Although Cd is a pollutant of public health relevance,many dietary sources from which it can be absorbed into human tissues remain unknown.While it is well established that the biogeochemical cycle of Cd involves its ...Although Cd is a pollutant of public health relevance,many dietary sources from which it can be absorbed into human tissues remain unknown.While it is well established that the biogeochemical cycle of Cd involves its complexation with environment-derived ligands(e.g.,humic acids,HAs) and anthropogenic ones(e.g.,chelating agents,CAs),the interaction of Cd with both of these ligands is less well understood.To gain insight,a HA–Cd complex was injected on a size-exclusion chromatography(SEC) column coupled on-line with a flame atomic absorption spectrometer(FAAS) using 10 mmol/L Tris buffer(pH 8.0) as the mobile phase.This approach allowed us to observe the intact HA–Cd complex and the retention behavior of Cd as a function of 2–20 μmol/L concentrations of ethylenediaminetetraacetic acid(EDTA),diethylenetriaminepentaacetic acid(DTPA) or methylglycinediacetic acid(MGDA) that were added to the mobile phase.An increase of the retention time of Cd was indicative of a partial or complete abstraction of Cd from HA.Our results revealed that all CAs abstracted Cd from the HA–Cd complex at concentrations of 5 μmol/L,while MGDA and DTPA were effective at 2 μmol/L.The bioavailability of some of the on-column formed CA–Cd complexes explains the previously reported increased accumulation of Cd in periphyton in the ecosystem downstream of wastewater treatment plants.In addition,our results imply that the use of effluents which contain CAs and Cd for the irrigation of food crops can introduce Cd into the food supply and compromise food safety.展开更多
This study tests the influence of environmental risks associated with floods, hurricanes, and hazardous material releases on human migration behavior. With close attention to a function of environmental risk factors, ...This study tests the influence of environmental risks associated with floods, hurricanes, and hazardous material releases on human migration behavior. With close attention to a function of environmental risk factors, socio-demographic attributes, hazard risk and locational attributes were measured and correlated to the standardized number of recent arrivals and long term residents at the census tract level. Two groups (i.e., recent arrivals and long-term residents) were created to compare their moving behavior. The results indicate that flood risk showed little relationship to either recent arrivals or long-term residents. These results are consistent with past research which suggests that people tend to ignore their vulnerability to natural hazards. However, both groups had negative relationships to the risk from hurricanes and hazardous material releases. This counter-intuitive result suggests that other factors, such as proximity to employment opportunities or property tax advantages, need to be examined. In particular, the recent arrivals were negatively related to chemical risk while long-term residents were positively related to chemical risks, indicating that people that just arrived and old residents are somewhat different in perceiving environmental risks. In addition, the results of this study suggest that people are objective about environmental risks in selecting their habitat. However, once the habitat is settled, people’s perception of the risks may be interfered or reduced by other factors.展开更多
Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularl...Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularly earthquakes.To develop an effective disaster management strategy,it is critical to identify reliable,robust,and efficient indicators.In this regard,Life-Cycle Cost(LCC)and Resilience(R)serve as key indicators to assist decision-makers in selecting the most effective disaster risk reduction plans.This study proposes an innova-tive LCC-R optimization framework to identify the most optimal retrofit strategies for bridge networks facing hazardous events during their lifespan.The proposed framework employs both single-and multi-objective opti-mization techniques to identify retrofit strategies that maximize the R index while minimizing the LCC for the under-study bridge networks.The considered retrofit strategies include various options such as different mate-rials(steel,CFRP,and GFRP),thicknesses,arrangements,and timing of retrofitting actions.The first step in the proposed framework involves constructing fragility curves by performing a series of nonlinear time-history incre-mental dynamic analyses for each case.In the subsequent step,the seismic resilience surfaces are calculated using the obtained fragility curves and assuming a recovery function.Next,the LCC is evaluated according to the pro-posed formulation for multiple seismic occurrences,which incorporates the effects of complete and incomplete repair actions resulting from previous multiple seismic events.For optimization purposes,the Non-Dominated Sorting Genetic Algorithm II(NSGA-II)evolutionary algorithm efficiently identifies the Pareto front to represent the optimal set of solutions.The study presents the most effective retrofit strategies for an illustrative bridge network,providing a comprehensive discussion and insights into the resulting tactical approaches.The findings underscore that the methodologies employed lead to logical and actionable retrofit strategies,paving the way for enhanced resilience and cost-effectiveness in bridge network management against seismic hazards.展开更多
Spurious forces are a significant challenge for multi-scale methods,e.g.,the coupled atomistic/discrete dislocation(CADD)method.The assumption of isotropic matter in the continuum domain is a critical factor leading t...Spurious forces are a significant challenge for multi-scale methods,e.g.,the coupled atomistic/discrete dislocation(CADD)method.The assumption of isotropic matter in the continuum domain is a critical factor leading to such forces.This study aims to minimize spurious forces,ensuring that atomic dislocations experience more precise forces from the continuum domain.The authors have already implemented this idea using a simplified and unrealistic slipping system.To create a comprehensive and realistic model,this paper considers all possible slip systems in the face center cubic(FCC)lattice structure,and derives the required relationships for the displacement fields.An anisotropic version of the three-dimensional CADD(CADD3D)method is presented,which generates the anisotropic displacement fields for the partial dislocations in all the twelve slip systems of the FCC lattice structure.These displacement fields are tested for the most probable slip systems of aluminum,nickel,and copper with different anisotropic levels.Implementing these anisotropic displacement fields significantly reduces the spurious forces on the slip systems of FCC materials.This improvement is particularly pronounced at greater distances from the interface and in more anisotropic materials.Furthermore,the anisotropic CADD3D method enhances the spurious stress difference between the slip systems,particularly for materials with higher anisotropy.展开更多
The growing concern for energy efficiency and the increasing deployment of intermittent renewable energies has led to the development of technologies for capturing,storing,and discharging energy.Supercapacitors can be...The growing concern for energy efficiency and the increasing deployment of intermittent renewable energies has led to the development of technologies for capturing,storing,and discharging energy.Supercapacitors can be considered where batteries do not meet the requirements.However,supercapacitors in systems with a slower charge/discharge cycle,such as photovoltaic systems(PVS),present other obstacles that make replacing batteries more challenging.An extensive literature review unveils a knowledge gap regarding a methodological comparison of batteries and supercapacitors.In this study,we address the technological feasibility of intermittent renewable energy generation systems,focusing on storage solutions for PVS energy.We propose a framework according to one of the essential parameters for their application in PVS:Energy Density or Specific Energy(Wh/kg).Through computational modelling,issues related to the intermittency and seasonality of the solar energy source are addressed,evaluating the possible benefits of implementing batteries,supercapacitors,and hybrid solutions in renewable energy generation systems.Also,the characteristics of two hypothetical configurations of photovoltaic systems,off-grid and on-grid,were analysed.This analysis highlights the characteristics of totally isolated systems(e.g.,on an island or remote village)and systems connected to the grid(e.g.,solar farms),where eliminating the use of batteries can bring significant benefits,in addition to tax incentives,which are decisive in the investment decision-making process.The results clarify the viability of PVS and allow an understanding of parameters that can support the technical decision process between isolated or non-isolated systems,reflecting economic and financial issues.展开更多
Problems due to the taste and odor in drinking water are common in treatment facilities around the world. Taste and odor are perceived by the public as the primary indicators of the safely and acceptability of drinkin...Problems due to the taste and odor in drinking water are common in treatment facilities around the world. Taste and odor are perceived by the public as the primary indicators of the safely and acceptability of drinking water and are mainly caused by the presence of two semi-volatile compounds - 2-methyl isobomeol (MIB) and geosmin. A review of these two taste and odor causing compounds in drinking water is presented. The sources for the formation of these compounds in water are discussed alongwith the health and regulatory implications. The recent developments in the analysis of MIB/geosmin in water which have allowed for rapid measurements in the nanogram per liter concentrations are also discussed. This review focuses on the relevant treatment alternatives, that are described in detail with emphasis on their respective advantages and problems associated with their implementation in a full- scale facility. Conventional treatment processes in water treatment plants, such as coagulation, sedimentation and chlorination have been found to be ineffective for removal of M1B/geosmin. Studies have shown powdered activated carbon, ozonation and biofiltration to be effective in treatment of these two compounds. Although some of these technologies are more effective and show more promise than the others, much work remains to be done to optimize these technologies so that they can be retrofitted or installed with minimal impact on the overall operation and effectiveness of the treatment system.展开更多
In this study, the characteristics of fine particles before and after wet flue gas desulfurization(WFGD) in three coal-fired heating boilers in northern China were investigated by using a dilution-based emission sampl...In this study, the characteristics of fine particles before and after wet flue gas desulfurization(WFGD) in three coal-fired heating boilers in northern China were investigated by using a dilution-based emission sampling experimental system. The influences of the WFGD process on the mass and number concentrations as well as the chemical composition of fine particles were analyzed. The removal efficiency of desulfurization processes on particulate matter mass was 30.06%–56.25% for the three study units. The WFGD had a great influence on the size distributions of particle mass concentration and number concentration. A significant increase in the number and mass concentration of particles in the size range of 0.094–0.946 μm was observed. The watersoluble ion content accounted for a very large proportion of PM_(2.5) mass, and its proportion in PM_(2.5) increased from 28.39%–41.08% to 48.96%–61.21% after the WFGD process for the three units. The desulfurizing process also drastically increased the proportion of cation component(Ca^(2+) for unit A, Mg^(2+) for unit B, and Na+for unit C) and the proportion of SO_4^(2-) in PM_(2.5), and it increased the CE/AE values of PM_(2.5) from 0.82–0.98 to 0.93–1.27 for the three study units.展开更多
A coagulation-flocculation process is typically employed to treat the industrial wastewater generated by the consumer products industry manufacturing detergents, soaps, and others. The expenditure of chemicals includi...A coagulation-flocculation process is typically employed to treat the industrial wastewater generated by the consumer products industry manufacturing detergents, soaps, and others. The expenditure of chemicals including coagulants and chemicals for pH adjustment is costly for treating this wastewater. The objective of this study was to evaluate the feasibility of reusing the aluminum sulfate (alum) sludge as a coagulant or as a coagulation aid so that the fresh alum dosage can be minimized or the removal efficiency can be enhanced. The experiments were conducted in a jar-test apparatus simulating the coagulation-flocculation process for simultaneous removals of organic matters, anionic surfactants, suspended solids, and turbidity. At the optimum initial pH value of 10 and the fresh alum concentration of 400 mg/L, the total suspended solids (TSS), total chemical oxygen demand (TCOD), total anionic surfactants, and turbidity removal efficiencies were 71.5%, 76.4%, 95.4%, and 98.2%, respectively. The addition of alum sludge as a coagulant alone without any fresh alum addition could significantly remove the turbidity, TCOD, and anionic surfactants. The TSS was left in the supernatants after the settling period, but would subsequently be removed by adding the fresh alum. The TSS, TCOD, and turbidity removal efficiencies were also enhanced when both the alum sludge and the fresh alum were employed. The TCOD removal efficiency over 80% has been accomplished, which has never fulfilled by using the fresh alum alone. It is concluded that the alum sludge could be reused for the treatment of industrial wastewater generated by the consumer products industry.展开更多
Objective:To determine the prevalence of infestation with head lice in primary schoolchildren in the eastern area of Bangkok,Thailand.Methods:The present study was to determine the head lice infestation(Pediculosis) l...Objective:To determine the prevalence of infestation with head lice in primary schoolchildren in the eastern area of Bangkok,Thailand.Methods:The present study was to determine the head lice infestation(Pediculosis) levels in primary schoolchildren,during May,2011 to July, 2011,A total of 3747 schoolchildren aged 5-12 years old from 12 selected primary school of Ladkrabang district,the eastern area of Bangkok were examined for head lice.Pediculosis was defined as the presence of at least on living adult,nymph and viable egg.Results:The overall head lice infestation rate was 23.32%and infestation rate was higher in girls(47.12%) than in boys(0%).The infestation rate among schoolchildren varied from 12.62%to 29.76%.The infestation rate among girls varied from 26.07%(12 years old group) to 55.89%(8 years old group).Conclusions: Pediculosis is a common public healtli problem affecting primary schoolchildren in eastern area of Bangkok and those levels are epidemic importance.展开更多
Wet air oxidation(WAO), a liquid phase reaction between organic materials in water and oxygen, is one of the most economical and technologically viable advanced oxidation processes for wastewater treatment, particular...Wet air oxidation(WAO), a liquid phase reaction between organic materials in water and oxygen, is one of the most economical and technologically viable advanced oxidation processes for wastewater treatment, particularly toxic and high organic content wastewater. WAO is the liquid phase oxidation of organics or oxidizable inorganic components at elevated temperatures(125–320 °C) and pressures(0.5–20 MPa) using gaseous oxygen(or air) as oxidant. In the past two decades, the WAO process was widely studied and applied in the treatment of dye wastewater. Compared to conventional WAO, catalytic WAO processes have higher efficiency and use moderate reaction conditions. The catalysts included homogenous and heterogeneous types. The key points that need to be solved are recycling of homogenous catalysts and better stability of heterogeneous catalysts. In the present review, the technological processes are first introduced, then some research history and hotspots of WAO research are presented, and finally, its application in the treatment of dye wastewater in the past two decades is summarized to reveal the impressive changes in modes, trends, and conditions used. The application includes model pollutant studies and wastewater tests.展开更多
Phytoplankton group-specific growth and microzooplankton grazing were determined seasonally using the dilution technique with high-performance liquid chromatography (HPLC) in the Xiamen Bay, a subtropical bay in sou...Phytoplankton group-specific growth and microzooplankton grazing were determined seasonally using the dilution technique with high-performance liquid chromatography (HPLC) in the Xiamen Bay, a subtropical bay in southeast China, between May 2003 and February 2004. The results showed that growth rates of phytoplankton ranged from 0.71 to 2.2 d^-1 with the highest value occurred in the inner bay in May. Mierozooplankton grazing rates ranged from 0.5 to 3.1 d^-1 with the highest value occurred in the inner bay in August. Microzooplankton grazing impact ranged from 39% to 95% on total phytoplankton Chl a biomass, and 65% to 181% on primary production. The growth and grazing rates of each phytoplankton group varied, the highest growth rate (up to 3.3 d^-1 ) was recorded for diatoms in August, while the maximum grazing rate ( up to 2.1 d ^-1 ) was recorded for chlorophytes in February in the inner bay. Among main phytoplankton groups, grazing pressure of microzooplankton ranged from 10% to 83% on Chl a biomass, and from 14% to 151% on primary production. The highest grazing pressure on biomass was observed for cryptophytes (83%) in August, while the maximum grazing pressure on primary production was observed for eyanobacteria (up to 151% ) in December in the inner bay. Net growth rates of larger phytoplanktons (diatoms and dinoflagellates) were higher than those of smaller groups ( prasinophytes, chlorophytes and cyanobacteria). Relative preference index showed that microzooplankton grazed preferentially on prasinophytes and avoided to harvest diatoms in cold seasons (December and February).展开更多
In 2010, an estimated 400 to 500 children died of acute lead poisoning associated with artisanal gold mining in Zamfara, Nigeria. Processing of gold ores containing up to 10% lead within residential compounds put resi...In 2010, an estimated 400 to 500 children died of acute lead poisoning associated with artisanal gold mining in Zamfara, Nigeria. Processing of gold ores containing up to 10% lead within residential compounds put residents, especially children, at the highest risk. Principal routes of exposure were incidental ingestion and inhalation of contaminated soil and dusts. Several Nigerian and international health organizations collaborated to reduce lead exposures through environmental remediation and medical treatment. The contribution of contaminated food to total lead exposure was assessed during the environmental health response. Objectives of this investigation were to assess the influence of cultural/dietary habits on lead exposure pathways and estimate the contribution of contaminated food to children's blood lead levels(BLLs). A survey of village dietary practices and staple food lead content was conducted to determine dietary composition, caloric intakes, and lead intake. Potential blood lead increments were estimated using bio-kinetic modeling techniques. Most dietary lead exposure was associated with contamination of staple cereal grains and legumes during post-harvest processing and preparation in contaminated homes. Average post-harvest and processed cereal grain lead levels were 0.32 mg/kg and 0.85 mg/kg dry weight, respectively. Age-specific food lead intake ranged from 7 to 78 μg/day. Lead ingestion and absorption were likely aggravated by the dusty environment, fasting between meals, and nutritional deficiencies. Contamination of staple cereal grains by highly bioavailable pulverized ores could account for as much as 11%–34% of children's BLLs during the epidemic, and were a continuing source after residential soil remediation until stored grain inventories were exhausted.展开更多
Since trees and plants can absorb CO2, forests are widely regarded as a carbon sink that may control the amount of CO2 in the atmosphere. The CO2 uptake rate of plants is affected by the plant species and environmenta...Since trees and plants can absorb CO2, forests are widely regarded as a carbon sink that may control the amount of CO2 in the atmosphere. The CO2 uptake rate of plants is affected by the plant species and environmental conditions such as photosynthetically active radiation (PAR), temperature, water and nutrient contents. PAR is the most immediate environmental control on photosynthesis while air temperature affects both photorespiration and dark respiration. In the natural condition, PAR and temperature play an important role in net CO2 uptake. The effects of PAR and air temperature on the CO2 uptake of Pterocarpus macrocarpus grown in a natural habitat were studied in the present work. Due to many uncontrollable factors, a simple rectangular hyperbola could not represent the measured data. The data were divided into groups of 2oC intervals; CO2 uptake in each group may then be related to PAR by a rectangular hyperbola function. Using the obtained functions, the effect of PAR was removed from the original data. The PAR-independent CO2 uptake was then related to air temperature. Finally, the effects of PAR (I) and air temperature (Ta) on the CO2 uptake rate (A) were combined as: (-0.0575Ta2+2.6691Ta-23.264)I A= ——————————————— (-0.00766Ta2+0.40666Ta-3.99924) (-4.8794Ta2+227.13Ta-2456.9)+I展开更多
A widespread use of acrylamide, probably a neurotoxicant and carcinogen, in various industrial processes has led to environmental contamination. Fortunately, some microorganisms are able to derive energy from acrylami...A widespread use of acrylamide, probably a neurotoxicant and carcinogen, in various industrial processes has led to environmental contamination. Fortunately, some microorganisms are able to derive energy from acrylamide. In the present work, we reported the isolation and characterization of a novel acrylamide-degrading bacterium from domestic wastewater in Chonburi, Thailand. The strain grew well in the presence of acrylamide as 0.5% (W/V), at pH 6.0 to 9,0 and 25℃. Identification based on biochemical characteristics and 16S rRNA gene sequence identified the strain as Enterobacter aerogenes. Degradation of acrylamide to acrylic acid started in the late logarithmic growth phase as a biomass-dependent pattern. Specificity of cell-free supernatant towards amides completely degraded butyramide and urea and 86% of lactamide. Moderate degradation took place in other amides with that by formanaide 〉 benzamide 〉 acetamide 〉 cyanoacetamide 〉 propionamide. No degradation was detected in the reactions of N,N-methylene bisacrylamide, sodium azide, thioacetamide, and iodoacetamide. These results highlighted the potential of this bacterium in the cleanup of acrylamide/amide in the environment.展开更多
基金funded by the Natural Sciences and Engineering Research Council(NSERC)of Canada
文摘Although Cd is a pollutant of public health relevance,many dietary sources from which it can be absorbed into human tissues remain unknown.While it is well established that the biogeochemical cycle of Cd involves its complexation with environment-derived ligands(e.g.,humic acids,HAs) and anthropogenic ones(e.g.,chelating agents,CAs),the interaction of Cd with both of these ligands is less well understood.To gain insight,a HA–Cd complex was injected on a size-exclusion chromatography(SEC) column coupled on-line with a flame atomic absorption spectrometer(FAAS) using 10 mmol/L Tris buffer(pH 8.0) as the mobile phase.This approach allowed us to observe the intact HA–Cd complex and the retention behavior of Cd as a function of 2–20 μmol/L concentrations of ethylenediaminetetraacetic acid(EDTA),diethylenetriaminepentaacetic acid(DTPA) or methylglycinediacetic acid(MGDA) that were added to the mobile phase.An increase of the retention time of Cd was indicative of a partial or complete abstraction of Cd from HA.Our results revealed that all CAs abstracted Cd from the HA–Cd complex at concentrations of 5 μmol/L,while MGDA and DTPA were effective at 2 μmol/L.The bioavailability of some of the on-column formed CA–Cd complexes explains the previously reported increased accumulation of Cd in periphyton in the ecosystem downstream of wastewater treatment plants.In addition,our results imply that the use of effluents which contain CAs and Cd for the irrigation of food crops can introduce Cd into the food supply and compromise food safety.
文摘This study tests the influence of environmental risks associated with floods, hurricanes, and hazardous material releases on human migration behavior. With close attention to a function of environmental risk factors, socio-demographic attributes, hazard risk and locational attributes were measured and correlated to the standardized number of recent arrivals and long term residents at the census tract level. Two groups (i.e., recent arrivals and long-term residents) were created to compare their moving behavior. The results indicate that flood risk showed little relationship to either recent arrivals or long-term residents. These results are consistent with past research which suggests that people tend to ignore their vulnerability to natural hazards. However, both groups had negative relationships to the risk from hurricanes and hazardous material releases. This counter-intuitive result suggests that other factors, such as proximity to employment opportunities or property tax advantages, need to be examined. In particular, the recent arrivals were negatively related to chemical risk while long-term residents were positively related to chemical risks, indicating that people that just arrived and old residents are somewhat different in perceiving environmental risks. In addition, the results of this study suggest that people are objective about environmental risks in selecting their habitat. However, once the habitat is settled, people’s perception of the risks may be interfered or reduced by other factors.
文摘Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularly earthquakes.To develop an effective disaster management strategy,it is critical to identify reliable,robust,and efficient indicators.In this regard,Life-Cycle Cost(LCC)and Resilience(R)serve as key indicators to assist decision-makers in selecting the most effective disaster risk reduction plans.This study proposes an innova-tive LCC-R optimization framework to identify the most optimal retrofit strategies for bridge networks facing hazardous events during their lifespan.The proposed framework employs both single-and multi-objective opti-mization techniques to identify retrofit strategies that maximize the R index while minimizing the LCC for the under-study bridge networks.The considered retrofit strategies include various options such as different mate-rials(steel,CFRP,and GFRP),thicknesses,arrangements,and timing of retrofitting actions.The first step in the proposed framework involves constructing fragility curves by performing a series of nonlinear time-history incre-mental dynamic analyses for each case.In the subsequent step,the seismic resilience surfaces are calculated using the obtained fragility curves and assuming a recovery function.Next,the LCC is evaluated according to the pro-posed formulation for multiple seismic occurrences,which incorporates the effects of complete and incomplete repair actions resulting from previous multiple seismic events.For optimization purposes,the Non-Dominated Sorting Genetic Algorithm II(NSGA-II)evolutionary algorithm efficiently identifies the Pareto front to represent the optimal set of solutions.The study presents the most effective retrofit strategies for an illustrative bridge network,providing a comprehensive discussion and insights into the resulting tactical approaches.The findings underscore that the methodologies employed lead to logical and actionable retrofit strategies,paving the way for enhanced resilience and cost-effectiveness in bridge network management against seismic hazards.
文摘Spurious forces are a significant challenge for multi-scale methods,e.g.,the coupled atomistic/discrete dislocation(CADD)method.The assumption of isotropic matter in the continuum domain is a critical factor leading to such forces.This study aims to minimize spurious forces,ensuring that atomic dislocations experience more precise forces from the continuum domain.The authors have already implemented this idea using a simplified and unrealistic slipping system.To create a comprehensive and realistic model,this paper considers all possible slip systems in the face center cubic(FCC)lattice structure,and derives the required relationships for the displacement fields.An anisotropic version of the three-dimensional CADD(CADD3D)method is presented,which generates the anisotropic displacement fields for the partial dislocations in all the twelve slip systems of the FCC lattice structure.These displacement fields are tested for the most probable slip systems of aluminum,nickel,and copper with different anisotropic levels.Implementing these anisotropic displacement fields significantly reduces the spurious forces on the slip systems of FCC materials.This improvement is particularly pronounced at greater distances from the interface and in more anisotropic materials.Furthermore,the anisotropic CADD3D method enhances the spurious stress difference between the slip systems,particularly for materials with higher anisotropy.
基金the financial support from:“Ministerio de Ciencia,Innovación y Universidades”of Spain(PID2021-127713OA-I00,PID2021-123511OB-C33,PID2021-124139NBC22-CIN/AEI/10.13039/501100011033/FEDER,EU,TED2021-129851B-I00-/AEI/10.13039/501100011033/Unión Europea NextGenerationEU/PRTR and RED2022-134219-T)“Ministerio da Educacao-MEC”of Brazil(CAPES PDPG-POSDOC 88887.807971/2023-00).
文摘The growing concern for energy efficiency and the increasing deployment of intermittent renewable energies has led to the development of technologies for capturing,storing,and discharging energy.Supercapacitors can be considered where batteries do not meet the requirements.However,supercapacitors in systems with a slower charge/discharge cycle,such as photovoltaic systems(PVS),present other obstacles that make replacing batteries more challenging.An extensive literature review unveils a knowledge gap regarding a methodological comparison of batteries and supercapacitors.In this study,we address the technological feasibility of intermittent renewable energy generation systems,focusing on storage solutions for PVS energy.We propose a framework according to one of the essential parameters for their application in PVS:Energy Density or Specific Energy(Wh/kg).Through computational modelling,issues related to the intermittency and seasonality of the solar energy source are addressed,evaluating the possible benefits of implementing batteries,supercapacitors,and hybrid solutions in renewable energy generation systems.Also,the characteristics of two hypothetical configurations of photovoltaic systems,off-grid and on-grid,were analysed.This analysis highlights the characteristics of totally isolated systems(e.g.,on an island or remote village)and systems connected to the grid(e.g.,solar farms),where eliminating the use of batteries can bring significant benefits,in addition to tax incentives,which are decisive in the investment decision-making process.The results clarify the viability of PVS and allow an understanding of parameters that can support the technical decision process between isolated or non-isolated systems,reflecting economic and financial issues.
文摘Problems due to the taste and odor in drinking water are common in treatment facilities around the world. Taste and odor are perceived by the public as the primary indicators of the safely and acceptability of drinking water and are mainly caused by the presence of two semi-volatile compounds - 2-methyl isobomeol (MIB) and geosmin. A review of these two taste and odor causing compounds in drinking water is presented. The sources for the formation of these compounds in water are discussed alongwith the health and regulatory implications. The recent developments in the analysis of MIB/geosmin in water which have allowed for rapid measurements in the nanogram per liter concentrations are also discussed. This review focuses on the relevant treatment alternatives, that are described in detail with emphasis on their respective advantages and problems associated with their implementation in a full- scale facility. Conventional treatment processes in water treatment plants, such as coagulation, sedimentation and chlorination have been found to be ineffective for removal of M1B/geosmin. Studies have shown powdered activated carbon, ozonation and biofiltration to be effective in treatment of these two compounds. Although some of these technologies are more effective and show more promise than the others, much work remains to be done to optimize these technologies so that they can be retrofitted or installed with minimal impact on the overall operation and effectiveness of the treatment system.
基金supported by the National Key R&D Program of China(No.2017YFC0209905)the National Natural Science Foundation of China(Nos.91544232&51638001)+2 种基金the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Nos.2013BAC17B01,2014BAC23B00)the Ministry of Environmental Protection Special Funds for Scientific Research on Public Causes(No.201409006)the fund support from Beijing Municipal Commission of Science and Technology(Nos.D161100004416001,Z161100004516013)
文摘In this study, the characteristics of fine particles before and after wet flue gas desulfurization(WFGD) in three coal-fired heating boilers in northern China were investigated by using a dilution-based emission sampling experimental system. The influences of the WFGD process on the mass and number concentrations as well as the chemical composition of fine particles were analyzed. The removal efficiency of desulfurization processes on particulate matter mass was 30.06%–56.25% for the three study units. The WFGD had a great influence on the size distributions of particle mass concentration and number concentration. A significant increase in the number and mass concentration of particles in the size range of 0.094–0.946 μm was observed. The watersoluble ion content accounted for a very large proportion of PM_(2.5) mass, and its proportion in PM_(2.5) increased from 28.39%–41.08% to 48.96%–61.21% after the WFGD process for the three units. The desulfurizing process also drastically increased the proportion of cation component(Ca^(2+) for unit A, Mg^(2+) for unit B, and Na+for unit C) and the proportion of SO_4^(2-) in PM_(2.5), and it increased the CE/AE values of PM_(2.5) from 0.82–0.98 to 0.93–1.27 for the three study units.
基金the Research and Development Fund of the Faculty of Engineering,Burapha University(No.70/2551)for financial supports
文摘A coagulation-flocculation process is typically employed to treat the industrial wastewater generated by the consumer products industry manufacturing detergents, soaps, and others. The expenditure of chemicals including coagulants and chemicals for pH adjustment is costly for treating this wastewater. The objective of this study was to evaluate the feasibility of reusing the aluminum sulfate (alum) sludge as a coagulant or as a coagulation aid so that the fresh alum dosage can be minimized or the removal efficiency can be enhanced. The experiments were conducted in a jar-test apparatus simulating the coagulation-flocculation process for simultaneous removals of organic matters, anionic surfactants, suspended solids, and turbidity. At the optimum initial pH value of 10 and the fresh alum concentration of 400 mg/L, the total suspended solids (TSS), total chemical oxygen demand (TCOD), total anionic surfactants, and turbidity removal efficiencies were 71.5%, 76.4%, 95.4%, and 98.2%, respectively. The addition of alum sludge as a coagulant alone without any fresh alum addition could significantly remove the turbidity, TCOD, and anionic surfactants. The TSS was left in the supernatants after the settling period, but would subsequently be removed by adding the fresh alum. The TSS, TCOD, and turbidity removal efficiencies were also enhanced when both the alum sludge and the fresh alum were employed. The TCOD removal efficiency over 80% has been accomplished, which has never fulfilled by using the fresh alum alone. It is concluded that the alum sludge could be reused for the treatment of industrial wastewater generated by the consumer products industry.
文摘Objective:To determine the prevalence of infestation with head lice in primary schoolchildren in the eastern area of Bangkok,Thailand.Methods:The present study was to determine the head lice infestation(Pediculosis) levels in primary schoolchildren,during May,2011 to July, 2011,A total of 3747 schoolchildren aged 5-12 years old from 12 selected primary school of Ladkrabang district,the eastern area of Bangkok were examined for head lice.Pediculosis was defined as the presence of at least on living adult,nymph and viable egg.Results:The overall head lice infestation rate was 23.32%and infestation rate was higher in girls(47.12%) than in boys(0%).The infestation rate among schoolchildren varied from 12.62%to 29.76%.The infestation rate among girls varied from 26.07%(12 years old group) to 55.89%(8 years old group).Conclusions: Pediculosis is a common public healtli problem affecting primary schoolchildren in eastern area of Bangkok and those levels are epidemic importance.
基金supported by Technological Educational Institute of Kavala(President:A.Ch.Mitropoulos)
文摘Wet air oxidation(WAO), a liquid phase reaction between organic materials in water and oxygen, is one of the most economical and technologically viable advanced oxidation processes for wastewater treatment, particularly toxic and high organic content wastewater. WAO is the liquid phase oxidation of organics or oxidizable inorganic components at elevated temperatures(125–320 °C) and pressures(0.5–20 MPa) using gaseous oxygen(or air) as oxidant. In the past two decades, the WAO process was widely studied and applied in the treatment of dye wastewater. Compared to conventional WAO, catalytic WAO processes have higher efficiency and use moderate reaction conditions. The catalysts included homogenous and heterogeneous types. The key points that need to be solved are recycling of homogenous catalysts and better stability of heterogeneous catalysts. In the present review, the technological processes are first introduced, then some research history and hotspots of WAO research are presented, and finally, its application in the treatment of dye wastewater in the past two decades is summarized to reveal the impressive changes in modes, trends, and conditions used. The application includes model pollutant studies and wastewater tests.
基金The National Natural Science Foundatisn of China under contract Nos 40730846 and 40521003the National Basic Key Research Program of the Ministry of Science and Technology of China (China GLOBEC-IMBER Program) under contract No.2006CB400604
文摘Phytoplankton group-specific growth and microzooplankton grazing were determined seasonally using the dilution technique with high-performance liquid chromatography (HPLC) in the Xiamen Bay, a subtropical bay in southeast China, between May 2003 and February 2004. The results showed that growth rates of phytoplankton ranged from 0.71 to 2.2 d^-1 with the highest value occurred in the inner bay in May. Mierozooplankton grazing rates ranged from 0.5 to 3.1 d^-1 with the highest value occurred in the inner bay in August. Microzooplankton grazing impact ranged from 39% to 95% on total phytoplankton Chl a biomass, and 65% to 181% on primary production. The growth and grazing rates of each phytoplankton group varied, the highest growth rate (up to 3.3 d^-1 ) was recorded for diatoms in August, while the maximum grazing rate ( up to 2.1 d ^-1 ) was recorded for chlorophytes in February in the inner bay. Among main phytoplankton groups, grazing pressure of microzooplankton ranged from 10% to 83% on Chl a biomass, and from 14% to 151% on primary production. The highest grazing pressure on biomass was observed for cryptophytes (83%) in August, while the maximum grazing pressure on primary production was observed for eyanobacteria (up to 151% ) in December in the inner bay. Net growth rates of larger phytoplanktons (diatoms and dinoflagellates) were higher than those of smaller groups ( prasinophytes, chlorophytes and cyanobacteria). Relative preference index showed that microzooplankton grazed preferentially on prasinophytes and avoided to harvest diatoms in cold seasons (December and February).
文摘In 2010, an estimated 400 to 500 children died of acute lead poisoning associated with artisanal gold mining in Zamfara, Nigeria. Processing of gold ores containing up to 10% lead within residential compounds put residents, especially children, at the highest risk. Principal routes of exposure were incidental ingestion and inhalation of contaminated soil and dusts. Several Nigerian and international health organizations collaborated to reduce lead exposures through environmental remediation and medical treatment. The contribution of contaminated food to total lead exposure was assessed during the environmental health response. Objectives of this investigation were to assess the influence of cultural/dietary habits on lead exposure pathways and estimate the contribution of contaminated food to children's blood lead levels(BLLs). A survey of village dietary practices and staple food lead content was conducted to determine dietary composition, caloric intakes, and lead intake. Potential blood lead increments were estimated using bio-kinetic modeling techniques. Most dietary lead exposure was associated with contamination of staple cereal grains and legumes during post-harvest processing and preparation in contaminated homes. Average post-harvest and processed cereal grain lead levels were 0.32 mg/kg and 0.85 mg/kg dry weight, respectively. Age-specific food lead intake ranged from 7 to 78 μg/day. Lead ingestion and absorption were likely aggravated by the dusty environment, fasting between meals, and nutritional deficiencies. Contamination of staple cereal grains by highly bioavailable pulverized ores could account for as much as 11%–34% of children's BLLs during the epidemic, and were a continuing source after residential soil remediation until stored grain inventories were exhausted.
文摘Since trees and plants can absorb CO2, forests are widely regarded as a carbon sink that may control the amount of CO2 in the atmosphere. The CO2 uptake rate of plants is affected by the plant species and environmental conditions such as photosynthetically active radiation (PAR), temperature, water and nutrient contents. PAR is the most immediate environmental control on photosynthesis while air temperature affects both photorespiration and dark respiration. In the natural condition, PAR and temperature play an important role in net CO2 uptake. The effects of PAR and air temperature on the CO2 uptake of Pterocarpus macrocarpus grown in a natural habitat were studied in the present work. Due to many uncontrollable factors, a simple rectangular hyperbola could not represent the measured data. The data were divided into groups of 2oC intervals; CO2 uptake in each group may then be related to PAR by a rectangular hyperbola function. Using the obtained functions, the effect of PAR was removed from the original data. The PAR-independent CO2 uptake was then related to air temperature. Finally, the effects of PAR (I) and air temperature (Ta) on the CO2 uptake rate (A) were combined as: (-0.0575Ta2+2.6691Ta-23.264)I A= ——————————————— (-0.00766Ta2+0.40666Ta-3.99924) (-4.8794Ta2+227.13Ta-2456.9)+I
基金Financial support was mainly provided to JittimaCharoenpanich from Center of Excellence on Environmental Health,Toxicology and Management of Chemicals(ETM-PERDO)partly from Faculty of Science,Burapha Universitya scholarship support to Kanokhathai Buranasilp from Center of Excellence for Innovation in Chemistry (PERCH-CIC),Commission on Higher Education,Ministry of Education
文摘A widespread use of acrylamide, probably a neurotoxicant and carcinogen, in various industrial processes has led to environmental contamination. Fortunately, some microorganisms are able to derive energy from acrylamide. In the present work, we reported the isolation and characterization of a novel acrylamide-degrading bacterium from domestic wastewater in Chonburi, Thailand. The strain grew well in the presence of acrylamide as 0.5% (W/V), at pH 6.0 to 9,0 and 25℃. Identification based on biochemical characteristics and 16S rRNA gene sequence identified the strain as Enterobacter aerogenes. Degradation of acrylamide to acrylic acid started in the late logarithmic growth phase as a biomass-dependent pattern. Specificity of cell-free supernatant towards amides completely degraded butyramide and urea and 86% of lactamide. Moderate degradation took place in other amides with that by formanaide 〉 benzamide 〉 acetamide 〉 cyanoacetamide 〉 propionamide. No degradation was detected in the reactions of N,N-methylene bisacrylamide, sodium azide, thioacetamide, and iodoacetamide. These results highlighted the potential of this bacterium in the cleanup of acrylamide/amide in the environment.