Biogenic elements and six phosphorus (P) fractions in surface sediments from the Changjiang Estuary and adjacent waters were determined to investigate the governing factors of these elements, and further to discuss ...Biogenic elements and six phosphorus (P) fractions in surface sediments from the Changjiang Estuary and adjacent waters were determined to investigate the governing factors of these elements, and further to discuss their potential uses as paleo-environment proxies and risks of P release from sediment. Total organic carbon (TOC) and leachable organic P (Lea-OP) showed high concentrations in the estuary, Zhejiang coast and offshore upwelling area. They came from both the Changjiang River and marine biological input. Biogenic silicon (BSi) exhibited a high concentration band between 123 and 124°E. BSi mainly came from diatom production and its concentration in the inshore area was diluted by river sediment. Total nitrogen (TN) was primarily of marine biogenic origin. Seaward decreasing trends of Fe-bound P and Al-bound P revealed their terrestrial origins. Influenced by old Huanghe sediment delivered by the Jiangsu coastal current, the maximum concentration of detrital P (Det-P) was observed in the area north of the estuary. Similar high concentrations of carbonate fluorapatite (CFA-P) and CaCO3in the southern study area suggested marine calcium-organism sources of CFA-P. TOC, TN and non-apatite P were enriched in fine sediment, and Det-P partially exhibited coarse-grain enrichment, but BSi had no correlation with sediment grain size. Different sources and governing factors made biogenic elements and P species have distinct potential uses in indicating environmental conditions. Transferable P accounted for 14%-46% of total P. In an aerobic environment, there was low risk of P release from sediment, attributed to excess Fe oxides in sediments.展开更多
Although quality assurance and quality control procedures are routinely applied in most air quality networks, outliers can still occur due to instrument malfunctions, the influence of harsh environments and the limita...Although quality assurance and quality control procedures are routinely applied in most air quality networks, outliers can still occur due to instrument malfunctions, the influence of harsh environments and the limitation of measuring methods. Such outliers pose challenges for data-powered applications such as data assimilation, statistical analysis of pollution characteristics and ensemble forecasting. Here, a fully automatic outlier detection method was developed based on the probability of residuals, which are the discrepancies between the observed and the estimated concentration values. The estimation can be conducted using filtering—or regressions when appropriate—to discriminate four types of outliers characterized by temporal and spatial inconsistency, instrument-induced low variances, periodic calibration exceptions, and less PM_(10) than PM_(2.5) in concentration observations, respectively. This probabilistic method was applied to detect all four types of outliers in hourly surface measurements of six pollutants(PM_(2.5), PM_(10),SO_2,NO_2,CO and O_3) from 1436 stations of the China National Environmental Monitoring Network during 2014-16. Among the measurements, 0.65%-5.68% are marked as outliers. with PM_(10) and CO more prone to outliers. Our method successfully identifies a trend of decreasing outliers from 2014 to 2016,which corresponds to known improvements in the quality assurance and quality control procedures of the China National Environmental Monitoring Network. The outliers can have a significant impact on the annual mean concentrations of PM_(2.5),with differences exceeding 10 μg m^(-3) at 66 sites.展开更多
On the basis of more than 200-year control run, the performance of the climate system model of Chinese Academy of Sciences (CAS-ESM-C) in simulating the E1 Nifio-Southern Oscillation (ENSO) cycle is evalu- ated, i...On the basis of more than 200-year control run, the performance of the climate system model of Chinese Academy of Sciences (CAS-ESM-C) in simulating the E1 Nifio-Southern Oscillation (ENSO) cycle is evalu- ated, including the onset, development and decay of the ENSO. It is shown that, the model can reasonably simulate the annual cycle and interannual variability of sea surface temperature (SST) in the tropical Pacif- ic, as well as the seasonal phase-locking of the ENSO. The model also captures two prerequisites for the E1 Nino onset, i.e., a westerly anomaly and a warm SST anomaly in the equatorial western Pacific. Owing to too strong forcing from an extratropical meridional wind, however, the westerly anomaly in this region is largely overestimated. Moreover, the simulated thermocline is much shallower with a weaker slope. As a result, the warm SST anomaly from the western Pacific propagates eastward more quickly, leading to a faster develop- ment of an E1 Nino. During the decay stage, owing to a stronger E1Nino in the model, the secondary Gill-type response of the tropical atmosphere to the eastern Pacific warming is much stronger, thereby resulting in a persistent easterly anomaly in the western Pacific. Meanwhile, a cold anomaly in the warm pool appears as a result of a lifted thermocline via Ekman pumping. Finally, an E1 Nino decays into a La Nina through their interactions. In addition, the shorter period and larger amplitude of the ENSO in the model can be attribut- ed to a shallower thermocline in the equatorial Pacific, which speeds up the zonal redistribution of a heat content in the upper ocean.展开更多
The Jiaozhou Bay is characterized by heavy eutrophication that is associated with intensive anthropogenic activities. Four core sediments from the Jiaozhou Bay are analyzed using bulk technologies, including sedimenta...The Jiaozhou Bay is characterized by heavy eutrophication that is associated with intensive anthropogenic activities. Four core sediments from the Jiaozhou Bay are analyzed using bulk technologies, including sedimentary total organic carbon(TOC), total nitrogen(TN), the stable carbon(δ13C) and nitrogen(δ15 N) isotopic composition to obtain the comprehensive understanding of the source and composition of sedimentary organic matter and further shed light on the environmental changes of the Jiaozhou Bay on a centennial time scale.Results suggest that the TOC and TN concentrations increase in the upper core, having indicated a probable eutrophication process since the 1920 s in the inner bay and the 2000 s in the bay mouth. The TOC and TN concentrations outside the bay have also changed since 1916 owing to the variation of terrigenous input.Considering TOC/TN ratio, δ13 C and δ15 N, it can be concluded there is a mixture of terrigenous and marine organic matter sources in the study area. A simple two end-member(terrigenous and marine) mixing model usingδ13 C indicats that 45%–79% of TOC in the Jiaozhou Bay is from the marine source. The environmental changes of the Jiaozhou Bay are recorded by geochemical proxies, which are influenced by the intensive anthropogenic activities(e.g., extensive use of fertilizers, and discharge of sewage) and climate changes(e.g., rainfall).展开更多
Due to the record-breaking wildfires that occurred in Canada in 2023,unprecedented quantities of air pollutants and greenhouse gases were released into the atmosphere.The wildfires had emitted more than 1.3 Pg CO_(2)a...Due to the record-breaking wildfires that occurred in Canada in 2023,unprecedented quantities of air pollutants and greenhouse gases were released into the atmosphere.The wildfires had emitted more than 1.3 Pg CO_(2)and 0.14 Pg CO_(2)equivalent of other greenhouse gases(GHG)including CH4 and N_(2)O as of 31 August.The wildfire-related GHG emissions constituted more than doubled Canada’s planned cumulative anthropogenic emissions reductions in 10 years,which represents a significant challenge to climate mitigation efforts.The model simulations showed that the Canadian wildfires impacted not only the local air quality but also that of most areas in the northern hemisphere due to long-range transport,causing severe PM_(2.5)pollution in the northeastern United States and increasing daily mean PM_(2.5)concentration in northwestern China by up to 2μg m-3.The observed maximum daily mean PM_(2.5)concentration in New York City reached 148.3μg m-3,which was their worst air quality in more than 50 years,nearly 10 times that of the air quality guideline(i.e.,15μg m-3)issued by the World Health Organization(WHO).Aside from the direct emissions from forest fires,the peat fires beneath the surface might smolder for several months or even longer and release substantial amounts of CO_(2).The substantial amounts of greenhouse gases from forest and peat fires might contribute to the positive feedback to the climate,potentially accelerating global warming.To better understand the comprehensive environmental effects of wildfires and their interactions with the climate system,more detailed research based on advanced observations and Earth System Models is essential.展开更多
Long-term data on diatom assemblages in a sediment core (60 cm) obtained from the Changjiang (Yangtze) River estuary were analyzed in order to assess the environmental changes that took place in the approximately ...Long-term data on diatom assemblages in a sediment core (60 cm) obtained from the Changjiang (Yangtze) River estuary were analyzed in order to assess the environmental changes that took place in the approximately 38 years (as determined by 210pb measurements), i.e., between 1974 and 2012, of sediment accumulation. From the sediment core, 62 diatom taxa and genera were identified. The diatom biomass in the core generally increased beginning in the mid-1990s (core depth: 35 cm), accompanied by a shift in the dominant species from Podosira stelliger and two species of Cyclotella (C. stylorum and C. striata) to Paralia sulcata, three species of Thalassiosira ( T. eccentria, I". oestrupii, and T. excentrica), Actinoptychus undulates, and Thalassionema nitzschioides. The changes in both species diversity and abundance suggested that since the 1980s the estuary has undergone extensive eutrophication. This conclusion was supported by the increased proportion of planktonic species, another indicator of high nutrients inputs, in the Changjiang River estuary.展开更多
Abstract Blooms of some pico/nanophytoplankton have occurred frequently along the Qinhuangdao coast since 2009, and it is necessary to identify the critical environmental factors inducing them. In this study, variatio...Abstract Blooms of some pico/nanophytoplankton have occurred frequently along the Qinhuangdao coast since 2009, and it is necessary to identify the critical environmental factors inducing them. In this study, variations in the physical and nutrient characteristics of the seawater were analyzed following the development of local blooms in 2013. The local environmental characteristics were also compared with those of the Changjiang River estuary, China, and the Long Island estuaries in the USA, which are also prone to blooms of special algal species. In Qinhuangdao the local water temperature varied seasonally and rose above 15~C in 2013 early summer, coincident with the water discoloration. The salinity was more than 28 with a variation range of 〈3 throughout the year. Our results suggest that the physical conditions of the Qinhuangdao coastal area were suitable for the explosive proliferation of certain pico/nanophytoplankton, e.g. Aureococcus anophagefferens. The water supporting the bloom was not in a condition of serious eutrophication, but there were relatively high concentrations of reduced nitrogen (especially ammonium), which acted as an important nitrogen source for the pico/nanophytoplankton bloom. There was also a large gap between total nitrogen (TN) and dissolved inorganic nitrogen (DIN). Although the phosphate concentration was relatively low, there was no evidence of phosphorus limitation to the growth of pico/ nanophytoplankton during bloom events.展开更多
In order to depict the distribution of diatom fossils in surface sediments and to establish a reliable reference data for further paleoenvironmental study in the Changjiang (Yangtze) River estuary and its adjacent wat...In order to depict the distribution of diatom fossils in surface sediments and to establish a reliable reference data for further paleoenvironmental study in the Changjiang (Yangtze) River estuary and its adjacent waters, the diatom fossils from 34 surface sediment samples and their relationship with environmental variables were analyzed by principal component analysis and redundancy correspondence analysis. The diversity and abundance of diatom fossils were analyzed. Some annual average parameters of the overlying water (salinity, temperature, turbidity, dissolved oxygen, depth, dissolved inorganic nitrogen, dissolved inorganic phosphate and dissolved inorganic silicate) were measured at each sampling site. A total of 113 diatom taxa and one silicoflagellate species were identified in the investigation area. Diatom fossils were better preserved in fine sediments. The absolute abundance of diatom fossils did not significantly diff er between inshore and off shore areas, the species diversity decreased from inshore to off shore. This may be because high nutrients and low salinity promoted the growth of more brackish species in coastal waters. The diatom taxa were divided into three groups, on the basis of their response and indication to environmental changes. For example, Actinocyclus ehrenbergii and Cyclotella stylorum were dominant in coastal waters (Group 1 and Group 3) with high nutrients and low salinity;the relative abundances of Paralia sulcata and Podosira stelliger were significantly higher in off shore sites (Group 2, average 39.5%), which were characterized by high salinity and deep water. Four environmental variables (salinity, dissolved inorganic nitrogen, temperature and water depth) explained the composition and distribution of diatom taxa independently ( P< 0.05), this finding can be applied in further paleoenvironmental reconstruction research in this area.展开更多
Differences among species in prosome length and in species' response to environmental factors do exist. Therefore, it is useful to examine prosome length for different copepod species in variable environments. Sea...Differences among species in prosome length and in species' response to environmental factors do exist. Therefore, it is useful to examine prosome length for different copepod species in variable environments. Seasonal variations in prosome length of four small copepods and their copepodite stages in the Jiaozhou Bay were compared and the relative influence of temperature, salinity, and chlorophyll concentration were examined. Two peaks were found in the mean prosome length of Paracalanus parvus (in early winter and May). For Acartia bifilosa, the maximum values of all copepodites occurred mainly from February to April, and decreased to the bottom in July. Prosome length of Acartia pacifica peaked when it first appeared in June, then reached to the minimum in July. Parvocalanus crassirostris only appeared from late summer to autumn and the mean prosome length showed no clear changes. Correlations of adult prosome length with environmental factors were evaluated. For the four species, temperature was negatively correlated to prosome length except for P. crassirostris. But the different species varied markedly in their responds to temperature. A. bifilosa showed a more definite trend of size variation with temperature than P. parvus and A. pacifica. Correlations of prosome length with salinity were significantly positive for almost all the small copepods. The relationship between chlorophyll concentration and prosome length was complicated for these copepods, but for P. parvus, chlorophyll concentration was also an important affecting factor. Furthermore, investigation needs to be done on food quality for some copepod. These results are essential to estimate the biomass and the production, and to understand these small copepods' population dynamics in this human-affected bay.展开更多
Harmful algal blooms(HABs)in the Southern Yellow Sea(SYS)have shown a trend of increasing diversity and detrimental ef fects.While the Bohai Sea,East China Sea,and South China Sea have experienced a high incidence of ...Harmful algal blooms(HABs)in the Southern Yellow Sea(SYS)have shown a trend of increasing diversity and detrimental ef fects.While the Bohai Sea,East China Sea,and South China Sea have experienced a high incidence of HABs since the 1980s,the Yellow Sea provides a relatively healthy ecological environment in which fewer HABs have been documented before the 21s t century.Yet largescale blooms of the green macroalga Ulva prolifera(so-called“green tides”)have occurred annually since 2007 in the Yellow Sea.Six people were poisoned and one person died in Lianyungang in 2008 due to ingestion of algal toxins.Moreover,the Yellow Sea experienced co-occurrence of harmful red tides,green tides,and golden tides in 2017.This combination of events,rare worldwide,indicates the potential for further deterioration of the marine environment in the Yellow Sea,which may be related to climate change,aquaculture,and other human activities.Using the SYS as an example,we collected data of the frequency and scale of HABs over the years,as well as that of marine algal toxins,and analyzed the trend in the diversity of HABs in the SYS,to explore the causes and impacts of HABs,as well as the interrelationships among dif ferent types of HABs,including harmful red tides,green tides,and golden tides.We also attempted to improve our understanding of HAB evolution under the influence of global climate change and intensified human activities.展开更多
The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size...The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.展开更多
Large-scale green tides in the Yellow Sea occurred for 13 consecutive years since 2007.The unusual co-occurrence of green tides and golden tides occurred in the Yellow Sea in 2017.The causative species are Ulva prolif...Large-scale green tides in the Yellow Sea occurred for 13 consecutive years since 2007.The unusual co-occurrence of green tides and golden tides occurred in the Yellow Sea in 2017.The causative species are Ulva prolifera and/or Sargassum horneri.Previous studies on physiological response characteristics of U.prolifera and S.horneri are done in the laboratory mainly,and there is no in-situ comparative study in this regard.In this study,the in-situ physiological response characteristics of both species were measured.The results indicated that cyclic electron flow and antioxidant system play more important roles in protecting U.prolifera,while non-photochemical quenching is more important for adapting to the environment in S.horneri.U.prolifera has a stronger ability to utilize nutrients to rapidly increase its biomass under a suitable condition compared to S.horneri.展开更多
During the first Chinese Scientific Expedition to the Arctic in July - September 1999, cyanobacteria in the Bering Sea were measured by epifluorescence microscopy. Cyanobacterial abundance varied from 0 to 7. 93 ×...During the first Chinese Scientific Expedition to the Arctic in July - September 1999, cyanobacteria in the Bering Sea were measured by epifluorescence microscopy. Cyanobacterial abundance varied from 0 to 7. 93 × 103 cell/ml and decreased along a northerly directed latitudinal gradient in horizontal distribution. Cyanobacteria did not occur at station Bl - 12 (north of 60 °N). Vertically, high cya-nobacterial abundance appeared in the upper 25 - 50 m and decreased rapidly below 50 m. There were no cyanobacteria at the 150 m. Seawater temperature and NH4+ -N are suggested to affect the distribution of cyanobacteria.展开更多
Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercom...Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercomparison Project(GeoMIP) framework,utilizing the Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0).This paper briefly describes the basic configuration and experimental design of the CAS-ESM2.0 for G1ext,which involves a sudden reduction in solar irradiance to counterbalance the radiative forcing of an abrupt quadrupling of atmospheric CO_(2) concentration,running for 100 years.Preliminary results show that this model can reproduce well the compensatory effect of a uniform decrease in global solar radiation on the radiative forcing resulting from an abrupt quadrupling of CO_(2) concentration.Like other Earth system models,CAS-ESM2.0 reasonably captures variations in radiative adjustments,surface air temperature,and precipitation patterns,both globally and locally,under the G1ext scenario.The generated datasets have been released on the Earth System Grid Federation data server,providing insight into the potential efficacy and impact of solar geoengineering strategies.展开更多
In the context of global warming, the increasing wildfire frequency has become a critical climate research focus in North America. This study used the Community Earth System Model(CESM 1.2) to investigate the impacts ...In the context of global warming, the increasing wildfire frequency has become a critical climate research focus in North America. This study used the Community Earth System Model(CESM 1.2) to investigate the impacts of 20thcentury wildfires on North American climate and hydrology. Summer represents the peak wildfire season in North America, with the Gulf of Mexico and Midwest regions experiencing the most severe effects. Wildfires not only damage vegetation during the fire season but also extend prolonged impacts into non-fire periods, showing distinct seasonal variations. In spring, wildfires increase surface albedo, triggering a cooling effect through enhanced snow cover and delayed snowmelt. Conversely, summer and autumn surface warming stems primarily from wildfire-suppressed vegetation transpiration. Warming near the Gulf of Mexico enhances moisture transport and precipitation, particularly in summer and autumn. Reduced evaporation and increased precipitation from the Gulf of Mexico significantly altered the hydrological cycle across North America, leading to increased runoff continent-wide.展开更多
As global coastal ecosystems face compounding challenges from climate change and anthropogenic pressures,long-term ecosystem observation and integrated research are increasingly vital.The Shandong Jiaozhou Bay Marine ...As global coastal ecosystems face compounding challenges from climate change and anthropogenic pressures,long-term ecosystem observation and integrated research are increasingly vital.The Shandong Jiaozhou Bay Marine Ecosystem National Observation and Research Station,the only national field station for marine ecosystem observation and research in China’s temperate seas,has built a comprehensive platform for ecological observation and interdisciplinary research.This paper discusses how the Station leverages its long-term observation platform capacities to support both national marine strategies and global sustainability goals,through technological development,scientific research,public engagement,and international cooperation.This case study provides a replicable example for global coastal ecosystems in terms of management and sustainable development.展开更多
Potential vorticity(PV)streamers are elongated filaments of high PV intrusions that generally exhibit three distinct shapes:ordinarily southwestward,hook,and treble-clef,each with significant influences on weather.The...Potential vorticity(PV)streamers are elongated filaments of high PV intrusions that generally exhibit three distinct shapes:ordinarily southwestward,hook,and treble-clef,each with significant influences on weather.These PV streamers are most frequent over arid and semi-arid Central Asia in the mid–high latitudes.This study applied the Mask Region-based Convolutional Neural Network algorithm(Mask R-CNN)to PV streamers on the dynamical tropopause during the warm season(May to September)over the years 2000–04 to train a weighted variational model capable of identifying these different shapes.The trained model demonstrated a strong ability to distinguish between the three shapes.A climatological analysis of PV streamers over Central Asia spanning 2000 to 2021 revealed an increasingly deep and pronounced reversal of circulation from ordinary to treble-clef shapes.The treble-clef shape featured a PV tower and distinct cut-off low in the troposphere,but the associated upward motions and precipitation were confined within approximately 1200 km to the east of the PV tower.Although the hook-shape PV streamers were linked to a weaker cut-off low,the extent of upward motion and precipitation was nearly double that of the treble-clef category.In contrast,the ordinary PV streamer was primarily associated with tropopause Rossby wave breaking and exhibited relatively shallow characteristics,which resulted in moderate upward motion and precipitation to 500 km to its east.展开更多
As a type of clean and pollution-free energy source,solar energy plays an important role in achieving the goals of carbon neutrality and global sustainable development.Northwest China occupies an important position in...As a type of clean and pollution-free energy source,solar energy plays an important role in achieving the goals of carbon neutrality and global sustainable development.Northwest China occupies an important position in the national energy strategy due to its rich solar energy.Clarifying the long-term variations of Northwest China’s solar energy and understanding the associated mechanisms are crucial to improving the layout of new energy sources and the usage efficiency of solar energy within China.In this study,the authors first divide Northwest China into northwestern and southeastern sections by conducting a rotated empirical orthogonal function analysis on the surface solar radiation(SSR)from 1993 to 2022,and then explore the SSR’s variation trends and associated mechanisms within these subregions.It is found that the two subregions,both of which show a significant feature of decadal change,differ notably in their long-term trends:the northwestern section shows a significant increasing trend of∼8.1 kJ m^(-2)yr^(-1)in the annual mean SSR,and in each season the SSR increases significantly,with a maximum/minimum increasing rate of∼11.2/∼4.6 kJm^(-2)yr^(-1)appearing in summer/autumn.A possible mechanism for the SSR’s increasing trend is that global warming results in a lower relative humidity within the northwestern section,which decreases the total cloud cover,as it is harder for the atmosphere to reach saturation state.A decreasing total cloud cover results in an increasing SSR within the northwestern section.In contrast,the southeastern section shows no significant trend in annual mean SSR,as the SSRs in summer and autumn show significant decreasing trends,whereas the trends in spring and winter are not significant.展开更多
The northern East China Sea and Yellow Sea are highly dynamic marginal seas,serving as important fishing grounds and primary areas for aquaculture.The zooplankton community structure,including abundance,biovolume,and ...The northern East China Sea and Yellow Sea are highly dynamic marginal seas,serving as important fishing grounds and primary areas for aquaculture.The zooplankton community structure,including abundance,biovolume,and normalized biovolume size spectra(NBSS)within this ecosystem in summers 2021 and 2022 was assessed through ZooScan digital imaging system.The abundances of zooplankton in summers 2021 and 2022 were 3364.22±2190.53 and 4435.52±2520.06 inds./m^(3),respectively,whereas the corresponding biovolumes were 649.10±519.63 and 1064.86±1254.87 mm^(3)/m^(3),respectively.Small copepods as the dominant zooplankton functional group in terms of abundance in both years,while chaetognath and medusae were the dominant groups in terms of biovolume.The dominance of medusae and chaetognath in terms of biovolume,along with the flatter slopes of NBSS compared to a stable community,indicated that more energy accumulated in gelatinous organisms within the study area.There were significant positive relationships between temperature and tunicates or medusae,with a significantly higher population size observed in summer 2022 than in 2021.The lower abundance and biovolume of zooplankton,mainly of small copepods,in summer 2021 may be related to the larger population size of the large jellyfish and the proliferation of green tides.The investigation provided basic data and fundamental insights for achieving a comprehensive understanding of zooplankton community structure and their long-term dynamics.展开更多
Pigments are widely used as indices for estimation of phytoplankton biomass and composition,and many protocols have been developed to analyze pigments in phytoplankton.Different protocols were compared using four solv...Pigments are widely used as indices for estimation of phytoplankton biomass and composition,and many protocols have been developed to analyze pigments in phytoplankton.Different protocols were compared using four solvents(methanol,95%methanol,dimethylformamide,and 90%acetone)and two instruments(fluorometer and high-performance liquid chromatography(HPLC)coupled with diode array detector).Analysis of chlorophyll a(Chl a)with fluorometer could lead to over-or underestimation due to the interference from its derivatives in all probability.Among the four extractants,90%acetone had a high recovery for chlorophylls.In contrast,95%methanol was a poor extractant for chlorophylls due to the degradation of Chl a,especially in diatoms.The 95%methanol,however,had high extraction efficiencies for most diagnostic xanthophylls.Therefore,the selection of pigment analytical protocols should follow the specific purpose of phytoplankton study.In addition to fluorometry,an HPLC method with 90%acetone as extractant shall be a good choice for the analysis of Chl a to estimate phytoplankton biomass,especially for diatom-dominated samples,while an HPLC method with 95%methanol as extractant be more suitable to characterize different taxa in phytoplankton communities.展开更多
基金supported by the Natural Science Foundation of China for Creative Research Groups(No.41121064)the National Basic Research Program (973)of China(No.2011CB403602,2010CB951802)the National Natural Science Foundation of China(No.41306070)
文摘Biogenic elements and six phosphorus (P) fractions in surface sediments from the Changjiang Estuary and adjacent waters were determined to investigate the governing factors of these elements, and further to discuss their potential uses as paleo-environment proxies and risks of P release from sediment. Total organic carbon (TOC) and leachable organic P (Lea-OP) showed high concentrations in the estuary, Zhejiang coast and offshore upwelling area. They came from both the Changjiang River and marine biological input. Biogenic silicon (BSi) exhibited a high concentration band between 123 and 124°E. BSi mainly came from diatom production and its concentration in the inshore area was diluted by river sediment. Total nitrogen (TN) was primarily of marine biogenic origin. Seaward decreasing trends of Fe-bound P and Al-bound P revealed their terrestrial origins. Influenced by old Huanghe sediment delivered by the Jiangsu coastal current, the maximum concentration of detrital P (Det-P) was observed in the area north of the estuary. Similar high concentrations of carbonate fluorapatite (CFA-P) and CaCO3in the southern study area suggested marine calcium-organism sources of CFA-P. TOC, TN and non-apatite P were enriched in fine sediment, and Det-P partially exhibited coarse-grain enrichment, but BSi had no correlation with sediment grain size. Different sources and governing factors made biogenic elements and P species have distinct potential uses in indicating environmental conditions. Transferable P accounted for 14%-46% of total P. In an aerobic environment, there was low risk of P release from sediment, attributed to excess Fe oxides in sediments.
基金supported by the National Natural Science Foundation (Grant Nos.91644216 and 41575128)the CAS Information Technology Program (Grant No.XXH13506-302)Guangdong Provincial Science and Technology Development Special Fund (No.2017B020216007)
文摘Although quality assurance and quality control procedures are routinely applied in most air quality networks, outliers can still occur due to instrument malfunctions, the influence of harsh environments and the limitation of measuring methods. Such outliers pose challenges for data-powered applications such as data assimilation, statistical analysis of pollution characteristics and ensemble forecasting. Here, a fully automatic outlier detection method was developed based on the probability of residuals, which are the discrepancies between the observed and the estimated concentration values. The estimation can be conducted using filtering—or regressions when appropriate—to discriminate four types of outliers characterized by temporal and spatial inconsistency, instrument-induced low variances, periodic calibration exceptions, and less PM_(10) than PM_(2.5) in concentration observations, respectively. This probabilistic method was applied to detect all four types of outliers in hourly surface measurements of six pollutants(PM_(2.5), PM_(10),SO_2,NO_2,CO and O_3) from 1436 stations of the China National Environmental Monitoring Network during 2014-16. Among the measurements, 0.65%-5.68% are marked as outliers. with PM_(10) and CO more prone to outliers. Our method successfully identifies a trend of decreasing outliers from 2014 to 2016,which corresponds to known improvements in the quality assurance and quality control procedures of the China National Environmental Monitoring Network. The outliers can have a significant impact on the annual mean concentrations of PM_(2.5),with differences exceeding 10 μg m^(-3) at 66 sites.
基金The Strategic Priority Research Program of Chinese Academy of Sciences under contract No.XDA05110201the National Basic Research Program(973 Program) of China under contract No.2010CB951901
文摘On the basis of more than 200-year control run, the performance of the climate system model of Chinese Academy of Sciences (CAS-ESM-C) in simulating the E1 Nifio-Southern Oscillation (ENSO) cycle is evalu- ated, including the onset, development and decay of the ENSO. It is shown that, the model can reasonably simulate the annual cycle and interannual variability of sea surface temperature (SST) in the tropical Pacif- ic, as well as the seasonal phase-locking of the ENSO. The model also captures two prerequisites for the E1 Nino onset, i.e., a westerly anomaly and a warm SST anomaly in the equatorial western Pacific. Owing to too strong forcing from an extratropical meridional wind, however, the westerly anomaly in this region is largely overestimated. Moreover, the simulated thermocline is much shallower with a weaker slope. As a result, the warm SST anomaly from the western Pacific propagates eastward more quickly, leading to a faster develop- ment of an E1 Nino. During the decay stage, owing to a stronger E1Nino in the model, the secondary Gill-type response of the tropical atmosphere to the eastern Pacific warming is much stronger, thereby resulting in a persistent easterly anomaly in the western Pacific. Meanwhile, a cold anomaly in the warm pool appears as a result of a lifted thermocline via Ekman pumping. Finally, an E1 Nino decays into a La Nina through their interactions. In addition, the shorter period and larger amplitude of the ENSO in the model can be attribut- ed to a shallower thermocline in the equatorial Pacific, which speeds up the zonal redistribution of a heat content in the upper ocean.
基金The Joint Fund between Natural Science Foundation of China and Shandong Province under contract No.U1606404the National Basic Research Program(973 Program)of China under contract Nos 2015CB452901 and 2015CB452902+1 种基金the National Key Research and Development Plan Sino-Australian Centre for Healthy Coasts under contract No.2016YFE0101500the Program for Aoshan Excellent Scholars of Qingdao National Laboratory for Marine Science and Technology of China under contract No.2015ASTP-OS13
文摘The Jiaozhou Bay is characterized by heavy eutrophication that is associated with intensive anthropogenic activities. Four core sediments from the Jiaozhou Bay are analyzed using bulk technologies, including sedimentary total organic carbon(TOC), total nitrogen(TN), the stable carbon(δ13C) and nitrogen(δ15 N) isotopic composition to obtain the comprehensive understanding of the source and composition of sedimentary organic matter and further shed light on the environmental changes of the Jiaozhou Bay on a centennial time scale.Results suggest that the TOC and TN concentrations increase in the upper core, having indicated a probable eutrophication process since the 1920 s in the inner bay and the 2000 s in the bay mouth. The TOC and TN concentrations outside the bay have also changed since 1916 owing to the variation of terrigenous input.Considering TOC/TN ratio, δ13 C and δ15 N, it can be concluded there is a mixture of terrigenous and marine organic matter sources in the study area. A simple two end-member(terrigenous and marine) mixing model usingδ13 C indicats that 45%–79% of TOC in the Jiaozhou Bay is from the marine source. The environmental changes of the Jiaozhou Bay are recorded by geochemical proxies, which are influenced by the intensive anthropogenic activities(e.g., extensive use of fertilizers, and discharge of sewage) and climate changes(e.g., rainfall).
基金the National Natural Science Foundation of China(Grant No.92044302)the National Key Research and Development Program(Grant Nos.2020YFA0607801,2022YFE0106500)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab).
文摘Due to the record-breaking wildfires that occurred in Canada in 2023,unprecedented quantities of air pollutants and greenhouse gases were released into the atmosphere.The wildfires had emitted more than 1.3 Pg CO_(2)and 0.14 Pg CO_(2)equivalent of other greenhouse gases(GHG)including CH4 and N_(2)O as of 31 August.The wildfire-related GHG emissions constituted more than doubled Canada’s planned cumulative anthropogenic emissions reductions in 10 years,which represents a significant challenge to climate mitigation efforts.The model simulations showed that the Canadian wildfires impacted not only the local air quality but also that of most areas in the northern hemisphere due to long-range transport,causing severe PM_(2.5)pollution in the northeastern United States and increasing daily mean PM_(2.5)concentration in northwestern China by up to 2μg m-3.The observed maximum daily mean PM_(2.5)concentration in New York City reached 148.3μg m-3,which was their worst air quality in more than 50 years,nearly 10 times that of the air quality guideline(i.e.,15μg m-3)issued by the World Health Organization(WHO).Aside from the direct emissions from forest fires,the peat fires beneath the surface might smolder for several months or even longer and release substantial amounts of CO_(2).The substantial amounts of greenhouse gases from forest and peat fires might contribute to the positive feedback to the climate,potentially accelerating global warming.To better understand the comprehensive environmental effects of wildfires and their interactions with the climate system,more detailed research based on advanced observations and Earth System Models is essential.
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB428706)the Funds for Creative Research Groups of China(No.41121064)
文摘Long-term data on diatom assemblages in a sediment core (60 cm) obtained from the Changjiang (Yangtze) River estuary were analyzed in order to assess the environmental changes that took place in the approximately 38 years (as determined by 210pb measurements), i.e., between 1974 and 2012, of sediment accumulation. From the sediment core, 62 diatom taxa and genera were identified. The diatom biomass in the core generally increased beginning in the mid-1990s (core depth: 35 cm), accompanied by a shift in the dominant species from Podosira stelliger and two species of Cyclotella (C. stylorum and C. striata) to Paralia sulcata, three species of Thalassiosira ( T. eccentria, I". oestrupii, and T. excentrica), Actinoptychus undulates, and Thalassionema nitzschioides. The changes in both species diversity and abundance suggested that since the 1980s the estuary has undergone extensive eutrophication. This conclusion was supported by the increased proportion of planktonic species, another indicator of high nutrients inputs, in the Changjiang River estuary.
基金Supported by the National Natural Science Foundation of China(No.41576119)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA11020302)the Public Science and Technology Research Funds Projects of Ocean(No.201305003-3)
文摘Abstract Blooms of some pico/nanophytoplankton have occurred frequently along the Qinhuangdao coast since 2009, and it is necessary to identify the critical environmental factors inducing them. In this study, variations in the physical and nutrient characteristics of the seawater were analyzed following the development of local blooms in 2013. The local environmental characteristics were also compared with those of the Changjiang River estuary, China, and the Long Island estuaries in the USA, which are also prone to blooms of special algal species. In Qinhuangdao the local water temperature varied seasonally and rose above 15~C in 2013 early summer, coincident with the water discoloration. The salinity was more than 28 with a variation range of 〈3 throughout the year. Our results suggest that the physical conditions of the Qinhuangdao coastal area were suitable for the explosive proliferation of certain pico/nanophytoplankton, e.g. Aureococcus anophagefferens. The water supporting the bloom was not in a condition of serious eutrophication, but there were relatively high concentrations of reduced nitrogen (especially ammonium), which acted as an important nitrogen source for the pico/nanophytoplankton bloom. There was also a large gap between total nitrogen (TN) and dissolved inorganic nitrogen (DIN). Although the phosphate concentration was relatively low, there was no evidence of phosphorus limitation to the growth of pico/ nanophytoplankton during bloom events.
基金Supported by the National Natural Science Foundation of China(No.41506142)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1606404)the Sino-Australian Centre for Healthy Coasts of National Key Research and Development Plan(No.2016YFE0101500)
文摘In order to depict the distribution of diatom fossils in surface sediments and to establish a reliable reference data for further paleoenvironmental study in the Changjiang (Yangtze) River estuary and its adjacent waters, the diatom fossils from 34 surface sediment samples and their relationship with environmental variables were analyzed by principal component analysis and redundancy correspondence analysis. The diversity and abundance of diatom fossils were analyzed. Some annual average parameters of the overlying water (salinity, temperature, turbidity, dissolved oxygen, depth, dissolved inorganic nitrogen, dissolved inorganic phosphate and dissolved inorganic silicate) were measured at each sampling site. A total of 113 diatom taxa and one silicoflagellate species were identified in the investigation area. Diatom fossils were better preserved in fine sediments. The absolute abundance of diatom fossils did not significantly diff er between inshore and off shore areas, the species diversity decreased from inshore to off shore. This may be because high nutrients and low salinity promoted the growth of more brackish species in coastal waters. The diatom taxa were divided into three groups, on the basis of their response and indication to environmental changes. For example, Actinocyclus ehrenbergii and Cyclotella stylorum were dominant in coastal waters (Group 1 and Group 3) with high nutrients and low salinity;the relative abundances of Paralia sulcata and Podosira stelliger were significantly higher in off shore sites (Group 2, average 39.5%), which were characterized by high salinity and deep water. Four environmental variables (salinity, dissolved inorganic nitrogen, temperature and water depth) explained the composition and distribution of diatom taxa independently ( P< 0.05), this finding can be applied in further paleoenvironmental reconstruction research in this area.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-213-3)the National Basic Research Program of China (973 Program) (No. 2006CB400606)the National Natural Science Foundation of China (No. 40631008)
文摘Differences among species in prosome length and in species' response to environmental factors do exist. Therefore, it is useful to examine prosome length for different copepod species in variable environments. Seasonal variations in prosome length of four small copepods and their copepodite stages in the Jiaozhou Bay were compared and the relative influence of temperature, salinity, and chlorophyll concentration were examined. Two peaks were found in the mean prosome length of Paracalanus parvus (in early winter and May). For Acartia bifilosa, the maximum values of all copepodites occurred mainly from February to April, and decreased to the bottom in July. Prosome length of Acartia pacifica peaked when it first appeared in June, then reached to the minimum in July. Parvocalanus crassirostris only appeared from late summer to autumn and the mean prosome length showed no clear changes. Correlations of adult prosome length with environmental factors were evaluated. For the four species, temperature was negatively correlated to prosome length except for P. crassirostris. But the different species varied markedly in their responds to temperature. A. bifilosa showed a more definite trend of size variation with temperature than P. parvus and A. pacifica. Correlations of prosome length with salinity were significantly positive for almost all the small copepods. The relationship between chlorophyll concentration and prosome length was complicated for these copepods, but for P. parvus, chlorophyll concentration was also an important affecting factor. Furthermore, investigation needs to be done on food quality for some copepod. These results are essential to estimate the biomass and the production, and to understand these small copepods' population dynamics in this human-affected bay.
基金Supported by the Science&Technology Basic Resources Investigation Program of China(No.2018FY100200)the Key Deployment Project of Centre for Ocean Mega-Research of Science,Chinese Academy of Science(No.COMS2019Q05)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050302)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018SDKJ0504)the Sino-Australian Centre for Healthy Coasts(No.2016YFE0101500)。
文摘Harmful algal blooms(HABs)in the Southern Yellow Sea(SYS)have shown a trend of increasing diversity and detrimental ef fects.While the Bohai Sea,East China Sea,and South China Sea have experienced a high incidence of HABs since the 1980s,the Yellow Sea provides a relatively healthy ecological environment in which fewer HABs have been documented before the 21s t century.Yet largescale blooms of the green macroalga Ulva prolifera(so-called“green tides”)have occurred annually since 2007 in the Yellow Sea.Six people were poisoned and one person died in Lianyungang in 2008 due to ingestion of algal toxins.Moreover,the Yellow Sea experienced co-occurrence of harmful red tides,green tides,and golden tides in 2017.This combination of events,rare worldwide,indicates the potential for further deterioration of the marine environment in the Yellow Sea,which may be related to climate change,aquaculture,and other human activities.Using the SYS as an example,we collected data of the frequency and scale of HABs over the years,as well as that of marine algal toxins,and analyzed the trend in the diversity of HABs in the SYS,to explore the causes and impacts of HABs,as well as the interrelationships among dif ferent types of HABs,including harmful red tides,green tides,and golden tides.We also attempted to improve our understanding of HAB evolution under the influence of global climate change and intensified human activities.
基金the International Science Partnership Program of the Chinese Academy of Sciences(No.133137KYSB20200002)the Laoshan Laboratory(No.LSKJ202204005)+3 种基金the State Key Program of National Natural Science of China(No.42130411)the International Science Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)the Aoshan Science and Technology Innovation Program(No.2016ASKJ02-4)the Taishan Scholars Project(to Song SUN)。
文摘The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.
基金Supported by the National Key R&D Program of China(No.2016YFC1402102)the Key Laboratory of Marine Ecology and Environmental Science and Engineering,SOA(No.MESE-2019-02)+5 种基金the National Natural Science Foundation of China(Nos.41906120,41706121)the Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.JCZX202027)the Basic Applied Researching Projects of Qingdao(No.15-9-1-37-jch)the NSFC-Shandong Joint Fund(Nos.U1806213,U1606404)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDB-SSW-DQC023)the Fundamental Research Funds for the Central Universities(No.201964025)。
文摘Large-scale green tides in the Yellow Sea occurred for 13 consecutive years since 2007.The unusual co-occurrence of green tides and golden tides occurred in the Yellow Sea in 2017.The causative species are Ulva prolifera and/or Sargassum horneri.Previous studies on physiological response characteristics of U.prolifera and S.horneri are done in the laboratory mainly,and there is no in-situ comparative study in this regard.In this study,the in-situ physiological response characteristics of both species were measured.The results indicated that cyclic electron flow and antioxidant system play more important roles in protecting U.prolifera,while non-photochemical quenching is more important for adapting to the environment in S.horneri.U.prolifera has a stronger ability to utilize nutrients to rapidly increase its biomass under a suitable condition compared to S.horneri.
文摘During the first Chinese Scientific Expedition to the Arctic in July - September 1999, cyanobacteria in the Bering Sea were measured by epifluorescence microscopy. Cyanobacterial abundance varied from 0 to 7. 93 × 103 cell/ml and decreased along a northerly directed latitudinal gradient in horizontal distribution. Cyanobacteria did not occur at station Bl - 12 (north of 60 °N). Vertically, high cya-nobacterial abundance appeared in the upper 25 - 50 m and decreased rapidly below 50 m. There were no cyanobacteria at the 150 m. Seawater temperature and NH4+ -N are suggested to affect the distribution of cyanobacteria.
基金supported by the National Natural Science Foundation of China(Grant No.41875126)the National Key Scientific and Technological Infrastructure project “Earth System Numerical Simulation Facility”(EarthLab)。
文摘Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercomparison Project(GeoMIP) framework,utilizing the Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0).This paper briefly describes the basic configuration and experimental design of the CAS-ESM2.0 for G1ext,which involves a sudden reduction in solar irradiance to counterbalance the radiative forcing of an abrupt quadrupling of atmospheric CO_(2) concentration,running for 100 years.Preliminary results show that this model can reproduce well the compensatory effect of a uniform decrease in global solar radiation on the radiative forcing resulting from an abrupt quadrupling of CO_(2) concentration.Like other Earth system models,CAS-ESM2.0 reasonably captures variations in radiative adjustments,surface air temperature,and precipitation patterns,both globally and locally,under the G1ext scenario.The generated datasets have been released on the Earth System Grid Federation data server,providing insight into the potential efficacy and impact of solar geoengineering strategies.
基金National Natural Science Foundation of China(42175022)。
文摘In the context of global warming, the increasing wildfire frequency has become a critical climate research focus in North America. This study used the Community Earth System Model(CESM 1.2) to investigate the impacts of 20thcentury wildfires on North American climate and hydrology. Summer represents the peak wildfire season in North America, with the Gulf of Mexico and Midwest regions experiencing the most severe effects. Wildfires not only damage vegetation during the fire season but also extend prolonged impacts into non-fire periods, showing distinct seasonal variations. In spring, wildfires increase surface albedo, triggering a cooling effect through enhanced snow cover and delayed snowmelt. Conversely, summer and autumn surface warming stems primarily from wildfire-suppressed vegetation transpiration. Warming near the Gulf of Mexico enhances moisture transport and precipitation, particularly in summer and autumn. Reduced evaporation and increased precipitation from the Gulf of Mexico significantly altered the hydrological cycle across North America, leading to increased runoff continent-wide.
基金supported by the National Natural Science Foundation of China(No.42130411,No.42349301,No.U2006206)the International Science Partnership Program of the Chinese Academy of Sciences(No.133137KYSB20200002)the National Key Research and Development Program of China(2024YFF0506902).
文摘As global coastal ecosystems face compounding challenges from climate change and anthropogenic pressures,long-term ecosystem observation and integrated research are increasingly vital.The Shandong Jiaozhou Bay Marine Ecosystem National Observation and Research Station,the only national field station for marine ecosystem observation and research in China’s temperate seas,has built a comprehensive platform for ecological observation and interdisciplinary research.This paper discusses how the Station leverages its long-term observation platform capacities to support both national marine strategies and global sustainability goals,through technological development,scientific research,public engagement,and international cooperation.This case study provides a replicable example for global coastal ecosystems in terms of management and sustainable development.
基金funded by the National Natural Science Foundation of China(Grant Nos.42275063 and U20A2097)the Open Grants of the State Key Laboratory of Severe Weather(Grant No.2023LASW-B29)。
文摘Potential vorticity(PV)streamers are elongated filaments of high PV intrusions that generally exhibit three distinct shapes:ordinarily southwestward,hook,and treble-clef,each with significant influences on weather.These PV streamers are most frequent over arid and semi-arid Central Asia in the mid–high latitudes.This study applied the Mask Region-based Convolutional Neural Network algorithm(Mask R-CNN)to PV streamers on the dynamical tropopause during the warm season(May to September)over the years 2000–04 to train a weighted variational model capable of identifying these different shapes.The trained model demonstrated a strong ability to distinguish between the three shapes.A climatological analysis of PV streamers over Central Asia spanning 2000 to 2021 revealed an increasingly deep and pronounced reversal of circulation from ordinary to treble-clef shapes.The treble-clef shape featured a PV tower and distinct cut-off low in the troposphere,but the associated upward motions and precipitation were confined within approximately 1200 km to the east of the PV tower.Although the hook-shape PV streamers were linked to a weaker cut-off low,the extent of upward motion and precipitation was nearly double that of the treble-clef category.In contrast,the ordinary PV streamer was primarily associated with tropopause Rossby wave breaking and exhibited relatively shallow characteristics,which resulted in moderate upward motion and precipitation to 500 km to its east.
基金supported by the National Key R&D Program of China[grant number 2022YFB2403002]。
文摘As a type of clean and pollution-free energy source,solar energy plays an important role in achieving the goals of carbon neutrality and global sustainable development.Northwest China occupies an important position in the national energy strategy due to its rich solar energy.Clarifying the long-term variations of Northwest China’s solar energy and understanding the associated mechanisms are crucial to improving the layout of new energy sources and the usage efficiency of solar energy within China.In this study,the authors first divide Northwest China into northwestern and southeastern sections by conducting a rotated empirical orthogonal function analysis on the surface solar radiation(SSR)from 1993 to 2022,and then explore the SSR’s variation trends and associated mechanisms within these subregions.It is found that the two subregions,both of which show a significant feature of decadal change,differ notably in their long-term trends:the northwestern section shows a significant increasing trend of∼8.1 kJ m^(-2)yr^(-1)in the annual mean SSR,and in each season the SSR increases significantly,with a maximum/minimum increasing rate of∼11.2/∼4.6 kJm^(-2)yr^(-1)appearing in summer/autumn.A possible mechanism for the SSR’s increasing trend is that global warming results in a lower relative humidity within the northwestern section,which decreases the total cloud cover,as it is harder for the atmosphere to reach saturation state.A decreasing total cloud cover results in an increasing SSR within the northwestern section.In contrast,the southeastern section shows no significant trend in annual mean SSR,as the SSRs in summer and autumn show significant decreasing trends,whereas the trends in spring and winter are not significant.
基金Supported by the National Natural Science Foundation of China(Nos.42076166,42130411)the NSFC Ship Time Sharing Project(No.42149901)+2 种基金the Laoshan Laboratory(Nos.LSKJ202203700(or LSKJ202203704)LSKJ202204005)the National Key R&D Program of China(No.2023YFC3108202)。
文摘The northern East China Sea and Yellow Sea are highly dynamic marginal seas,serving as important fishing grounds and primary areas for aquaculture.The zooplankton community structure,including abundance,biovolume,and normalized biovolume size spectra(NBSS)within this ecosystem in summers 2021 and 2022 was assessed through ZooScan digital imaging system.The abundances of zooplankton in summers 2021 and 2022 were 3364.22±2190.53 and 4435.52±2520.06 inds./m^(3),respectively,whereas the corresponding biovolumes were 649.10±519.63 and 1064.86±1254.87 mm^(3)/m^(3),respectively.Small copepods as the dominant zooplankton functional group in terms of abundance in both years,while chaetognath and medusae were the dominant groups in terms of biovolume.The dominance of medusae and chaetognath in terms of biovolume,along with the flatter slopes of NBSS compared to a stable community,indicated that more energy accumulated in gelatinous organisms within the study area.There were significant positive relationships between temperature and tunicates or medusae,with a significantly higher population size observed in summer 2022 than in 2021.The lower abundance and biovolume of zooplankton,mainly of small copepods,in summer 2021 may be related to the larger population size of the large jellyfish and the proliferation of green tides.The investigation provided basic data and fundamental insights for achieving a comprehensive understanding of zooplankton community structure and their long-term dynamics.
基金Supported by the Joint Project of Guangxi Provincial and China National Natural Science Foundations(Nos.U 20 A 20104,42306152)the Taishan Scholars Program to Prof.Rencheng YU。
文摘Pigments are widely used as indices for estimation of phytoplankton biomass and composition,and many protocols have been developed to analyze pigments in phytoplankton.Different protocols were compared using four solvents(methanol,95%methanol,dimethylformamide,and 90%acetone)and two instruments(fluorometer and high-performance liquid chromatography(HPLC)coupled with diode array detector).Analysis of chlorophyll a(Chl a)with fluorometer could lead to over-or underestimation due to the interference from its derivatives in all probability.Among the four extractants,90%acetone had a high recovery for chlorophylls.In contrast,95%methanol was a poor extractant for chlorophylls due to the degradation of Chl a,especially in diatoms.The 95%methanol,however,had high extraction efficiencies for most diagnostic xanthophylls.Therefore,the selection of pigment analytical protocols should follow the specific purpose of phytoplankton study.In addition to fluorometry,an HPLC method with 90%acetone as extractant shall be a good choice for the analysis of Chl a to estimate phytoplankton biomass,especially for diatom-dominated samples,while an HPLC method with 95%methanol as extractant be more suitable to characterize different taxa in phytoplankton communities.