construction machinery in Beijing,China
1
作者 Huawei Yi Yangyang Cui +6 位作者 Han Li Guanghan Huang Kaiyun Liu Linzhen Qu Jing Yan Lei Nie Yifeng Xue 《Journal of Environmental Sciences》 2026年第1期374-382,共9页
Oil-fired construction machinery(OCM)is a major source of urban air pollutants and CO_(2) emissions,and elec-trification is a crucial pathway for improving air quality and achieving China’s dual carbon goals;however,... Oil-fired construction machinery(OCM)is a major source of urban air pollutants and CO_(2) emissions,and elec-trification is a crucial pathway for improving air quality and achieving China’s dual carbon goals;however,its feasibility has not been fully explored.This study uses data envelopment analysis and the analytic hierarchy process to establish a development potential index,covering technical efficiency,economic cost,application sce-narios,and charging time and range,with an empirical analysis conducted in Beijing.The findings indicated the high feasibility of replacing OCM with electric alternatives,especially within the low-power range.Based on 2023 registered coding dat1,it is projected that by 2030,electrification could reduce regional average con-centrations of CO,NO_(x),PM_(2.5) and VOCs by 12.2%to 56.4%and reduce CO_(2) by 11.7%to 56.9%.Owing to economic considerations,small-and medium-sized machinery are particularly feasible for electrification.Key recommendations include prioritizing the electrification of forklifts,lifting platforms,and small-sized machinery in high-emission areas,particularly in central urban districts.Policies such as carbon taxes,carbon markets,and performance grading systems are suggested to incentivize electrification,along with expanding high-emission restriction zones and improving energy infrastructure to support widespread electrification. 展开更多
关键词 Construction machinery ELECTRIFICATION Data envelopment analysis Analytic hierarchy process Air pollution
原文传递
Research progress on the environmental risk assessment and remediation technologies of heavy metal pollution in agricultural soil 被引量:9
2
作者 Xurui Mai Jing Tang +6 位作者 Juexuan Tang Xinyue Zhu Zhenhao Yang Xi Liu Xiaojie Zhuang Guang Feng Lin Tang 《Journal of Environmental Sciences》 2025年第3期1-20,共20页
Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remedi... Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remediation of heavy metals in agricultural soils are crucial.These two aspects support each other,forming a close and complete decisionmaking chain.Therefore,this review systematically summarizes the distribution characteristics of soil heavy metal pollution,the correlation between soil and crop heavy metal contents,the presence pattern and migration and transformation mode of heavy metals in the soil-crop system.The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined,which provides important guidance for an in-depth understanding of the characteristics of heavymetal pollution in farmland soils and the assessment of the environmental risk.Soil remediation strategies involve multiple physical,chemical,biological and even combined technologies,and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils.Finally,the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected.This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals. 展开更多
关键词 Source Migration transformation Risk assessment REMEDIATION Heavy metals Agricultural soils
原文传递
Shining a light on environmental science:Recent advances in SERS technology for rapid detection of persistent toxic substances 被引量:2
3
作者 Zhenli Sun Xunlong Ji +1 位作者 Shaoyu Lu Jingjing Du 《Journal of Environmental Sciences》 2025年第7期251-263,共13页
Persistent toxic substances(PTS)represent a paramount environmental issue in the 21st century.Understanding the concentrations and forms of PTS in the environment is crucial for accurately assessing their environmenta... Persistent toxic substances(PTS)represent a paramount environmental issue in the 21st century.Understanding the concentrations and forms of PTS in the environment is crucial for accurately assessing their environmental health impacts.This article presents a concise overview of the components of PTS,pertinent environmental regulations,and conventional detection methodologies.Additionally,we offer an in-depth review of the principles,development,and practical applications of surface-enhanced Raman scattering(SERS)in environmental monitoring,emphasizing the advancements in detecting trace amounts of PTS in complex environmental matrices.Recent progress in enhancing SERS sensitivity,improving selectivity,and practical implementations are detailed,showcasing innovative materials and methods.Integrating SERS with advanced algorithms are highlighted as pivotal areas for future research. 展开更多
关键词 Persistent toxic substances Surface-enhanced Raman scattering Environmental monitoring Public health Sensitivity SPECIFICITY
原文传递
Engineering crystal plane of NiCo_(2)O_(4)to regulate oxygen vacancies and acid sites for alkali-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid 被引量:1
4
作者 Hengli Qian keyuan Zhang +8 位作者 Yongchuo He Qidong Hou Chao Xie Ruite Lai Guanjie Yu Tianliang Xia Xinyu Bai Haijiao Xie Meiting Ju 《Green Energy & Environment》 2025年第4期756-765,共10页
The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products,making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire ... The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products,making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire process.To achieve the efficient selective oxidation of HMF to FDCA,a series of NiCo_(2)O_(4)catalysts with different morphologies,such as flaky,echinoids,pompon and corolla,were prepared and characterized by XRD,SEM,TEM,BET,XPS,and FTIR.Among the four catalysts,flaky NiCo_(2)O_(4)exhibited the most excellent catalytic activity and stability,with a FDCA yield of 60.1%within 12 h at 80℃without alkali participation.The excellent performance of flaky NiCo_(2)O_(4)catalyst is attributed to the oxygen vacancies and acid sites generated by the exposed(400)facets.The oxygen vacancies and acid sites on the catalyst surface can precisely adsorb-CHO and-CH_(2)-OH of HMF,respectively,and this synergistic effect promotes the efficient production of FDCA.This work is of great significance for fundamentally study the effect of micro-topography or crystal-plane reaction properties on surfaces. 展开更多
关键词 5-HYDROXYMETHYLFURFURAL 2 5-furandicarboxylic acid NiCo_(2)O_(4) Catalytic oxidation Crystal plane
在线阅读 下载PDF
Pollution sources,characteristics and environmental risk assessment of heavy metals in surface water and sediments of typical pyrite mine in Southwest China 被引量:1
5
作者 Ziqiu Nie Jiabin Luo +5 位作者 Jie Tang Bo Li Bohan Chen Man Gao Xingjie Wang Liu Guo 《Journal of Environmental Sciences》 2025年第11期742-755,共14页
Abandoned mines,especially pyrite-rich ones,release acid mine drainage(AMD)with high acidity and excessive amounts of heavy metals,threatening regional ecosystems.Six samples of mine drainage,nine samples of surface w... Abandoned mines,especially pyrite-rich ones,release acid mine drainage(AMD)with high acidity and excessive amounts of heavy metals,threatening regional ecosystems.Six samples of mine drainage,nine samples of surface water,and twelve samples of sediment were analyzed in this case study of the Dashu pyrite mine in southwest China.A comprehensive analysis of the pollution levels,pollution sources,and potential hazards of eight metals(Ni,Cd,Cu,Zn,Fe,Al,Pb,and Mn)that exceeded regulatory standardswas conducted bymonitoring 24 conventional and characteristic indicators.Ultimately,this research evaluated the environmental hazards associated with abandonedmine water using the"pressure-response"model,thereby providing valuable insights for the effective protection of the environment in mining regions.The primary pollutants in mine water were determined to be SO_(4)^(2−),Fe,and Mn,with concentrations of 7700,1450,and 6.78mg/L,respectively.A clear"source-sink"dynamic was observed between themine water and the surrounding water system.surface water was primarily polluted by Ni and Mn,while water system sediments were primarily polluted by Cu and Hg.Ion ratio and Pearson correlation analyses indicated heavy metals in surface water and sediments originated from the same AMD source.The"pressureresponse"model was used to assess the environmental hazards of water from abandoned mines.Mines W1,W2,W5,and W6 were classified as high-risk,while W3 and W4 were medium-risk.This study offers a novel approach and valuable reference for identifying and classifying environmental risks in abandoned mines and targeting AMD treatment. 展开更多
关键词 Dashu river Acid mine drainage Heavy metals Pollution assessment Environmental risk
原文传递
Metagenomic perspectives on antibiotic resistance genes in tap water:The environmental characteristic,potential mobility and health threat
6
作者 Qiyue Meng Yibo Zhang +3 位作者 Da He Yu Xia Jie Fu Chenyuan Dang 《Journal of Environmental Sciences》 2025年第1期582-596,共15页
As an emerging environmental contaminant,antibiotic resistance genes(ARGs)in tap water have attracted great attention.Although studies have provided ARG profiles in tap water,research on their abundance levels,composi... As an emerging environmental contaminant,antibiotic resistance genes(ARGs)in tap water have attracted great attention.Although studies have provided ARG profiles in tap water,research on their abundance levels,composition characteristics,and potential threat is still insufficient.Here,9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area(GBA)in China.Additionally,75 sets of environmental sample data(9 types)were downloaded from the public database.Metagenomics was then performed to explore the differences in the abundance and composition of ARGs.221 ARG subtypes consisting of 17 types were detected in tap water.Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs,their composition varied.In tap water samples,the three most abundant classes of resistance genes were multidrug,fosfomycin and MLS(macrolide-lincosamidestreptogramin)ARGs,and their corresponding subtypes ompR,fosX and macB were also the most abundant ARG subtypes.Regarding the potential mobility,vanS had the highest abundance on plasmids and viruses,but the absence of key genes rendered resistance to vancomycin ineffective.Generally,the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline.Although the current potential threat to human health posed by ARGs in tap water is limited,with persistent transfer and accumulation,especially in pathogens,the potential danger to human health posed by ARGs should not be ignored. 展开更多
关键词 Antibiotic resistance genes Tap water Plasmids Viruses Health threat
原文传递
The influence mechanism of environmental factors on DGT adsorbing sulfonamides and the migration between water and sediment
7
作者 Peng Zhang Jingfeng Yan +2 位作者 Hao Ji Linke Ge Yanying Li 《Journal of Environmental Sciences》 2025年第5期347-359,共13页
Obtaining the sulfonamides(SAs)concentrations in the water body and sediment bulk was a prerequisite to reveal their transport and partitioning behavior in sediment-water environments and accurately assess their ecolo... Obtaining the sulfonamides(SAs)concentrations in the water body and sediment bulk was a prerequisite to reveal their transport and partitioning behavior in sediment-water environments and accurately assess their ecological risk.In the present study,the influences of multifactor interactions on the performance of o-DGTs with XAD-18 binding gels were analyzed by central combination experiments and response surfaces analysis,in which the target compounds were 9 SAs.The results indicated that dissolved organic matter(DOM),pH,and suspended particulate matter(SS)had significant effects on the o-DGT sampling,whereas this o-DGT was independent of the ionic strength(IS).Concentning the composite influence of the four factors,the interaction between DOM and SS posed the most significant effect on all 9 SAs compounds.Subsequently,an o-DGT and DIFSmodel was applied to explore the SAs migration between the water-sediments interface.The difference between desorption rate(k_(b))and adsorption rates(k_(f))values suggested that the kinetics of SAs was dominated by adsorption.Moreover,the short-term sediment-water partitioning of SAs was clarified on the basis of distribution coefficient(K_(dl))for the labile SAs,among which the sulfadiazine(SDZ)had the largest labile pool.The ability of sediments to release SAs to the liquid phase as a sink was determined by response time(T_(c)).Among the 9 SAs,the longterm release of soseulfamethoxypyridazine(SMP)from the solid phase of sediments would have a potential risk to the aquatic environment,to which more attention should be paid in the future. 展开更多
关键词 SULFONAMIDES O-DGT Water-sediments interface DIFS Distribution
原文传递
The application of photocatalysis and biodegradation synergistic systems in environmental remediation:A review
8
作者 Ruilin Cao Yuan Pan +7 位作者 Xiansheng Zhang Xinyi Huang Teng Li Sheng Liu Yunze Wang Shanqing Tang Binbin Shao Zhifeng Liu 《Chinese Journal of Catalysis》 2025年第11期47-74,共28页
The growing presence of emerging pollutants in the environment has led to a focus on developing new treatment technologies to address the limitations of traditional methods.Recent advancements in combining photocataly... The growing presence of emerging pollutants in the environment has led to a focus on developing new treatment technologies to address the limitations of traditional methods.Recent advancements in combining photocatalysis with biodegradation for pollutant treatment have garnered significant attention.This is due to the rapid and uncontrolled chemical reactions in single photocatalytic processes,which often result in the buildup of harmful by-products and over-oxidation residues.Additionally,relying solely on biodegradation is challenging for breaking down emerging pollutants that possess high concentrations and intricate structures.Therefore,the intimately coupled photocatalysis and biodegradation(ICPB)systems,along with the photocatalytic microbial fuel cells(PMFCs),as a new approach to treat pollutants.These systems combine the benefits of biodegradation and photocatalytic reactions,providing cost-effective,eco-friendly,and sustainable solutions with significant promise.In order to demonstrate the ICPB system and the PMFCs system as rational options for pollutant removal,the mechanisms of pollutant degradation by the two systems have been analyzed in depth,and recent advances in photocatalysts,biofilms,and carriers/configurations in the two systems have been summarized.Furthermore,the practical applications of the ICPB system versus the PMFCs system for pollutant removal are also summarized and highlighted.This review further points out the current limitations,such as photocatalytic materials that are still challenging in terms of commercial viability for practical applications,and looks forward to the prospects of the ICPB system versus the PMFCs system for the treatment of pollutants to promote practical applications. 展开更多
关键词 PHOTOCATALYSIS BIODEGRADATION Intimately coupled photocatalysis and biodegradation system Photocatalytic microbial fuel cells Wastewater purification
在线阅读 下载PDF
Engineering surface and subsurface oxygen vacancies of Ce_(x)Zr_(1-x)O_(2) solid solution for enhanced total toluene oxidation
9
作者 Yang Yu Mingjia Zhang +5 位作者 Huangang Shi Jifa Qu Yongheng Xiong Wenyi Tan Xinlei Ge Qijie Jin 《Journal of Environmental Sciences》 2025年第12期39-49,共11页
Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surf... Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surface and subsurface oxygen vacancies on the performance and mechanisms of catalysts.Herein,a series of zirconium doping on CeO_(2) samples(CeO_(2),Ce_(0.95)Zr_(0.05)O_(2),and Ce_(0.8)5Zr_(0.15)O_(2))with various surface-to-subsurface oxygen vacancies ratios have been synthesized and applied in toluene catalytic oxidation.The obtained Ce_(0.95)Zr_(0.05)O_(2) exhibits an excellent catalytic performance with a 90%toluene conversion at 295℃,which is 68℃lower than that of CeO_(2).Additionally,the obtained Ce_(0.95)Zr_(0.05)O_(2)catalyst also exhibited good catalytic stability and water resistance.The XRD and HRTEM results show that Zr ions are incorporated into CeO_(2) lattice,forming Ce_(x)Zr_(1-x)O_(2) solid solution.Temperature-programmed experiments reveal that Ce_(0.95)Zr_(0.05)O_(2) shows excellent lowtemperature reducibility and abundant surface oxygen species.In-situ DRIFTS tests were used to probe the reaction mechanism,and the function of Zr doping in promoting the activation of oxygen was further determined.Density functional theory(DFT)calculations indicate that the vacancy formation energy and O_(2) adsorption energy are both lower on Ce_(0.95)Zr_(0.05)O_(2),confirming the reason for its superior catalytic performance. 展开更多
关键词 Ce_(x)Zr_(1-x)O_(2)solid solution Toluene oxidation Surface oxygen species DFT calculations
原文传递
Ionic-electronic dual-conductor interface engineering and architecture design in layered lithium-rich manganese-based oxides
10
作者 Youyou Fang Yuefeng Su +10 位作者 Jinyang Dong Jiayu Zhao Haoyu Wang Ning Li Yun Lu Yujia Wu Wenbo Li Ni Yang Xiaojuan Wu Feng Wu Lai Chen 《Carbon Energy》 2025年第2期24-40,共17页
The burgeoning growth in electric vehicles and portable energy storage systems necessitates advances in the energy density and cost-effectiveness of lithium-ion batteries(LIBs),areas where lithium-rich manganese-based... The burgeoning growth in electric vehicles and portable energy storage systems necessitates advances in the energy density and cost-effectiveness of lithium-ion batteries(LIBs),areas where lithium-rich manganese-based oxide(LLO)materials naturally stand out.Despite their inherent advantages,these materials encounter significant practical hurdles,including low initial Coulombic efficiency(ICE),diminished cycle/rate performance,and voltage fading during cycling,hindering their widespread adoption.In response,we introduce an ionic-electronic dual-conductive(IEDC)surface control strategy that integrates an electronically conductive graphene framework with an ionically conductive heteroepitaxial spinel Li_(4)Mn_(5)O_(12)layer.Prolonged electrochemical and structural analyses demonstrate that this IEDC heterostructure effectively minimizes polarization,mitigates structural distortion,and enhances electronic/ionic diffusion.Density functional theory calculations highlight an extensive Li^(+)percolation network and lower Li^(+)migration energies at the layered-spinel interface.The designed LLO cathode with IEDC interface engineering(LMOSG)exhibits improved ICE(82.9%at 0.1 C),elevated initial discharge capacity(296.7 mAh g^(-1)at 0.1 C),exceptional rate capability(176.5 mAh g^(-1)at 5 C),and outstanding cycle stability(73.7%retention at 5 C after 500 cycles).These findings and the novel dual-conductive surface architecture design offer promising directions for advancing highperformance electrode materials. 展开更多
关键词 architecture design high-rate cyclability ionic-electronic dual-conductor layered lithiumrich manganese-based oxides lithium-ion battery
在线阅读 下载PDF
Seasonal dynamics and environmental drivers of dissolved organic matter distribution in heterogeneous river terrains
11
作者 Kun Shi Jiafeng Zhang +3 位作者 Yuting Zhao Chenbin Wu Xiao Luo Shilei Zhou 《River》 2025年第4期535-546,共12页
Dissolved organic matter(DOM)in rivers plays a key role in the global carbon cycle and aquatic ecosystems,yet its spatiotemporal dynamics across complex terrains remains inadequately characterized.To address this gap,... Dissolved organic matter(DOM)in rivers plays a key role in the global carbon cycle and aquatic ecosystems,yet its spatiotemporal dynamics across complex terrains remains inadequately characterized.To address this gap,we conducted seasonal sampling along the Luan River and examined how DOM composition varies over space and time in response to environmental drivers.Using parallel factor analysis(PARAFAC),we identified two humic-like components(C1+C2,Em>380 nm)and one protein-like component(C3,Em<380 nm).DOM fluorescence intensity was lowest in winter,while C1 and C3 levels peaked in autumn and C2 in summer(p<0.05).Spatially,C1 and C3 levels were highest downstream regions,whereas C2 peaked in the midstream section(p<0.05).Microbial sources dominated DOM in spring,winter,and in both headwater and downstream areas(FI>1.9).Principal coordinates analysis(PCoA)combined with multi-response permutation process(MRPP)confirmed significant spatiotemporal differences in DOM composition(p<0.05).Random forest modeling showed humic-like components were more sensitive to environmental changes.Redundancy analysis(RDA)and Mantel tests identified temperature as the dominant seasonal driver of DOM variation(p<0.05),while dissolved total phosphorus(DTP)and nitrate nitrogen(NO_(3)^(-)-N)were the key spatial determinants.Significant correlations were also observed between NO_(3)^(-)-N and ammonium nitrogen(NH_(4)^(+)-N),as well as between DTP and DOM,suggesting shared origins and compositional linkages(p<0.05).Our findings highlight the pronounced seasonal and spatial heterogeneity of DOM in multi-terrain river systems,offering valuable insights into carbon dynamics and ecosystem functioning in river systems. 展开更多
关键词 dissolved organic matter(DOM) machine learning PARAFAC RIVER
在线阅读 下载PDF
Spatial distribution,influencing factors,and environmental risk assessments of mercury in surface soils over Xinjiang,northwestern China
12
作者 Zhengzheng Yang Shiwei Sun +5 位作者 Xiwen Miao Shichang Kang Pengfei Chen Dipesh Rupakheti Zhaofu Hu Junming Guo 《Journal of Environmental Sciences》 2025年第12期555-568,共14页
Since scarce knowledge of soil mercury(Hg)concentrations and risks in the vulnerable Xinjiang,topsoils(0-15 cm)from its typical landscapes were extensively sampled.Topsoil total mercury(THg)concentrations varied broad... Since scarce knowledge of soil mercury(Hg)concentrations and risks in the vulnerable Xinjiang,topsoils(0-15 cm)from its typical landscapes were extensively sampled.Topsoil total mercury(THg)concentrations varied broadly between 0.9 and 35.3 ng/g,of which16.8%exceeded the background value of soil Hg for Xinjiang.Topsoil THg concentrations across various landscapes exhibited a declining order:farmland(11.7±6.0 ng/g)>grassland(10.5±8.5 ng/g)>woodland(10.2±8.2 ng/g)>desert(7.0±5.8 ng/g).The average topsoil THg concentration was higher in northwestern Xinjiang(11.3±7.2 ng/g)than that in southeastern Xinjiang(6.3±6.1 ng/g).Relatively high topsoil THg concentrations were observed near the cities with intensive human activities,followed by a gradual decline to the surroundings.The concentrations of topsoil THg were strongly correlated with the contents of total organic carbon(TOC),clay,silty,and sandy,and the distance from each sampling site to its nearest city,suggesting that the variation of topsoil Hg was significantly influenced by TOC content,soil granularity,and anthropogenic Hg emissions.Silty and TOC were the principal affecting factors,explaining 48.7%and 7.9%of the THg variation,respectively.The contamination and potential ecological risk evaluations revealed that topsoils in regions with dense populations were polluted with Hg and contained higher potential ecological risks.The health risk evaluations indicated that exposure risks of topsoil Hg were higher for children than those for adults.Fortunately,topsoil Hg posed acceptable risks to human health. 展开更多
关键词 MERCURY TOPSOIL LANDSCAPE Spatial distribution Risk assessment XINJIANG
原文传递
Cerium valence state conversion:Fabrication and environmental remediation of modified CeO_(2)materials
13
作者 Jia'ao Han Quansheng Liu +3 位作者 Haitao Xu Yang Wu Shukun Le Chengzhang Zhu 《Journal of Rare Earths》 2025年第3期430-440,I0001,共12页
Rare earth elements are highly applicable in photocatalysis due to their partially filled 4f orbitals,existing in electronic structures that facilitate the transfer of electrons during the reaction process.Among these... Rare earth elements are highly applicable in photocatalysis due to their partially filled 4f orbitals,existing in electronic structures that facilitate the transfer of electrons during the reaction process.Among these materials,CeO_(2)has a distinctive external electronic structure(4f^(1)5d^(1)6s^(2)),abundant oxygen vacancies,and strong conversion ability of Ce^(4+)/Ce^(3+),which makes it an attractive candidate in the field of photocatalysis.To broaden its practical applications in the visible region,the drawbacks of a wide band gap and a slow Ce^(4+)/Ce^(3+)cycle have been addressed through the modification of CeO_(2),thereby accelerating light absorption and self-circulation,and enhancing photocatalytic activity.This paper presents a review of the preparation of modified CeO_(2)catalysts and their application in the conversion of cerium valence state in the photocatalytic degradation of pollutants in water.Furthermore,this paper presents a summary of the most recent development and current challenges,as well as prospect for the application of modified CeO_(2)-based materials. 展开更多
关键词 Rare earths Modified CeO_(2) Ce^(4+)/Ce^(3+)pairs PHOTOACTIVITY Environmental remediation
原文传递
Engineering tiramisu-like phase change nanocomposite for superior thermal energy management and electromagnetic interference shielding
14
作者 Boyang Hu Hong Guo +5 位作者 Ting Li Xiwei Cao Min Cao Weiyan Qi Ying Cui Baoan Li 《Journal of Materials Science & Technology》 2025年第3期113-124,共12页
Exploiting advanced nanocomposites isochronally integrating outstanding thermal conductivity(TC)and electromagnetic interference shielding effectiveness(EMI SE)can boost the cutting-edge application of phase change ma... Exploiting advanced nanocomposites isochronally integrating outstanding thermal conductivity(TC)and electromagnetic interference shielding effectiveness(EMI SE)can boost the cutting-edge application of phase change materials.Here,we report a tiramisu-like composite(GMP),where the typical“crust-and-cheese”hierarchical structure is replicated by an innovative two-step bidirectional freezing assembly(BFA)and compressive densification.Hierarchical-aligned graphene array(G-GA)with ultralow thermal resistance is fabricated through 1st BFA and graphitization.During the 2nd BFA,the MXene-CNF crosslinking network with hydrogen-bond actions is used for encapsulating polyethylene glycol(PEG)onto the microlayers of the G-GA skeleton.Remarkably,the microlaminated GMP4 achieves a recorded TC of 34.05 W m^(-1) K^(-1),unprecedented EMI SE of 87.4 dB,and preferable enthalpy density of 179.4 J cm^(-3),along with leakage-free function,and eminent thermal durability.Furthermore,the GMP-loaded equipment is demonstrated for efficient microelectronics cooling and sustainable solar energy utilization.This work opens new avenues for multiscale designing multifunctional macro-composites,broadening the application prospects in advanced electronics and solar energy utilization systems. 展开更多
关键词 Phase change composite Multiscale structure construction Bidirectional freezing assembly Thermal management EMI shielding
原文传递
Abundant and rare subcommunity assemblages of prokaryotes and eukaryotes controlled by vertical environmental heterogeneity in an urban reservoir
15
作者 Xun Wang Huai-yu Cao +7 位作者 Jia-wen Gan Tang Liu Pei-fang Wang Qiu-sheng Yuan Xiao-lei Xing Cheng-gong Du Yu-ran Zheng Yun-xin Liu 《Water Science and Engineering》 2025年第3期312-323,共12页
Reservoirs play a critical role in addressing water resources challenges.However,their vertical influence on the assembly mechanisms of different microbial communities,including prokaryotes and eukaryotes,remains uncl... Reservoirs play a critical role in addressing water resources challenges.However,their vertical influence on the assembly mechanisms of different microbial communities,including prokaryotes and eukaryotes,remains unclear.This study examined the vertical diversity patterns of abundant and rare subcommunities of prokaryotes and eukaryotes in an urban reservoir,using water depth as a geographical gradient and employing high-throughput sequencing.The impact of vertical environmental heterogeneity on community structure was quantified,and key drivers of these dynamics were identified.The results indicated that the urban reservoir exhibited statistically significant differences in the vertical distribution of water temperature and oxidation/reduction potential.The a-diversity of the abundant subcommunity displayed an opposing vertical pattern compared to that of the rare subcommunity,while the b-diversity for both subcommunities of prokaryotes and eukaryotes increased with water depth.Moreover,the distinct diversity patterns of abundant and rare subcommunities were associated with environmental heterogeneity and species adaptability.Notably,the b-diversity of the rare subcommunity of eukaryotes was primarily driven by species turnover in surface water,whereas nestedness became the dominant factor in deeper water.Furthermore,eukaryotic microbes exhibited a more pronounced response to changes in water depth than prokaryotes,consistent with the importance of heterogeneous selection to the eukaryotic community.Water temperature significantly affected the community composition of all groups,highlighting its importance in shaping community dynamics.This study provides valuable insights into the vertical distribution and assembly mechanisms of microbial communities in urban reservoirs,contributing to the protection and management of aquatic ecosystems under river regulation. 展开更多
关键词 Assembly process Vertical structure Environmental heterogeneity Rare biosphere Water temperature
在线阅读 下载PDF
Associations of Exposure to Typical Environmental Organic Pollutants with Cardiopulmonary Health and the Mediating Role of Oxidative Stress:A Randomized Crossover Study
16
作者 Ning Gao Bin Wang +11 位作者 Ran Zhao Han Zhang Xiaoqian Jia Tianxiang Wu Mengyuan Ren Lu Zhao Jiazhang Shi Jing Huang Shaowei Wu Guofeng Shen Bo Pan Mingliang Fang 《Biomedical and Environmental Sciences》 2025年第11期1388-1403,共16页
Objective The study aim was to investigate the effects of exposure to multiple environmental organic pollutants on cardiopulmonary health with a focus on the potential mediating role of oxidative stress.Methods A repe... Objective The study aim was to investigate the effects of exposure to multiple environmental organic pollutants on cardiopulmonary health with a focus on the potential mediating role of oxidative stress.Methods A repeated-measures randomized crossover study involving healthy college students in Beijing was conducted. Biological samples, including morning urine and venous blood, were collected to measure concentrations of 29 typical organic pollutants, including hydroxy polycyclic aromatic hydrocarbons(OH-PAHs), bisphenol A and its substitutes, phthalates and their metabolites, parabens,and five biomarkers of oxidative stress. Health assessments included blood pressure measurements and lung function indicators.Results Urinary concentrations of 2-hydroxyphenanthrene(2-OH-PHE)(β = 4.35% [95% confidence interval(CI): 0.85%, 7.97%]), 3-hydroxyphenanthrene(β = 3.44% [95% CI: 0.19%, 6.79%]), and 4-hydroxyphenanthrene(4-OH-PHE)(β = 5.78% [95% CI: 1.27%, 10.5%]) were significantly and positively associated with systolic blood pressure. Exposures to 1-hydroxypyrene(1-OH-PYR)(β = 3.05% [95% CI:-4.66%,-1.41%]), 2-OH-PHE(β = 2.68% [95% CI:-4%,-1.34%]), and 4-OH-PHE(β = 3% [95% CI:-4.68%,-1.29%]) were negatively associated with the ratio of forced expiratory volume in the first second to forced vital capacity. These findings highlight the adverse effects of exposure to multiple pollutants on cardiopulmonary health. Biomarkers of oxidative stress, including 8-hydroxy-2'-deoxyguanosine and extracellular superoxide dismutase, mediated the effects of multiple OH-PAHs on blood pressure and lung function.Conclusion Exposure to multiple organic pollutants can adversely affect cardiopulmonary health.Oxidative stress is a key mediator of the effects of OH-PAHs on blood pressure and lung function. 展开更多
关键词 Cardiopulmonary health Organic pollutants Oxidative stress Mediating effects Risk assessment
在线阅读 下载PDF
Synergistic antibacterial effect and mechanism of benzalkonium chloride and polymyxin B against Pseudomonas aeruginosa
17
作者 Caihong Wang Jiaxin Zhang +3 位作者 Tong Li Jingwei Wang Dan Xu Qiao Ma 《Journal of Environmental Sciences》 2026年第1期555-564,共10页
Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative patho... Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative pathogens.Previous studies reported that BAC-adapted Pseudomonas aeruginosa increased the tolerance to PB.Herein,we present the novel finding that the combination of BAC and PB exhibited synergistic antibacterial effects against P.aeruginosa.Time-killing assay demonstrated a significant reduction in bacterial cell viability.Scanning electron microscopy,zeta potential analysis,hydrophobicity measurements,and fluorescence probe analyses collectively revealed severe disruption of the cell envelope and membrane potential induced by the combination of BAC and PB.Transcriptomic analysis revealed that the BAC-PB combination notably downreg-ulated the expression of genes involved in lipid A modification and cell envelope production,including phoPQ,pmrAB,bamABCDE,lptABCDEG,lolB,yidC,and murJ.Additionally,the combination group exhibited augmented production of reactive oxygen species and diminished ATP synthesis.The expression of the genes associated with substance metabolism and energy generation was significantly impeded.This study provides significant implica-tions for the interactions of biocides and antibiotics on Gram-negative pathogens,while also addressing antibiotic resistance and developing the external treatment strategy for Pseudomonas-infected wounds and burns. 展开更多
关键词 Pseudomonas aeruginosa Benzalkonium chloride Polymyxin B Synergistic effect Membrane disruption
原文传递
Pulsed Dynamic Water Electrolysis:Mass Transfer Enhancement,Microenvironment Regulation,and Hydrogen Production Optimization
18
作者 Xuewei Zhang Wei Zhou +7 位作者 Xiaoxiao Meng Yuming Huang Yang Yu Haiqian Zhao Lijie Wang Fei Sun Jihui Gao Guangbo Zhao 《Nano-Micro Letters》 2026年第3期807-859,共53页
Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sust... Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sustainable development.Despite significant progress in various electrochemical systems,the regulatory mechanisms of PDE in energy and mass transfer and the lifespan extension of electrolysis systems,particularly in water electrolysis(WE)for hydrogen production,remain insufficiently explored.Therefore,there is an urgent need for a deeper understanding of the unique contributions of PDE in mass transfer enhancement,microenvironment regulation,and hydrogen production optimization,aiming to achieve low-energy consumption,high catalytic activity,and long-term stability in the generation of target products.Here,this review critically examines the microenvironmental effects of PDE on energy and mass transfer,the electrode degradation mechanisms in the lifespan extension of electrolysis systems,and the key factors in enhancing WE for hydrogen production,providing a comprehensive summary of current research progress.The review focuses on the complex regulatory mechanisms of frequency,duty cycle,amplitude,and other factors in hydrogen evolution reaction(HER)performance within PDE strategies,revealing the interrelationships among them.Finally,the potential future directions and challenges for transitioning from laboratory studies to industrial applications are proposed. 展开更多
关键词 Pulsed dynamic electrolysis Water electrolysis Energy and mass transfer MICROENVIRONMENT System stability
在线阅读 下载PDF
Chemical characteristics of fine aerosols and associated speciated organic compounds in summer Nanjing,China
19
作者 Yuanjie Shan Daoming Li +7 位作者 Shijie Cui Jiukun Xian Yunjiang Zhang Junfeng Wang Haiwei Li Ming Wang Yun Wu Xinlei Ge 《Journal of Environmental Sciences》 2026年第1期349-361,共13页
Along with decrease of fine particulate matter(PM_(2.5))concentration in recent years in China,secondary species become increasingly important.This work focuses on characterizing secondary components,and a few importa... Along with decrease of fine particulate matter(PM_(2.5))concentration in recent years in China,secondary species become increasingly important.This work focuses on characterizing secondary components,and a few important groups of organics including organic nitrogen(ON),organonitrates(OrgN),organosulfates(OS)and polycyclic aromatic hydrocarbons(PAHs),via online measurement of submicron aerosols(PM_(1))in Nanjing,China,during 2022 summer.The average PM_(1) concentration was 15.39μg/m^(3),dominated by secondary components(69.1%),which were even more important at higher PM_(1) levels.The primary organic aerosols(POA)were from traffic,industry and cooking;the two secondary OA factors were both closely linked with photochemistry,with one(OOA1)being relatively fresh and important in early afternoon and another(OOA2)being aged and important in late afternoon.Sulfate formation was also governed by photochemistry but resembled that of OOA2 not OOA1;nitrate formation was associated strongly with heterogeneous hydrolysis and thermodynamic equilibrium.Results also reveal a possible photochemical reaction channel from POA to OOA1,then to OOA2.Case studies show that formations of secondary components responded differently to different weather conditions and governed summer PM_(1) pollution.The average ON,OrgN,OS and PAHs concentrations were determined to be 122.8,84.4,45.6 and 3.3 ng/m^(3),respectively.ON was dominated by primary sources(53.8%).OrgN varied similarly to nitrate.OS formation was linked with aqueous-phase reactions,which were insignificant therefore its level was low.PAHs was mainly from traffic,and photochemical oxidation might be its important sink during afternoon. 展开更多
关键词 Secondary organic aerosol Organic nitrogen Organonitrate Organosulfate Polycyclic aromatic hydrocarbons
原文传递
Achieving“remediating while producing”on arsenic contaminated soil by constructing interplanting systems based on medicinal crops and Pteris vittata L.
20
作者 Weizhen Chen Jidong Ying +4 位作者 Yanjie Chen Miao Li Peiyi Huang Rongliang Qiu Huashou Li 《Journal of Environmental Sciences》 2026年第1期523-534,共12页
Industrial activities have caused widespread arsenic(As)contamination in soil and medicinal crops across south-ern Asia.This study constructed interplanting systems combing medicinal crops with Pteris vittata L.,aimin... Industrial activities have caused widespread arsenic(As)contamination in soil and medicinal crops across south-ern Asia.This study constructed interplanting systems combing medicinal crops with Pteris vittata L.,aiming to mitigate the risk of As exposure in medicinal crops,while simultaneously achieving ecological remediation of contaminated soil.The results revealed that interplanting with P.vittata significantly enhanced the yield of Gynos-temma pentaphyllum by 31.90%(P<0.05)compared with monoculture systems.Under monoculture conditions,the As concentration in G.pentaphyllum leaves reached 2.34 mg/kg,exceeding the national food safety standard(GB2762–2017,2 mg/kg).However,interplanting with P.vittata effectively reduced the As concentration in G.pentaphyllum leaves to 1.82 mg/kg.Furthermore,the interplanting of P.vittata with Rhus chinensis significantly inhibited As translocation from belowground to aboveground tissues in R.chinensis.Compared to monoculture,the stem biomass of P.vittata was significantly increased by 57.50%and 70.32%when interplanted with G.pentaphyllum and Cassia obtusifolia L.(P<0.05).So the As enrichment of P.vittata was enhanced in interplanting systems,which is beneficial for the As removal from contaminated soil.The study demonstrated that interplant-ing primarily regulates plant As uptake through modifications of rhizosphere physicochemical properties and As bioavailability,especially for water-soluble As that is easily absorbed by plants.In conclusion,the interplant-ing models integrating medicinal crops and P.vittata can achieve the goal of“remediating while producing”in As-contaminated soil. 展开更多
关键词 PHYTOREMEDIATION ARSENIC INTERPLANTING Medicinal crops Pteris vittata L.
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部