Top-down environmental policies aim to mitigate environmental risks but inevitably lead to economic losses due to the market entry or exit of enterprises.This study developed a universal dynamic agent-based supply cha...Top-down environmental policies aim to mitigate environmental risks but inevitably lead to economic losses due to the market entry or exit of enterprises.This study developed a universal dynamic agent-based supply chain model to achieve tradeoffs between environmental risk reduction and economic sus-tainability.The model was used to conduct high-resolution daily simulations of the dynamic shifts in enterprise operations and their cascading effects on supply chain networks.It includes production,con-sumption,and transportation agents,attributing economic features to supply chain components and cap-turing their interactions.It also accounts for adaptive responses to daily external shocks and replicates realistic firm behaviors.By coupling high spatial-temporal resolution firm-level data from 18916 chemical enterprises,this study investigates the economic and environmental impacts of an environmen-tal policy resulting in the closure of 1800 chemical enterprises over three years.The results revealed a significant economic loss of 25.8 billion USD,ranging from 23.8 billion to 31.8 billion USD.Notably,over 80%of this loss was attributed to supply chain propagation.Counterfactual analyses indicated that imple-menting a staggered shutdown strategy prevented 18.8%of supply chain losses,highlighting the impor-tance of a gradual policy implementation to prevent abrupt supply chain disruptions.Furthermore,the study highlights the effectiveness of a multi-objective policy design in reducing economic losses(about 29%)and environmental risks(about 40%),substantially enhancing the efficiency of the environmental policy.The high-resolution simulations provide valuable insights for policy designers to formulate strategies with staggered implementation and multiple objectives to mitigate supply chain losses and environmental risks and ensure a sustainable future.展开更多
Abandoned mines,especially pyrite-rich ones,release acid mine drainage(AMD)with high acidity and excessive amounts of heavy metals,threatening regional ecosystems.Six samples of mine drainage,nine samples of surface w...Abandoned mines,especially pyrite-rich ones,release acid mine drainage(AMD)with high acidity and excessive amounts of heavy metals,threatening regional ecosystems.Six samples of mine drainage,nine samples of surface water,and twelve samples of sediment were analyzed in this case study of the Dashu pyrite mine in southwest China.A comprehensive analysis of the pollution levels,pollution sources,and potential hazards of eight metals(Ni,Cd,Cu,Zn,Fe,Al,Pb,and Mn)that exceeded regulatory standardswas conducted bymonitoring 24 conventional and characteristic indicators.Ultimately,this research evaluated the environmental hazards associated with abandonedmine water using the"pressure-response"model,thereby providing valuable insights for the effective protection of the environment in mining regions.The primary pollutants in mine water were determined to be SO_(4)^(2−),Fe,and Mn,with concentrations of 7700,1450,and 6.78mg/L,respectively.A clear"source-sink"dynamic was observed between themine water and the surrounding water system.surface water was primarily polluted by Ni and Mn,while water system sediments were primarily polluted by Cu and Hg.Ion ratio and Pearson correlation analyses indicated heavy metals in surface water and sediments originated from the same AMD source.The"pressureresponse"model was used to assess the environmental hazards of water from abandoned mines.Mines W1,W2,W5,and W6 were classified as high-risk,while W3 and W4 were medium-risk.This study offers a novel approach and valuable reference for identifying and classifying environmental risks in abandoned mines and targeting AMD treatment.展开更多
Polycyclic aromatic hydrocarbons(PAHs)are of great concern because they threaten pri-mary productivity,but their specific effects on ecosystem functioning are scarce,hindering a comprehensive understanding of their ec...Polycyclic aromatic hydrocarbons(PAHs)are of great concern because they threaten pri-mary productivity,but their specific effects on ecosystem functioning are scarce,hindering a comprehensive understanding of their ecological risks,especially in eutrophicwaters.The present study was conducted by adding PAHs to four marine phytoplankton species and showed that naphthalene(Nap)and phenanthrene(Phe)induced both stimulatory and in-hibitory effects(>50%)on urea and NO_(3)−uptake by phytoplankton species.In addition,the apparent stimulative effects(>50%)for NH_(4)^(+)were also observed.Overall,38.9%of the sam-ples exhibited stimulation effects after 24 h exposure,which increased to 61.1%after 96 h exposure.This suggested the existence of a lag period,during which a tolerant cell popula-tion could adapt to PAHs.Significant positive correlations(P<0.01)between low and high concentrations of PAH individuals demonstrated that the mode of action for both pollutants on nitrogen uptake by phytoplankton was the same.Species-specific responses were also observed,with 19.0%of Thalassiosira sp.and 24.0%of Tetraselmis sp.exhibited inhibition effects greater than 50%,while 40.9%of Karlodinium veneficum and 27.3%of Rhodomonas salina demonstrated stimulation effects exceeding 50%,providing a unique perspective for exploring the harmful algal bloom of the mixotrophic K.veneficum,in addition to the original consideration of nutrients.The internal mechanisms may lie in differences in energy consumption between N-forms,exposure time and chemical concentrations,aswell as mor-phological characteristics and biochemical structures of the species,which require further investigation.展开更多
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
To address the problems with catalytic degradation,such as poisoning and inactivation,a simple and efficient gas purging regeneration technique was developed for iron-based catalyst in-situ regeneration.Specifically,t...To address the problems with catalytic degradation,such as poisoning and inactivation,a simple and efficient gas purging regeneration technique was developed for iron-based catalyst in-situ regeneration.Specifically,the effects of carrier gas types,regeneration temperatures,and granular activated carbon(GAC)addition on iron-based catalyst regeneration were investigated.The Fe_(3)O_(4)/𝛾-Al_(2)O_(3) regenerated at 550°C with additional GAC and 15%water vapor exhibited the optimal degradation efficiency towards polychlorinated biphenyls(PCBs),with an increase from 41.2%to 93.5%,compared with non-regenerated Fe_(3)O_(4)/𝛾-Al_(2)O_(3).In addition,the 60-hour stability test revealed a well-recovered catalytic activity.During the Fe_(3)O_(4)/𝛾-Al_(2)O_(3) regeneration,the coke on the catalyst surface was oxidized and removed in the form of CO_(2),and meanwhile the oxidized Fe(III)was reduced into Fe(II)in the catalyst.This study provides a safe and efficient iron-based catalyst regeneration technology for PCB off-gas degradation and reveals the catalytic activity recovery mechanism during catalyst regeneration.展开更多
To curb the worsening tropospheric ozone(O_(3))pollution problem in China,a rapid and accurate identification of O_(3)-precursor sensitivity(OPS)is a crucial prerequisite for formulating effective contingency O_(3) po...To curb the worsening tropospheric ozone(O_(3))pollution problem in China,a rapid and accurate identification of O_(3)-precursor sensitivity(OPS)is a crucial prerequisite for formulating effective contingency O_(3) pollution control strategies.However,currently widely-used methods,such as statistical models and numerical models,exhibit inherent limitations in identifying OPS in a timely and accurate manner.In this study,we developed a novel approach to identify OPS based on eXtreme Gradient Boosting model,Shapley additive explanation(SHAP)al-gorithm,and volatile organic compound(VOC)photochemical decay adjustment,using the meteorology and speciated pollutant monitoring data as the input.By comparing the difference in SHAP values between base sce-nario and precursor reduction scenario for nitrogen oxides(NO_(x))and VOCs,OPS was divided into NO_(x)-limited,VOCs-limited and transition regime.Using the long-lasting O_(3) pollution episode in the autumn of 2022 at the Guangdong-Hong Kong-Macao Greater Bay Area(GBA)as an example,we demonstrated large spatiotemporal heterogeneities of OPS over the GBA,which were generally shifted from NO_(x)-limited to VOCs-limited from September to October and more inclined to be VOCs-limited at the central and NO_(x)-limited in the peripheral areas.This study developed an innovative OPS identification method by comparing the difference in SHAP value before and after precursor emission reduction.Our method enables the accurate identification of OPS in the time scale of seconds,thereby providing a state-of-the-art tool for the rapid guidance of spatial-specific O_(3) control strategies.展开更多
The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)at...The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)attenuation behavior remain poorly understood.To address this gap,a thermodynamically controlled periodic coordination strategy is proposed to achieve precise modulation of magnetic nanoparticle spacing.This approach unveils the evolution of magnetic domain configurations,progressing from individual to coupled and ultimately to crosslinked domain configurations.A unique magnetic coupling phenomenon surpasses the Snoek limit in low-frequency range,which is observed through micromagnetic simulation.The crosslinked magnetic configuration achieves effective low-frequency EM wave absorption at 3.68 GHz,encompassing nearly the entire C-band.This exceptional magnetic interaction significantly enhances radar camouflage and thermal insulation properties.Additionally,a robust gradient metamaterial design extends coverage across the full band(2–40 GHz),effectively mitigating the impact of EM pollution on human health and environment.This comprehensive study elucidates the evolution mechanisms of magnetic domain configurations,addresses gaps in dynamic magnetic modulation,and provides novel insights for the development of high-performance,low-frequency EM wave absorption materials.展开更多
Limited information is available on long-term effects of metal(loid)s pollution incidents. Here, we analyze the distribution characteristics and quantification of elements in the Southwest China Keda mining site, whic...Limited information is available on long-term effects of metal(loid)s pollution incidents. Here, we analyze the distribution characteristics and quantification of elements in the Southwest China Keda mining site, which is one of the most populated sites and enables human health and ecological risk assessments of elemental pollution. The results on modified degree of contamination indicated that the soil and sediment were highly contaminated near Dahu Lake.The health risk of children was almost 2.5 times that of adults in surface water, and 7.1 times in soil, respectively.Moreover, Tl and As were the main health risk contributors in surface water and soil, respectively, and As posed the highest ecological risk both in soil and sediment. These results indicated the potential impact of toxic metal(loid)s on the health of residents and environment. Hence, more scientific attention and proper management need to be paid to this environmental challenge in the future.展开更多
The planning environmental impact assessment (EIA) of transmission and transformation power grid at levels of 500 and 220 kV had been finished completely in the 13 municipalities of Jiangsu Province by the end of 20...The planning environmental impact assessment (EIA) of transmission and transformation power grid at levels of 500 and 220 kV had been finished completely in the 13 municipalities of Jiangsu Province by the end of 2012, which played important roles in guiding and planning the following transmission and transformation projects in environmental protection. In this paper, through the detail analysis on the objective and significance of the planning EIA of transmission and transformation power grid, legal basis and planning EIA practices, some suggestions and thinking about the planning EIA of transmission and transformation power grid were put forward.展开更多
An increasing divergence regarding fuel consumption(and/or CO_(2)emissions) between realworld and type-approval values for light-duty gasoline vehicles(LDGVs) has posed severe challenges to mitigating greenhouse gases...An increasing divergence regarding fuel consumption(and/or CO_(2)emissions) between realworld and type-approval values for light-duty gasoline vehicles(LDGVs) has posed severe challenges to mitigating greenhouse gases(GHGs) and achieving carbon emissions peak and neutrality. To address this divergence issue, laboratory test cycles with more real-featured and transient traffic patterns have been developed recently, for example, the China Lightduty Vehicle Test Cycle for Passenger cars(CLTC-P). We collected fuel consumption and CO_(2)emissions data of a LDGV under various conditions based on laboratory chassis dynamometer and on-road tests. Laboratory results showed that both standard test cycles and setting methods of road load affected fuel consumption slightly, with variations of less than 4%. Compared to the type-approval value, laboratory and on-road fuel consumption of the tested LDGV over the CLTC-P increased by 9% and 34% under the reference condition(i.e., air conditioning off, automatic stop and start(STT) on and two passengers). On-road measurement results indicated that fuel consumption under the low-speed phase of the CLTC-P increased by 12% due to the STT off, although only a 4% increase on average over the entire cycle. More fuel consumption increases(52%) were attributed to air conditioning usage and full passenger capacity. Strong correlations(R2> 0.9) between relative fuel consumption and average speed were also identified. Under traffic congestion(average speed below 25 km/hr), fuel consumption was highly sensitive to changes in vehicle speed. Thus,we suggest that real-world driving conditions cannot be ignored when evaluating the fuel economy and GHGs reduction of LDGVs.展开更多
Urban eco-environmental degradation is becoming inevitable due to the extensive urbanization, popula- tion growth, and socioeconomic development in China. One of the traffic arteries in Shenzhen is an urban expressway...Urban eco-environmental degradation is becoming inevitable due to the extensive urbanization, popula- tion growth, and socioeconomic development in China. One of the traffic arteries in Shenzhen is an urban expressway that is under construction and that runs across environmentally sensitive areas (ESAs). The environmental pollution from urban expressways is critical, due to the characteristics of expressways such as high runoff coefficients, considerable contaminant accumulation, and complex pollutant ingredi- ents. ESAs are vulnerable to anthropogenic disturbances and hence should be given special attention. In order to evaluate the environmental sensitivity along this urban expressway and minimize the influences of the ongoing road construction and future operation on the surrounding ecosystem, the environmental sensitivity of the relevant area was evaluated based on the application of a geographic information sys- tem (GIS). A final ESA map was classified into four environmental sensitivity levels; this classification indicates that a large proportion of the expressway passes through areas of high sensitivity, representing 11.93 km or 52.3% of the total expressway, and more than 90% of the total expressway passes through ESAs. This study provides beneficial information for optimal layout schemes of initial rainfall runofftreatment facilities developed from low-impact development (LID) techniques in order to minimize the impact of polluted road runoff on the surrounding ecological environment.展开更多
Located in northern China,the Hetao Plain is an important agro-economic zone and population centre.The deterioration of local groundwater quality has had a serious impact on human health and economic development.Nowad...Located in northern China,the Hetao Plain is an important agro-economic zone and population centre.The deterioration of local groundwater quality has had a serious impact on human health and economic development.Nowadays,the groundwater vulnerability assessment(GVA)has become an essential task to identify the current status and development trend of groundwater quality.In this study,the Convolutional Neural Network(CNN)and Long Short-Term Memory(LSTM)models are integrated to realize the spatio-temporal prediction of regional groundwater vulnerability by introducing the Self-attention mechanism.The study firstly builds the CNN-LSTM modelwith self-attention(SA)mechanism and evaluates the prediction accuracy of the model for groundwater vulnerability compared to other common machine learning models such as Support Vector Machine(SVM),Random Forest(RF),and Extreme Gradient Boosting(XGBoost).The results indicate that the CNNLSTM model outperforms thesemodels,demonstrating its significance in groundwater vulnerability assessment.It can be posited that the predictions indicate an increased risk of groundwater vulnerability in the study area over the coming years.This increase can be attributed to the synergistic impact of global climate anomalies and intensified local human activities.Moreover,the overall groundwater vulnerability risk in the entire region has increased,evident fromboth the notably high value and standard deviation.This suggests that the spatial variability of groundwater vulnerability in the area is expected to expand in the future due to the sustained progression of climate change and human activities.The model can be optimized for diverse applications across regional environmental assessment,pollution prediction,and risk statistics.This study holds particular significance for ecological protection and groundwater resource management.展开更多
The large-scale exploitation of vanadium(Ⅴ) bearing minerals has led to a massive accumulation of Ⅴ tailings, of which Ⅴ pollution poses severe ecological risks. Although the mechanisms of Ⅴ stress to the microbia...The large-scale exploitation of vanadium(Ⅴ) bearing minerals has led to a massive accumulation of Ⅴ tailings, of which Ⅴ pollution poses severe ecological risks. Although the mechanisms of Ⅴ stress to the microbial community have been reported, the influential pathways in a multi-medium-containing system, for example, the soil-tailings-groundwater system,are unknown. The dynamic redox conditions and substance exchange within the system exhibited complex Ⅴ stress on the local microbial communities. In this study, the influence pathways of Ⅴ stress to the microbial community in the soil-tailings-groundwater system were first investigated. High Ⅴ contents were observed in groundwater(139.2 ± 0.15 μg/L) and soil(98.0–323.8 ± 0.02 mg/kg), respectively. Distinct microbial composition was observed for soil and groundwater, where soil showed the highest level of diversity and richness. Firmicutes, Proteobacteria, Actinobacteria, and Acidobacteria were dominant in soil and groundwater with a sum relative abundance of around 80 %. Based on redundancy analysis and structural equation models, Ⅴ was one of the vital driving factors affecting microbial communities. Groundwater microbial communities were influenced by Ⅴ via Cr, dissolved oxygen, and total nitrogen, while Fe, Mn, and total phosphorus were the key mediators for Ⅴ to affect soil microbial communities. Ⅴ affected the microbial community via metabolic pathways related to carbonaceous matter, which was involved in the establishment of survival strategies for metal stress. This study provides novel insights into the influence pathways of Ⅴ on the microorganisms in tailings reservoir for pollution bioremediation.展开更多
Various technologies and projects have been explored and developed for the synergetic control of environmental pollution and carbon emissions in aquatic ecosystems.Planting submerged vegetation in shallow waters was a...Various technologies and projects have been explored and developed for the synergetic control of environmental pollution and carbon emissions in aquatic ecosystems.Planting submerged vegetation in shallow waters was also expected to achieve this purpose.However,the magnitude and mechanism of carbon dioxide(CO_(2))emission affected by submerged vegetation is not clear enough in complex aquatic ecosystems.This study investigated the influences of submerged plants on CO_(2)emission,ecosystem metabolism features,and microbial community traits based on observations in river networks on the Changjiang River Delta.The results showed that CO_(2)emission from planted waters accounted for 73%of unplanted waters.Meanwhile,planted waters had higher dissolved organic carbon removal capacity in overlying water and higher potential of carbon sequestration in sediment at the same time.These distinctions between the two habitats were attributed to(1)improved CO_(2)and bicarbonate consumption in water columns via enhancing photosynthesis and(2)inhibited CO_(2)production by reconstructing the benthic microbial community.Additional eco-advantages were found in planted sediments,such as a high potential of methane oxidation and xenobiotics biodegradation and a low risk of becoming black and odorous.In brief,submerged vegetation is beneficial in promoting pollution removal and carbon retention synchronously.This study advances our understanding of the feedback between aquatic metabolism and CO_(2)emission.展开更多
Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the el...Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.展开更多
Synthetic phenolic antioxidants(SPAs)are widely used in diverse industries due to their exceptional antioxidant characteristics.However,human exposure to SPAs may cause health problems.In this study,226 dust samples w...Synthetic phenolic antioxidants(SPAs)are widely used in diverse industries due to their exceptional antioxidant characteristics.However,human exposure to SPAs may cause health problems.In this study,226 dust samples were collected from 10 provinces in China,and six SPAs(three parent SPAs and their three transformation products)were analyzed.The concentrations of6SPAs(the sum of six target compounds)ranged from 15.4 to 3210 ng/g(geometric mean(GM):169 ng/g).The highest concentration of6SPAswas found in Sichuan Province(GM:349 ng/g),which was approximately 4 times higher than that in Hubei Province(81.6 ng/g)(p<0.05).The concentrations of butylated hydroxytoluene(BHT),2,2'-methylene bis(4-methyl-6–tert-butylphenol)(AO2246),2,6-di–tert–butyl–1,4-benzoquinone(BHT-Q),2,6-di–tert–butyl–4-(hydroxymethyl)phenol(BHT-OH),and ∑_(p)-SPAs were substantially higher in dust from urban areas than rural areas(p<0.05).AO2246 concentration in dust from homes(GM:0.400 ng/g)was about 4 times higher than that in workplaces(0.116 ng/g)(p<0.01).Significantly higherp-SPAs concentrations were found in dust from homes(GM:17.5 ng/g)than workplaces(11.4 ng/g)(p<0.01).The estimated daily intakes(EDIs)of ∑_(6)SPAs exposed through dust ingestion were 0.582,0.342,0.197,0.076,and 0.080 ng/kg bw/day in different age groups,and exposed through dermal contact was 0.358,0.252,0.174,0.167,and 0.177 ng/kg bw/day.EDIs showed that the exposure risks of SPAs decreased with age.This is the first work to determine SPAs in dust from10 provinces in China and investigate the spatial distribution of SPAs in those regions.展开更多
Although air pollutant emissions have sharply reduced in recent years,the occurrence of PM_(2.5) pollution events remains an intractable environmental problem in Beijing,and regional transport is the key influence fac...Although air pollutant emissions have sharply reduced in recent years,the occurrence of PM_(2.5) pollution events remains an intractable environmental problem in Beijing,and regional transport is the key influence factor.However,it has been difficult to identify regional transport characteristics and the main contributors to pollution events in recent years.In this study,the relative contribution of regional transport was quantified(61.3%)in PM_(2.5) pollution events during 2018-2021 by the Community Multiscale Air Quality model embedded with the Integrated Source Apportionment Model(CMAQ-ISAM).The four regions with the largest fractional contributions to Beijing for all events were Shandong(7.7%),South Hebei(7.3%),Baoding(6.2%),and Langfang(5.8%).Pollution events were classified into the following types based on regional transport directions:local,southwest(SW),southeast(SE),south-mixed(SM),and others.Based on the transport distance,the SW,SE,and SM types can be subdivided into SW-short,SW-long,SE-short,SE-long,SM-short,SM-long distance from southwest,SM-long distance from southeast,and SM-long distance from southwest and southeast.SE-long was regarded as the most important type,with the highest relative frequency(20%).The transport directions were related to the southwest wind at 925 hPa and southeast wind at 1000 hPa in the south of the Beijing–Tianjin–Hebei(BTH)region,and the distance was mainly controlled by wind strength.The wind-field difference can be attributed to the low-pressure and high-pressure systems that control the BTH region.The results suggest that regional joint pollution control should be optimized based on the transport type.展开更多
Food systems are deeply affected by climate change and air pollution,while being key contributors to these environmental challenges.Understanding the complex interactions among food systems,climate change,and air poll...Food systems are deeply affected by climate change and air pollution,while being key contributors to these environmental challenges.Understanding the complex interactions among food systems,climate change,and air pollution is crucial for mitigating climate change,improving air quality,and promoting the sustainable development of food systems.However,the literature lacks a comprehensive review of these interactions,particularly in the current phase of rapid development in the field.To address this gap,this study systematically reviews recent research on the impacts of climate change and air pollution on food systems,as well as the greenhouse gas and air pollutant emissions from agri-food systems and their contribution to global climate change and air pollution.In addition,this study summarizes various strategies for mitigation and adaptation,including adjustments in agricultural practices and food supply chains.Profound changes in food systems are urgently needed to enhance adaptability and reduce emissions.This review offers a critical overview of current research on the interactions among food systems,climate change,and air pollution and highlights future research directions to support the transition to sustainable food systems.展开更多
Rapid screening of inorganic arsenic(iAs)in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection.Most commercial field test kits are based on the G...Rapid screening of inorganic arsenic(iAs)in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection.Most commercial field test kits are based on the Gutzeit reaction that uses mercury-based reagents for color development,an environmental concern that increasingly limits its utilization.This study further improves the Molybdenum Blue(MB)colorimetric method to allow for faster screening with more stable reagents.More importantly,a portable three-channel colorimeter is developed for screening iAs relative to the WHO drinking water guideline value(10μg/L).Adding the reducing reagents in sequence not only prolongs the storage time to>7 days,but also accelerates the color development time to 6 min in conjunction with lowering the H_(2)SO_(4) concentration in chromogenic reagents.The optimal pH ranges from 1.2 to 1.3 and is achieved by acidifying groundwater to 1%(V/V)HCl.With detection limits of 3.7μg/L for inorganic arsenate(iAs(V))and 3.8μg/L for inorganic arsenite(iAs(Ⅲ)),testing groundwater with-10μg/L of As has a precision<20%.The method works well for a range of phosphate concentrations of 48-950μg/L(0.5-10μmol/L).Concentrations of total_iAs(6-300μg/L),iAs(V)(6-230μg/L)and iAs(Ⅲ)(0-170μg/L)for 14 groundwater samples from Yinchuan Plain,Pearl River Delta,and Jianghan Plain,are in excellent agreements(linear regression slope:0.969-1.029)with the benchmark methods.The improved chemistry here lays the foundation for the MB colorimetric method to become a commercially viable screening tool,with further engineering and design improvement of the colorimeter.展开更多
The copper complexing of dissolved organic matter released from hydrochar(HDOM)affects the former’s environmental behavior.In this study,how hydrothermal temperatures(180,220 and 260℃)influence the molecular-level c...The copper complexing of dissolved organic matter released from hydrochar(HDOM)affects the former’s environmental behavior.In this study,how hydrothermal temperatures(180,220 and 260℃)influence the molecular-level constitutions and Cu(II)binding features of HDOM were elucidated via fourier transform ion cyclotron resonance mass spectrometry and multi-spectroscopic analysis.The findings demonstrated that the almost HDOM molecules had the traits of lower polarity and higher hydrophobicity.As the hydrothermal temperature increased,the molecules with particularly high relative strength gradually disappeared,average molecular weight,percentages of CHON and aliphatic compounds of HDOM reduced while the percentages of CHO and aromatic compounds increased.In general,the fluorescence quenching of Cu(II)weakened as hydrothermal temperature rose and the Cu(II)binding stability constants of fluorophores in HDOM were 4.50–5.31.In addition,the Cu(II) binding order of fluorophores in HDOM showed temperature heterogeneities, andpolysaccharides or aromatic rings of non-fluorescent substances had the fastest responsesto Cu(II) binding. Generally, fluorescent components tend to bind Cu(II) at relatively traceconcentrations (0–40 μmol/L), whereas non-fluorescent substances tend to the bind Cu(II)at relatively higher concentrations (50–100 μmol/L). This study contributed to the predictionof the potential environmental behaviors and risks of Cu(II) at the molecular level afterhydrochar application.展开更多
基金supported by the National Natural Science Foundation of China(52200228 and 72022004)the China Postdoctoral Science Foundation(2022M721817)the National Key Scientific Research Project(2021YFC3200200).
文摘Top-down environmental policies aim to mitigate environmental risks but inevitably lead to economic losses due to the market entry or exit of enterprises.This study developed a universal dynamic agent-based supply chain model to achieve tradeoffs between environmental risk reduction and economic sus-tainability.The model was used to conduct high-resolution daily simulations of the dynamic shifts in enterprise operations and their cascading effects on supply chain networks.It includes production,con-sumption,and transportation agents,attributing economic features to supply chain components and cap-turing their interactions.It also accounts for adaptive responses to daily external shocks and replicates realistic firm behaviors.By coupling high spatial-temporal resolution firm-level data from 18916 chemical enterprises,this study investigates the economic and environmental impacts of an environmen-tal policy resulting in the closure of 1800 chemical enterprises over three years.The results revealed a significant economic loss of 25.8 billion USD,ranging from 23.8 billion to 31.8 billion USD.Notably,over 80%of this loss was attributed to supply chain propagation.Counterfactual analyses indicated that imple-menting a staggered shutdown strategy prevented 18.8%of supply chain losses,highlighting the impor-tance of a gradual policy implementation to prevent abrupt supply chain disruptions.Furthermore,the study highlights the effectiveness of a multi-objective policy design in reducing economic losses(about 29%)and environmental risks(about 40%),substantially enhancing the efficiency of the environmental policy.The high-resolution simulations provide valuable insights for policy designers to formulate strategies with staggered implementation and multiple objectives to mitigate supply chain losses and environmental risks and ensure a sustainable future.
基金supported by the National Key Research and Development Program of China(No.2023YFC3710000)the National Natural Science Foundation of China(Nos.42277078 and 42307118).
文摘Abandoned mines,especially pyrite-rich ones,release acid mine drainage(AMD)with high acidity and excessive amounts of heavy metals,threatening regional ecosystems.Six samples of mine drainage,nine samples of surface water,and twelve samples of sediment were analyzed in this case study of the Dashu pyrite mine in southwest China.A comprehensive analysis of the pollution levels,pollution sources,and potential hazards of eight metals(Ni,Cd,Cu,Zn,Fe,Al,Pb,and Mn)that exceeded regulatory standardswas conducted bymonitoring 24 conventional and characteristic indicators.Ultimately,this research evaluated the environmental hazards associated with abandonedmine water using the"pressure-response"model,thereby providing valuable insights for the effective protection of the environment in mining regions.The primary pollutants in mine water were determined to be SO_(4)^(2−),Fe,and Mn,with concentrations of 7700,1450,and 6.78mg/L,respectively.A clear"source-sink"dynamic was observed between themine water and the surrounding water system.surface water was primarily polluted by Ni and Mn,while water system sediments were primarily polluted by Cu and Hg.Ion ratio and Pearson correlation analyses indicated heavy metals in surface water and sediments originated from the same AMD source.The"pressureresponse"model was used to assess the environmental hazards of water from abandoned mines.Mines W1,W2,W5,and W6 were classified as high-risk,while W3 and W4 were medium-risk.This study offers a novel approach and valuable reference for identifying and classifying environmental risks in abandoned mines and targeting AMD treatment.
基金supported by the National Natural Science Foundation of China(No.42277404)the State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River(No.AEHKF2023004)+2 种基金the National Key Research and Development Programof China(No.2022YFC3202703)the International Collaboration Program of Chinese Academy of Sciences(Nos.SAJC202403,067GJHZ2023034MI)the Autonomous Deployment Project of Key Laboratory of Lake andWatershed Science for Water Security(No.NKL2023-KP01).
文摘Polycyclic aromatic hydrocarbons(PAHs)are of great concern because they threaten pri-mary productivity,but their specific effects on ecosystem functioning are scarce,hindering a comprehensive understanding of their ecological risks,especially in eutrophicwaters.The present study was conducted by adding PAHs to four marine phytoplankton species and showed that naphthalene(Nap)and phenanthrene(Phe)induced both stimulatory and in-hibitory effects(>50%)on urea and NO_(3)−uptake by phytoplankton species.In addition,the apparent stimulative effects(>50%)for NH_(4)^(+)were also observed.Overall,38.9%of the sam-ples exhibited stimulation effects after 24 h exposure,which increased to 61.1%after 96 h exposure.This suggested the existence of a lag period,during which a tolerant cell popula-tion could adapt to PAHs.Significant positive correlations(P<0.01)between low and high concentrations of PAH individuals demonstrated that the mode of action for both pollutants on nitrogen uptake by phytoplankton was the same.Species-specific responses were also observed,with 19.0%of Thalassiosira sp.and 24.0%of Tetraselmis sp.exhibited inhibition effects greater than 50%,while 40.9%of Karlodinium veneficum and 27.3%of Rhodomonas salina demonstrated stimulation effects exceeding 50%,providing a unique perspective for exploring the harmful algal bloom of the mixotrophic K.veneficum,in addition to the original consideration of nutrients.The internal mechanisms may lie in differences in energy consumption between N-forms,exposure time and chemical concentrations,aswell as mor-phological characteristics and biochemical structures of the species,which require further investigation.
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
基金supported by the Fundamental Research Funds for the Central Publicinterest Scientific Institution(No.2024YSKY-44)the National Key R&D Program of China(No.2023YFC3708003).
文摘To address the problems with catalytic degradation,such as poisoning and inactivation,a simple and efficient gas purging regeneration technique was developed for iron-based catalyst in-situ regeneration.Specifically,the effects of carrier gas types,regeneration temperatures,and granular activated carbon(GAC)addition on iron-based catalyst regeneration were investigated.The Fe_(3)O_(4)/𝛾-Al_(2)O_(3) regenerated at 550°C with additional GAC and 15%water vapor exhibited the optimal degradation efficiency towards polychlorinated biphenyls(PCBs),with an increase from 41.2%to 93.5%,compared with non-regenerated Fe_(3)O_(4)/𝛾-Al_(2)O_(3).In addition,the 60-hour stability test revealed a well-recovered catalytic activity.During the Fe_(3)O_(4)/𝛾-Al_(2)O_(3) regeneration,the coke on the catalyst surface was oxidized and removed in the form of CO_(2),and meanwhile the oxidized Fe(III)was reduced into Fe(II)in the catalyst.This study provides a safe and efficient iron-based catalyst regeneration technology for PCB off-gas degradation and reveals the catalytic activity recovery mechanism during catalyst regeneration.
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2020B1111360003)the National Natural Science Foundation of China(Nos.42465008 and 42105164)+2 种基金Yunnan Science and Technology Department Project(No.202501AT070239)Yunnan Science and Technology Department Youth Project(No.202401AU070202)Xianyang Rapid Response Decision Support Project for Ozone(No.YZ2024-ZB019).
文摘To curb the worsening tropospheric ozone(O_(3))pollution problem in China,a rapid and accurate identification of O_(3)-precursor sensitivity(OPS)is a crucial prerequisite for formulating effective contingency O_(3) pollution control strategies.However,currently widely-used methods,such as statistical models and numerical models,exhibit inherent limitations in identifying OPS in a timely and accurate manner.In this study,we developed a novel approach to identify OPS based on eXtreme Gradient Boosting model,Shapley additive explanation(SHAP)al-gorithm,and volatile organic compound(VOC)photochemical decay adjustment,using the meteorology and speciated pollutant monitoring data as the input.By comparing the difference in SHAP values between base sce-nario and precursor reduction scenario for nitrogen oxides(NO_(x))and VOCs,OPS was divided into NO_(x)-limited,VOCs-limited and transition regime.Using the long-lasting O_(3) pollution episode in the autumn of 2022 at the Guangdong-Hong Kong-Macao Greater Bay Area(GBA)as an example,we demonstrated large spatiotemporal heterogeneities of OPS over the GBA,which were generally shifted from NO_(x)-limited to VOCs-limited from September to October and more inclined to be VOCs-limited at the central and NO_(x)-limited in the peripheral areas.This study developed an innovative OPS identification method by comparing the difference in SHAP value before and after precursor emission reduction.Our method enables the accurate identification of OPS in the time scale of seconds,thereby providing a state-of-the-art tool for the rapid guidance of spatial-specific O_(3) control strategies.
基金supported by the National Natural Science Foundation of China(22265021,52231007,and 12327804)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)attenuation behavior remain poorly understood.To address this gap,a thermodynamically controlled periodic coordination strategy is proposed to achieve precise modulation of magnetic nanoparticle spacing.This approach unveils the evolution of magnetic domain configurations,progressing from individual to coupled and ultimately to crosslinked domain configurations.A unique magnetic coupling phenomenon surpasses the Snoek limit in low-frequency range,which is observed through micromagnetic simulation.The crosslinked magnetic configuration achieves effective low-frequency EM wave absorption at 3.68 GHz,encompassing nearly the entire C-band.This exceptional magnetic interaction significantly enhances radar camouflage and thermal insulation properties.Additionally,a robust gradient metamaterial design extends coverage across the full band(2–40 GHz),effectively mitigating the impact of EM pollution on human health and environment.This comprehensive study elucidates the evolution mechanisms of magnetic domain configurations,addresses gaps in dynamic magnetic modulation,and provides novel insights for the development of high-performance,low-frequency EM wave absorption materials.
基金supported by the Changsha Municipal Natural Science Foundation,China,(No.kq2202233)the Science and Technology Program of Guangdong Forestry Administration,China(No.2020-KYXM-08)+2 种基金the Major Science and Technology Program for Water Pollution Control and Treatment,China(No.2017ZX07101003)the National Key Research and Development Project of China(No.2019YFC1804800)the Pearl River S&T Nova Program of Guangzhou,China(No.201710010065)。
文摘Limited information is available on long-term effects of metal(loid)s pollution incidents. Here, we analyze the distribution characteristics and quantification of elements in the Southwest China Keda mining site, which is one of the most populated sites and enables human health and ecological risk assessments of elemental pollution. The results on modified degree of contamination indicated that the soil and sediment were highly contaminated near Dahu Lake.The health risk of children was almost 2.5 times that of adults in surface water, and 7.1 times in soil, respectively.Moreover, Tl and As were the main health risk contributors in surface water and soil, respectively, and As posed the highest ecological risk both in soil and sediment. These results indicated the potential impact of toxic metal(loid)s on the health of residents and environment. Hence, more scientific attention and proper management need to be paid to this environmental challenge in the future.
基金Supported by the National Key Technology R&D Program(2012BAC20B1003)the Key National Social Science Fund Project(12&ZD214)the Special Fund Project for the Scientific Research of the Environmental Protection Welfare Industry(201209001)
文摘The planning environmental impact assessment (EIA) of transmission and transformation power grid at levels of 500 and 220 kV had been finished completely in the 13 municipalities of Jiangsu Province by the end of 2012, which played important roles in guiding and planning the following transmission and transformation projects in environmental protection. In this paper, through the detail analysis on the objective and significance of the planning EIA of transmission and transformation power grid, legal basis and planning EIA practices, some suggestions and thinking about the planning EIA of transmission and transformation power grid were put forward.
基金sponsored by the National Natural Science Foundation of China (Nos. 52170111 and 41977180)the first China First Automobile Works (FAW)-Volkswagen China Environmental Protection Foundation automobile environmental protection innovation leading plan。
文摘An increasing divergence regarding fuel consumption(and/or CO_(2)emissions) between realworld and type-approval values for light-duty gasoline vehicles(LDGVs) has posed severe challenges to mitigating greenhouse gases(GHGs) and achieving carbon emissions peak and neutrality. To address this divergence issue, laboratory test cycles with more real-featured and transient traffic patterns have been developed recently, for example, the China Lightduty Vehicle Test Cycle for Passenger cars(CLTC-P). We collected fuel consumption and CO_(2)emissions data of a LDGV under various conditions based on laboratory chassis dynamometer and on-road tests. Laboratory results showed that both standard test cycles and setting methods of road load affected fuel consumption slightly, with variations of less than 4%. Compared to the type-approval value, laboratory and on-road fuel consumption of the tested LDGV over the CLTC-P increased by 9% and 34% under the reference condition(i.e., air conditioning off, automatic stop and start(STT) on and two passengers). On-road measurement results indicated that fuel consumption under the low-speed phase of the CLTC-P increased by 12% due to the STT off, although only a 4% increase on average over the entire cycle. More fuel consumption increases(52%) were attributed to air conditioning usage and full passenger capacity. Strong correlations(R2> 0.9) between relative fuel consumption and average speed were also identified. Under traffic congestion(average speed below 25 km/hr), fuel consumption was highly sensitive to changes in vehicle speed. Thus,we suggest that real-world driving conditions cannot be ignored when evaluating the fuel economy and GHGs reduction of LDGVs.
文摘Urban eco-environmental degradation is becoming inevitable due to the extensive urbanization, popula- tion growth, and socioeconomic development in China. One of the traffic arteries in Shenzhen is an urban expressway that is under construction and that runs across environmentally sensitive areas (ESAs). The environmental pollution from urban expressways is critical, due to the characteristics of expressways such as high runoff coefficients, considerable contaminant accumulation, and complex pollutant ingredi- ents. ESAs are vulnerable to anthropogenic disturbances and hence should be given special attention. In order to evaluate the environmental sensitivity along this urban expressway and minimize the influences of the ongoing road construction and future operation on the surrounding ecosystem, the environmental sensitivity of the relevant area was evaluated based on the application of a geographic information sys- tem (GIS). A final ESA map was classified into four environmental sensitivity levels; this classification indicates that a large proportion of the expressway passes through areas of high sensitivity, representing 11.93 km or 52.3% of the total expressway, and more than 90% of the total expressway passes through ESAs. This study provides beneficial information for optimal layout schemes of initial rainfall runofftreatment facilities developed from low-impact development (LID) techniques in order to minimize the impact of polluted road runoff on the surrounding ecological environment.
基金supported by the National Key Research and Development Program of China(No.2021YFA0715900).
文摘Located in northern China,the Hetao Plain is an important agro-economic zone and population centre.The deterioration of local groundwater quality has had a serious impact on human health and economic development.Nowadays,the groundwater vulnerability assessment(GVA)has become an essential task to identify the current status and development trend of groundwater quality.In this study,the Convolutional Neural Network(CNN)and Long Short-Term Memory(LSTM)models are integrated to realize the spatio-temporal prediction of regional groundwater vulnerability by introducing the Self-attention mechanism.The study firstly builds the CNN-LSTM modelwith self-attention(SA)mechanism and evaluates the prediction accuracy of the model for groundwater vulnerability compared to other common machine learning models such as Support Vector Machine(SVM),Random Forest(RF),and Extreme Gradient Boosting(XGBoost).The results indicate that the CNNLSTM model outperforms thesemodels,demonstrating its significance in groundwater vulnerability assessment.It can be posited that the predictions indicate an increased risk of groundwater vulnerability in the study area over the coming years.This increase can be attributed to the synergistic impact of global climate anomalies and intensified local human activities.Moreover,the overall groundwater vulnerability risk in the entire region has increased,evident fromboth the notably high value and standard deviation.This suggests that the spatial variability of groundwater vulnerability in the area is expected to expand in the future due to the sustained progression of climate change and human activities.The model can be optimized for diverse applications across regional environmental assessment,pollution prediction,and risk statistics.This study holds particular significance for ecological protection and groundwater resource management.
基金supported by the National Natural Science Foundation of China(No.42377415)the Natural Science Foundation of Sichuan Province(No.2023NSFSC0811),Sichuan Science and Technology Program(Nos.2021JDTD0013 and 2021YFQ0066)+1 种基金the Science and Technology Major Project of Xizhang Autonomous Region of China(No.XZ202201ZD0004G06)the Everest Scientific Research Program(No.80000-2023ZF11405).
文摘The large-scale exploitation of vanadium(Ⅴ) bearing minerals has led to a massive accumulation of Ⅴ tailings, of which Ⅴ pollution poses severe ecological risks. Although the mechanisms of Ⅴ stress to the microbial community have been reported, the influential pathways in a multi-medium-containing system, for example, the soil-tailings-groundwater system,are unknown. The dynamic redox conditions and substance exchange within the system exhibited complex Ⅴ stress on the local microbial communities. In this study, the influence pathways of Ⅴ stress to the microbial community in the soil-tailings-groundwater system were first investigated. High Ⅴ contents were observed in groundwater(139.2 ± 0.15 μg/L) and soil(98.0–323.8 ± 0.02 mg/kg), respectively. Distinct microbial composition was observed for soil and groundwater, where soil showed the highest level of diversity and richness. Firmicutes, Proteobacteria, Actinobacteria, and Acidobacteria were dominant in soil and groundwater with a sum relative abundance of around 80 %. Based on redundancy analysis and structural equation models, Ⅴ was one of the vital driving factors affecting microbial communities. Groundwater microbial communities were influenced by Ⅴ via Cr, dissolved oxygen, and total nitrogen, while Fe, Mn, and total phosphorus were the key mediators for Ⅴ to affect soil microbial communities. Ⅴ affected the microbial community via metabolic pathways related to carbonaceous matter, which was involved in the establishment of survival strategies for metal stress. This study provides novel insights into the influence pathways of Ⅴ on the microorganisms in tailings reservoir for pollution bioremediation.
基金supported by the Youth Exploration Foundation of Chinese Research Academy of Environmental Sciences(No.2022YSKY-55).
文摘Various technologies and projects have been explored and developed for the synergetic control of environmental pollution and carbon emissions in aquatic ecosystems.Planting submerged vegetation in shallow waters was also expected to achieve this purpose.However,the magnitude and mechanism of carbon dioxide(CO_(2))emission affected by submerged vegetation is not clear enough in complex aquatic ecosystems.This study investigated the influences of submerged plants on CO_(2)emission,ecosystem metabolism features,and microbial community traits based on observations in river networks on the Changjiang River Delta.The results showed that CO_(2)emission from planted waters accounted for 73%of unplanted waters.Meanwhile,planted waters had higher dissolved organic carbon removal capacity in overlying water and higher potential of carbon sequestration in sediment at the same time.These distinctions between the two habitats were attributed to(1)improved CO_(2)and bicarbonate consumption in water columns via enhancing photosynthesis and(2)inhibited CO_(2)production by reconstructing the benthic microbial community.Additional eco-advantages were found in planted sediments,such as a high potential of methane oxidation and xenobiotics biodegradation and a low risk of becoming black and odorous.In brief,submerged vegetation is beneficial in promoting pollution removal and carbon retention synchronously.This study advances our understanding of the feedback between aquatic metabolism and CO_(2)emission.
基金supported by the National Key Research and Development Program of China(2022YFC3205300)the National Natural Science Foundation of China(22176124).
文摘Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.
基金supported by the National Key Research and Development Program of China(No.2023YFC3706602)the National Natural Science Foundation of China(Nos.22225605 and 22193051)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0750200).
文摘Synthetic phenolic antioxidants(SPAs)are widely used in diverse industries due to their exceptional antioxidant characteristics.However,human exposure to SPAs may cause health problems.In this study,226 dust samples were collected from 10 provinces in China,and six SPAs(three parent SPAs and their three transformation products)were analyzed.The concentrations of6SPAs(the sum of six target compounds)ranged from 15.4 to 3210 ng/g(geometric mean(GM):169 ng/g).The highest concentration of6SPAswas found in Sichuan Province(GM:349 ng/g),which was approximately 4 times higher than that in Hubei Province(81.6 ng/g)(p<0.05).The concentrations of butylated hydroxytoluene(BHT),2,2'-methylene bis(4-methyl-6–tert-butylphenol)(AO2246),2,6-di–tert–butyl–1,4-benzoquinone(BHT-Q),2,6-di–tert–butyl–4-(hydroxymethyl)phenol(BHT-OH),and ∑_(p)-SPAs were substantially higher in dust from urban areas than rural areas(p<0.05).AO2246 concentration in dust from homes(GM:0.400 ng/g)was about 4 times higher than that in workplaces(0.116 ng/g)(p<0.01).Significantly higherp-SPAs concentrations were found in dust from homes(GM:17.5 ng/g)than workplaces(11.4 ng/g)(p<0.01).The estimated daily intakes(EDIs)of ∑_(6)SPAs exposed through dust ingestion were 0.582,0.342,0.197,0.076,and 0.080 ng/kg bw/day in different age groups,and exposed through dermal contact was 0.358,0.252,0.174,0.167,and 0.177 ng/kg bw/day.EDIs showed that the exposure risks of SPAs decreased with age.This is the first work to determine SPAs in dust from10 provinces in China and investigate the spatial distribution of SPAs in those regions.
基金supported by the National Key R&D program of China(No.2022YFC3703404)the National Natural Science Foundation of China(No.22188102)the Samsung Advanced Institute of Technology.
文摘Although air pollutant emissions have sharply reduced in recent years,the occurrence of PM_(2.5) pollution events remains an intractable environmental problem in Beijing,and regional transport is the key influence factor.However,it has been difficult to identify regional transport characteristics and the main contributors to pollution events in recent years.In this study,the relative contribution of regional transport was quantified(61.3%)in PM_(2.5) pollution events during 2018-2021 by the Community Multiscale Air Quality model embedded with the Integrated Source Apportionment Model(CMAQ-ISAM).The four regions with the largest fractional contributions to Beijing for all events were Shandong(7.7%),South Hebei(7.3%),Baoding(6.2%),and Langfang(5.8%).Pollution events were classified into the following types based on regional transport directions:local,southwest(SW),southeast(SE),south-mixed(SM),and others.Based on the transport distance,the SW,SE,and SM types can be subdivided into SW-short,SW-long,SE-short,SE-long,SM-short,SM-long distance from southwest,SM-long distance from southeast,and SM-long distance from southwest and southeast.SE-long was regarded as the most important type,with the highest relative frequency(20%).The transport directions were related to the southwest wind at 925 hPa and southeast wind at 1000 hPa in the south of the Beijing–Tianjin–Hebei(BTH)region,and the distance was mainly controlled by wind strength.The wind-field difference can be attributed to the low-pressure and high-pressure systems that control the BTH region.The results suggest that regional joint pollution control should be optimized based on the transport type.
基金supported by the National Natural Science Foundation of China(42277087,42130708,42471021,42277482,and 42361144876)the Natural Science Foundation of Guangdong Province(2024A1515012550)+3 种基金the Hainan Institute of National Park grant(KY-23ZK01)the Tsinghua Shenzhen International Graduate School Cross-disciplinary Research and Innovation Fund Research Plan(JC2022011)the Shenzhen Science and Technology Program(JCYJ20240813112106009 and ZDSYS20220606100806014)the Scientific Research Start-up Funds(QD2021030C)from Tsinghua Shenzhen International Graduate School。
文摘Food systems are deeply affected by climate change and air pollution,while being key contributors to these environmental challenges.Understanding the complex interactions among food systems,climate change,and air pollution is crucial for mitigating climate change,improving air quality,and promoting the sustainable development of food systems.However,the literature lacks a comprehensive review of these interactions,particularly in the current phase of rapid development in the field.To address this gap,this study systematically reviews recent research on the impacts of climate change and air pollution on food systems,as well as the greenhouse gas and air pollutant emissions from agri-food systems and their contribution to global climate change and air pollution.In addition,this study summarizes various strategies for mitigation and adaptation,including adjustments in agricultural practices and food supply chains.Profound changes in food systems are urgently needed to enhance adaptability and reduce emissions.This review offers a critical overview of current research on the interactions among food systems,climate change,and air pollution and highlights future research directions to support the transition to sustainable food systems.
基金the National Key R&D Program of China(No.2021YFA0715900)the National Natural Science Foundation of China(No.41831279)+2 种基金the Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks(No.ZDSYS20220606100604008)the Guangdong Province Bureau of Education(No.2020KCXTD006)the Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control(No.2023B1212060002).
文摘Rapid screening of inorganic arsenic(iAs)in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection.Most commercial field test kits are based on the Gutzeit reaction that uses mercury-based reagents for color development,an environmental concern that increasingly limits its utilization.This study further improves the Molybdenum Blue(MB)colorimetric method to allow for faster screening with more stable reagents.More importantly,a portable three-channel colorimeter is developed for screening iAs relative to the WHO drinking water guideline value(10μg/L).Adding the reducing reagents in sequence not only prolongs the storage time to>7 days,but also accelerates the color development time to 6 min in conjunction with lowering the H_(2)SO_(4) concentration in chromogenic reagents.The optimal pH ranges from 1.2 to 1.3 and is achieved by acidifying groundwater to 1%(V/V)HCl.With detection limits of 3.7μg/L for inorganic arsenate(iAs(V))and 3.8μg/L for inorganic arsenite(iAs(Ⅲ)),testing groundwater with-10μg/L of As has a precision<20%.The method works well for a range of phosphate concentrations of 48-950μg/L(0.5-10μmol/L).Concentrations of total_iAs(6-300μg/L),iAs(V)(6-230μg/L)and iAs(Ⅲ)(0-170μg/L)for 14 groundwater samples from Yinchuan Plain,Pearl River Delta,and Jianghan Plain,are in excellent agreements(linear regression slope:0.969-1.029)with the benchmark methods.The improved chemistry here lays the foundation for the MB colorimetric method to become a commercially viable screening tool,with further engineering and design improvement of the colorimeter.
基金supported by the National Natural Science Foundation of China(No.42307090)the Open Subject from State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in theMiddle and Lower Reaches of Yangtze River(No.AEHKF2023008).
文摘The copper complexing of dissolved organic matter released from hydrochar(HDOM)affects the former’s environmental behavior.In this study,how hydrothermal temperatures(180,220 and 260℃)influence the molecular-level constitutions and Cu(II)binding features of HDOM were elucidated via fourier transform ion cyclotron resonance mass spectrometry and multi-spectroscopic analysis.The findings demonstrated that the almost HDOM molecules had the traits of lower polarity and higher hydrophobicity.As the hydrothermal temperature increased,the molecules with particularly high relative strength gradually disappeared,average molecular weight,percentages of CHON and aliphatic compounds of HDOM reduced while the percentages of CHO and aromatic compounds increased.In general,the fluorescence quenching of Cu(II)weakened as hydrothermal temperature rose and the Cu(II)binding stability constants of fluorophores in HDOM were 4.50–5.31.In addition,the Cu(II) binding order of fluorophores in HDOM showed temperature heterogeneities, andpolysaccharides or aromatic rings of non-fluorescent substances had the fastest responsesto Cu(II) binding. Generally, fluorescent components tend to bind Cu(II) at relatively traceconcentrations (0–40 μmol/L), whereas non-fluorescent substances tend to the bind Cu(II)at relatively higher concentrations (50–100 μmol/L). This study contributed to the predictionof the potential environmental behaviors and risks of Cu(II) at the molecular level afterhydrochar application.