Under the background of rapid social development, environmental problems are becoming increasingly severe, and effective environmental protection measures must be taken. The analysis of the current situation of enviro...Under the background of rapid social development, environmental problems are becoming increasingly severe, and effective environmental protection measures must be taken. The analysis of the current situation of environmental engineering construction shows that there are still many problems, such as sewage treatment to be improved, the lack of rationality of household waste classification and the lack of waste gas treatment. Based on the existing problems, this paper discusses the countermeasures of environmental engineering construction.展开更多
In recent years, China's ecological environment construction has been gradually improved, and the concept of environmental protection has been further developed. In order to build a sustainable society, people are...In recent years, China's ecological environment construction has been gradually improved, and the concept of environmental protection has been further developed. In order to build a sustainable society, people are paying more and more attention to the issues of ecological environment reform and environmental engineering construction, paying more attention to environmental protection, and putting forward a series of measures to optimize development based on the protection of local environment. Therefore, this paper firstly outlines the relationship between environmental engineering and ecological environment, secondly analyzes the advantages of environmental engineering construction on ecological environment and finally puts forward some suggestions on improving environmental engineering construction and realizing sustainable development.展开更多
Under the background of rapid economic development, all kinds of environmental problems emerge in an endless stream. Now, China firmly opposes the backward concept of development after governance. It pays more attenti...Under the background of rapid economic development, all kinds of environmental problems emerge in an endless stream. Now, China firmly opposes the backward concept of development after governance. It pays more attention to the development of economy on the basis of environmental protection and promotes the sustainable development of economy. However, environmental protection is not a one-day effort, but a long-term process. Good environmental engineering technical specifications are more effective in improving pollution in various fields. Therefore, enterprises should increase efforts to protect the environment, and it will be implemented in energy conservation and emission reduction. Based on this, this paper focuses on the analysis of the role and impact of environmental engineering technical specifications in energy conservation and emission reduction, to lay a foundation for environmental protection of related projects.展开更多
With the continuous acceleration of urban construction and the continuous increase of urban population, the sewage discharge increases year by year and the treatment difficulty gradually increases, which seriously dam...With the continuous acceleration of urban construction and the continuous increase of urban population, the sewage discharge increases year by year and the treatment difficulty gradually increases, which seriously damages the urban ecological environment and reduces the quality of life of people. At the same time, some cities have low sewage treatment efficiency due to shortage of funds, backward technology, aging equipment and other problems, which further restrict the development of cities. In order to solve the sewage treatment problem and improve the utilization rate of water resources, each city must carry out sewage treatment planning according to the actual development situation, innovate the sewage treatment process and improve the sewage treatment efficiency, laying a solid foundation for people's water safety and the city's resource protection.展开更多
In recent years, the industrial development is very rapid, people's living standards continue to improve, but the environmental problems are becoming more and more prominent, in order to achieve the sustainable de...In recent years, the industrial development is very rapid, people's living standards continue to improve, but the environmental problems are becoming more and more prominent, in order to achieve the sustainable development goals must strengthen environmental protection, which must strengthen the construction of environmental engineering. Environmental monitoring is an important part of environmental protection work, which has a direct impact on the smooth development of environmental protection work. Therefore, in this context to explore the significance of environmental monitoring to environmental engineering construction is conducive to the relevant staff to improve the understanding of environmental monitoring, to provide reference for their construction of environmental engineering. Based on this, this paper starts from the significance of environmental monitoring to environmental engineering construction, and then discusses the ways to realize the significance of environmental monitoring to environmental engineering construction, so as to further strengthen environmental quality monitoring.展开更多
Researchers have recently developed various surface engineering approaches to modify environmental catalysts and improve their catalytic activity.Defect engineering has proved to be one of the most promising modificat...Researchers have recently developed various surface engineering approaches to modify environmental catalysts and improve their catalytic activity.Defect engineering has proved to be one of the most promising modification methods.Constructing defects on the surface of catalytic materials can effectively modulate the coordination environment of the active sites,affecting and changing the electrons,geometry,and other important properties at the catalytic active sites,thus altering the catalytic activity of the catalysts.However,the conformational relationship between defects and catalytic activity remains to be clarified.This dissertation focuses on an overview of recent advances in defect engineering in environmental catalysis.Based on defining the classification of defects in catalytic materials,defect construction methods,and characterization techniques are summarized and discussed.Focusing on an overview of the characteristics of the role of defects in electrocatalytic,photocatalytic,and thermal catalytic reactions and the mechanism of catalytic reactions.An elaborate link is given between the reaction activity and the structure of catalyst defects.Finally,the existing challenges and possible future directions for the application of defect engineering in environmental catalysis are discussed,which are expected to guide the design and development of efficient environmental catalysts and mechanism studies.展开更多
The authors regret that the affiliation b and c are wrong.Affiliation b should be changed to“School of Civil and Environmental Engineering,Harbin Institute of Technology,Shenzhen,China;Department of Data Analysis and...The authors regret that the affiliation b and c are wrong.Affiliation b should be changed to“School of Civil and Environmental Engineering,Harbin Institute of Technology,Shenzhen,China;Department of Data Analysis and Mathematical Modelling,Ghent University,Belgium”.And affiliation c should be changed to“State Key Laboratory of Urban Water Resource and Environment(SKLUWRE),School of Environment,Harbin Institute of Technology,China”.展开更多
Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing ...Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing the role of collaborative education.In order to realize the seamless integration of inorganic and analytical chemistry courses and ideological and political education,this paper summarizes the current situation of ideological and political research on inorganic and analytical chemistry courses in three major databases in China(VIP,CNKI and Wanfang),and sorts out the knowledge points,ideological and political elements and educational goals according to the content of the course chapters,to provide a basic guarantee for the ideological and political education construction of the course.展开更多
With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,off...With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,offers a promising avenue for researchers.However,the question of how to significantly enhance the performance of catalysts has gradually drawn the attention of scholars.Defect engineering,a commonly employed and effective approach to improve catalyst activity,has become a significant research focus in the catalysis field in recent years.Nonmetal vacancies have received extensive attention due to their simple form.Consequently,exploration of metal vacancies has remained stagnant for a considerable period,resulting in a scarcity of comprehensive reviews on this topic.Therefore,based on the latest research findings,this paper summarizes and consolidates the construction strategies for metal vacancies,characterization techniques,and their roles in typical energy and environmental catalytic reactions.Additionally,it outlines potential challenges in the future,aiming to provide valuable references for researchers interested in investigating metal vacancies.展开更多
Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.T...Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.展开更多
Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous s...Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation.展开更多
The present study investigates the engineering properties of submerged organic silt(orSi)stabilized with F-class fly ash(FA),with and without the addition of an activator(CaO).The utilization of F-class FA for soil im...The present study investigates the engineering properties of submerged organic silt(orSi)stabilized with F-class fly ash(FA),with and without the addition of an activator(CaO).The utilization of F-class FA for soil improvement is an important aspect of sustainable and environmentally-conscious geotechnical engineering when marginal usage of lime and concrete is of great interest to engineers and societies.Currently,discussion is predominantly focused on the positive aspects of using the F-class FA,with a paucity of emphasis on the negative aspects.To explore these features more thoroughly,a series of strength and compressibility tests was conducted.The sample preparation and curing methodology were chosen to replicate the in situ conditions where soil is surcharged and submerged in water.It was found that the incorporation of F-class FA without an activator reduces the undrained shear strength of submerged orSi by about 20%–25%and permanently prevents any thixotropic strength restoration.An increase in undrained shear strength is observed when lime(3%–6%)is added to the soil–FA mixture or when only lime(in the same amount of 3%–6%)is used.Consequently,F-class FA can be successfully used as a filler for slurries with minimum lime content in soil mixing methods.The F-class FA(with or without an activator)shifts the so-called“creep delay”in time,consequently reducing the total creep settlements.The shift of“creep delay”is more considerable for orSi stabilized with lime or with FA and lime as an activator,than for orSi stabilized with pure F-class FA.展开更多
Considering the special features of dynamic environment economic dispatch of power systems with high dimensionality,strong coupling,nonlinearity,and non-convexity,a GA-DE multi-objective optimization algorithm based o...Considering the special features of dynamic environment economic dispatch of power systems with high dimensionality,strong coupling,nonlinearity,and non-convexity,a GA-DE multi-objective optimization algorithm based on dual-population pseudo-parallel genetic algorithm-differential evolution is proposed in this paper.The algorithm is based on external elite archive and Pareto dominance,and it adopts the cooperative co-evolution mechanism of differential evolution and genetic algorithm.Average entropy and cubic chaoticmapping initialization strategies are proposed to increase population diversity.In the proposed method,we analyze the distribution of neighboring solutions and apply a new Pareto solution set pruning approach.Unlike traditional models,this work takes the transmission losses as an optimization target and overcomes complex model constraints through a dynamic relaxation constraint approach.To solve the uncertainty caused by integrating wind and photovoltaic energy in power system scheduling,a multi-objective dynamic environment economical dispatch model is set up that takes the system spinning reserve and network highest losses into account.In this paper,the DE algorithm is improved to form the DGAGE algorithm for the objective optimization of the overall power system,The DE algorithm part of DGAGE is combined with the JAYA algorithm to form the system scheduling HDJ algorithm for multiple energy sources connected to the grid.The effectiveness of the proposed method is demonstrated using CEC2022 and CEC2005 test functions,showing robust optimization performance.Validation on a classical 10-unit system confirms the feasibility of the proposed algorithm in addressing power system scheduling issues.This approach provides a novel solution for dynamic power dispatch systems.展开更多
This study provides the first systematic evaluation of image resolution’s effect (50-300 PPI, pixels per inch) on UAV (unmanned aerial vehicle)-based digital close-range photogrammetry accuracy in civil engineering a...This study provides the first systematic evaluation of image resolution’s effect (50-300 PPI, pixels per inch) on UAV (unmanned aerial vehicle)-based digital close-range photogrammetry accuracy in civil engineering applications, such as infrastructure monitoring and heritage preservation. Using a high-resolution UAV with a 20 MP (MegaPixels) sensor, four images of a brick wall test field were captured and processed in Agisoft Metashape, with resolutions compared against Leica T2002 theodolite measurements (1.0 mm accuracy). Advanced statistical methods (ANOVA (analysis of variance), Tukey tests, Monte Carlo simulations) and ground control points validated the results. Accuracy improved from 25 mm at 50 PPI to 5 mm at 150 PPI (p < 0.01), plateauing at 4 mm beyond 200 PPI, while 150 PPI reduced processing time by 62% compared to 300 PPI. Unlike prior studies, this research uniquely isolates resolution effects in a controlled civil engineering context, offering a novel 150 PPI threshold that balances precision and efficiency. This threshold supports Saudi Vision 2030’s smart infrastructure goals for megaprojects like NEOM, providing a scalable framework for global applications. Future research should leverage deep learning to optimize resolutions in dynamic environments.展开更多
Mining activities are often associated with significant environmental degradation,particularly due to the accumulation of mine tailings(MTs).These waste materials are frequently stored in dams or open ponds without ad...Mining activities are often associated with significant environmental degradation,particularly due to the accumulation of mine tailings(MTs).These waste materials are frequently stored in dams or open ponds without adequate treatment,posing serious risk of heavy metals(HMs)contamination to surrounding ecosystems.Given these challenges,restoration of MTs to mitigate their negative impacts has become highly important.This study attempts to compile different types of MTs,their characteristics,and associated issues such as acid mine drainage(AMD)and HMs contamination,along with other environmental impacts.It also explores the fundamentals of phytoremediation,highlighting key processes,recent advancements,benefits,limitations,and strategies for post-harvest management.The findings indicate that MTs are a major source of HM pollution and contribute significantly to environmental deterioration.Phytoremediation has emerged as a promising,cost-effective,and eco-friendly solution for MT restoration.In addition to mitigating contamination,phytoremediation enhances soil quality,prevents erosion,reduces HM leaching into groundwater,and improves the visual appeal of degraded sites.Research suggests that revegetating MT-contaminated soils with specific plant species can effectively remediate these areas,reducing HM leaching risks while improving soil properties.This review serves as a valuable resource for researchers working on MT restoration,offering insights into the latest advancements in phytoremediation technology and its potential to address the environmental challenges posed by MTs.展开更多
Photocatalytic hydrogen(H_(2))production using solar energy is a cutting-edge green technology that holds great potential for addressing the urgent fuel and environmental crises[1–3].To achieve high-efficiency H_(2) ...Photocatalytic hydrogen(H_(2))production using solar energy is a cutting-edge green technology that holds great potential for addressing the urgent fuel and environmental crises[1–3].To achieve high-efficiency H_(2) production,cocatalyst modification is commonly employed to provide active sites for the hydrogen evolution reaction(HER)[4,5].In this context,the kinetics of hydrogen adsorption and desorption at these active sites play a crucial role in enhancing overall photocatalytic H_(2) production efficiency.However,the H adsorption/desorption kinetics often exhibit a trade-off,presenting a significant challenge in achieving an optimal equilibrium between Hads and Hdes in many cocatalyst systems.Therefore,fine-tuning the active sites to optimize the H_(2) evolution kinetics is essential for improving photocatalytic activity[6].展开更多
This study comprehensively investigates the degradation performance and mechanism of environmental persistent pollutants(EPs)by combining experimental and theoretical calculations with dielectric barrier discharge(DBD...This study comprehensively investigates the degradation performance and mechanism of environmental persistent pollutants(EPs)by combining experimental and theoretical calculations with dielectric barrier discharge(DBD)plasma synergized with persulfate.The findings demonstrated that DBD plasma could generate reactive radicals,including·OH,^(1)O_(2) and·O_(2)^(-),which primarily activate persulfate through OH and·O_(2)^(-)to produce the potent oxidizing radical SO_4^(-).This process facilitated enhanced degradation and mineralization of MeP wastewater.The performance of DBD/persulfute(PS)in degrading MeP was evaluated by kinetics,energy efficiency,and co-factor calculations,combined with degradation under different influencing factors.The actives in the system were analyzed by free radical scavenging assays and UV spectrophotometric testing to determine their effects.The findings indicated that persulfate was effectively activated by DBD plasma and that·O_(2)^(-)played a significant role.The presence of persulfate elevated the levels of H_(2)O_(2) and O_(3) in the solution.The intermediates formed during the degradation of MeP were detected using LC-MS and then analyzed alongside density-functional theory(DFT)chemical predictions to anticipate the reactive sites and deduce the potential degradation pathways of methylparaben(MeP).Toxicity evaluation software confirmed that the PS/DBD system reduces acute and developmental toxicity in the water column.The study showed that DBD plasma-activated persulfate was successful in addre ssing newly identified contaminants.展开更多
This comprehensive review synthesizes findings from the studies conducted for more than two decades to assess en-vironmental and human health impacts near Spain's first hazardous waste incinerator(HWI)located in C...This comprehensive review synthesizes findings from the studies conducted for more than two decades to assess en-vironmental and human health impacts near Spain's first hazardous waste incinerator(HWI)located in Constantí(Tarra-gona,Catalonia).Through integrated analysis of polychlorinated dibenzo-p-dioxins/furans(PCDD/Fs)and metals across soil,vegetation,human tissues,and dietary matrices,the studies have shown:(1)PCDD/F concentrations decreased 75-96%in biological samples and dietary intake over 20 years,aligning with global emission reductions rather than HWI-4 operations;(2)metal trajectories showed arsenic intermittently exceeding carcinogenic thresholds in soils(1.1×10^(-4) risk index)and chromium accumulating in autopsy tissues(+16% in kidney),although without HWI-specific spatial gradi-ents;(3)systemic biomarkers revealed policy-driven declines—blood lead dropped 70% post-EU regulations,while mer-cury became undetectable in tissues post-2010.Health risk assessments confirmed that PCDD/F intake(0.122 pg WHO-TEQ/kg/day)remained still below WHO thresholds,with no attributable cancer risks for metals except legacy arsenic.The studies included in the program of surveillance show that PCDD/Fs and metals emissions by the HWI have meant a rather low contribution to population exposure to metals and PCDD/Fs compared to dietary and historical sources.How-ever,residual risks warrant attention.It mainly concerns chromium speciation and arsenic in soils,as well as the effects on vulnerable subpopulations and the synergistic effects among toxicants.Epidemiological studies are also required.展开更多
Road infrastructure is facing significant digitalization challenges within the context of new infrastructure construction in China and worldwide.Among the advanced digital technologies,digital twin(DT)has gained promi...Road infrastructure is facing significant digitalization challenges within the context of new infrastructure construction in China and worldwide.Among the advanced digital technologies,digital twin(DT)has gained prominence across various engineering sectors,including the manufacturing and construction industries.Specifically,road engineering has demonstrated a growing interest in DT and has achieved promising results in DT-related applications over the past several years.This paper systematically introduces the development of DT and examines its current state in road engineering by reviewing research articles on DT-enabling technologies,such as model creation,condition sensing,data processing,and interaction,as well as its applications throughout the lifecycle of road infrastructure.The findings indicate that research has primarily focused on data perception and virtual model creation,while realtime data processing and interaction between physical and virtual models remain underexplored.DT in road engineering has been predominantly applied during the operation and maintenance phases,with limited attention given to the construction and demolition phases.Future efforts should focus on establishing uniform standards,developing innovative perception and data interaction techniques,optimizing development costs,and expanding the scope of lifecycle applications to facilitate the digital transformation of road engineering.This review provides a comprehensive overview of state-of-the-art advancements in this field and paves the way for leveraging DT in road infrastructure lifecycle management.展开更多
PM_(1.0),particulate matter with an aerodynamic diameter smaller than 1.0μm,can adversely affect human health.However,fewer stations are capable of measuring PM_(1.0) concentrations than PM2.5 and PM10 concentrations...PM_(1.0),particulate matter with an aerodynamic diameter smaller than 1.0μm,can adversely affect human health.However,fewer stations are capable of measuring PM_(1.0) concentrations than PM2.5 and PM10 concentrations in real time(i.e.,only 9 locations for PM_(1.0) vs.623 locations for PM2.5 or PM10)in South Korea,making it impossible to conduct a nationwide health risk analysis of PM_(1.0).Thus,this study aimed to develop a PM_(1.0) prediction model using a random forest algorithm based on PM_(1.0) data from the nine measurement stations and various environmental input factors.Cross validation,in which the model was trained in eight stations and tested in the remaining station,achieved an average R^(2) of 0.913.The high R^(2) value achieved undermutually exclusive training and test locations in the cross validation can be ascribed to the fact that all the locations had similar relationships between PM_(1.0) and the input factors,which were captured by our model.Moreover,results of feature importance analysis showed that PM2.5 and PM10 concentrations were the two most important input features in predicting PM_(1.0) concentration.Finally,the model was used to estimate the PM_(1.0) concentrations in 623 locations,where input factors such as PM2.5 and PM10 can be obtained.Based on the augmented profile,we identified Seoul and Ansan to be PM_(1.0) concentration hotspots.These regions are large cities or the center of anthropogenic and industrial activities.The proposed model and the augmented PM_(1.0) profiles can be used for large epidemiological studies to understand the health impacts of PM_(1.0).展开更多
文摘Under the background of rapid social development, environmental problems are becoming increasingly severe, and effective environmental protection measures must be taken. The analysis of the current situation of environmental engineering construction shows that there are still many problems, such as sewage treatment to be improved, the lack of rationality of household waste classification and the lack of waste gas treatment. Based on the existing problems, this paper discusses the countermeasures of environmental engineering construction.
文摘In recent years, China's ecological environment construction has been gradually improved, and the concept of environmental protection has been further developed. In order to build a sustainable society, people are paying more and more attention to the issues of ecological environment reform and environmental engineering construction, paying more attention to environmental protection, and putting forward a series of measures to optimize development based on the protection of local environment. Therefore, this paper firstly outlines the relationship between environmental engineering and ecological environment, secondly analyzes the advantages of environmental engineering construction on ecological environment and finally puts forward some suggestions on improving environmental engineering construction and realizing sustainable development.
文摘Under the background of rapid economic development, all kinds of environmental problems emerge in an endless stream. Now, China firmly opposes the backward concept of development after governance. It pays more attention to the development of economy on the basis of environmental protection and promotes the sustainable development of economy. However, environmental protection is not a one-day effort, but a long-term process. Good environmental engineering technical specifications are more effective in improving pollution in various fields. Therefore, enterprises should increase efforts to protect the environment, and it will be implemented in energy conservation and emission reduction. Based on this, this paper focuses on the analysis of the role and impact of environmental engineering technical specifications in energy conservation and emission reduction, to lay a foundation for environmental protection of related projects.
文摘With the continuous acceleration of urban construction and the continuous increase of urban population, the sewage discharge increases year by year and the treatment difficulty gradually increases, which seriously damages the urban ecological environment and reduces the quality of life of people. At the same time, some cities have low sewage treatment efficiency due to shortage of funds, backward technology, aging equipment and other problems, which further restrict the development of cities. In order to solve the sewage treatment problem and improve the utilization rate of water resources, each city must carry out sewage treatment planning according to the actual development situation, innovate the sewage treatment process and improve the sewage treatment efficiency, laying a solid foundation for people's water safety and the city's resource protection.
文摘In recent years, the industrial development is very rapid, people's living standards continue to improve, but the environmental problems are becoming more and more prominent, in order to achieve the sustainable development goals must strengthen environmental protection, which must strengthen the construction of environmental engineering. Environmental monitoring is an important part of environmental protection work, which has a direct impact on the smooth development of environmental protection work. Therefore, in this context to explore the significance of environmental monitoring to environmental engineering construction is conducive to the relevant staff to improve the understanding of environmental monitoring, to provide reference for their construction of environmental engineering. Based on this, this paper starts from the significance of environmental monitoring to environmental engineering construction, and then discusses the ways to realize the significance of environmental monitoring to environmental engineering construction, so as to further strengthen environmental quality monitoring.
基金supported by The National Key R&D Program of China(No.2021YFB3500700)National Natural Science Foundation of China(Nos.21677010 and 51808037)Special fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control(No.BZ0344KF21-04)。
文摘Researchers have recently developed various surface engineering approaches to modify environmental catalysts and improve their catalytic activity.Defect engineering has proved to be one of the most promising modification methods.Constructing defects on the surface of catalytic materials can effectively modulate the coordination environment of the active sites,affecting and changing the electrons,geometry,and other important properties at the catalytic active sites,thus altering the catalytic activity of the catalysts.However,the conformational relationship between defects and catalytic activity remains to be clarified.This dissertation focuses on an overview of recent advances in defect engineering in environmental catalysis.Based on defining the classification of defects in catalytic materials,defect construction methods,and characterization techniques are summarized and discussed.Focusing on an overview of the characteristics of the role of defects in electrocatalytic,photocatalytic,and thermal catalytic reactions and the mechanism of catalytic reactions.An elaborate link is given between the reaction activity and the structure of catalyst defects.Finally,the existing challenges and possible future directions for the application of defect engineering in environmental catalysis are discussed,which are expected to guide the design and development of efficient environmental catalysts and mechanism studies.
文摘The authors regret that the affiliation b and c are wrong.Affiliation b should be changed to“School of Civil and Environmental Engineering,Harbin Institute of Technology,Shenzhen,China;Department of Data Analysis and Mathematical Modelling,Ghent University,Belgium”.And affiliation c should be changed to“State Key Laboratory of Urban Water Resource and Environment(SKLUWRE),School of Environment,Harbin Institute of Technology,China”.
基金Supported by 2020 Teaching Reform Research Project of Pingdingshan University(2020-JY05)School-level Ideological and Political Demonstration Course of Pingdingshan University in 2023-Ecological Engineering+1 种基金Science and Technology Research Project of Henan Provincial Department of Science and Technology(212102110189)High-level Talent Start-up Fund Project of Pingdingshan University(PXY-BSQD-202001).
文摘Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing the role of collaborative education.In order to realize the seamless integration of inorganic and analytical chemistry courses and ideological and political education,this paper summarizes the current situation of ideological and political research on inorganic and analytical chemistry courses in three major databases in China(VIP,CNKI and Wanfang),and sorts out the knowledge points,ideological and political elements and educational goals according to the content of the course chapters,to provide a basic guarantee for the ideological and political education construction of the course.
基金financially supported by National Key R&D Program of China(2021YFB3500702)National Natural Science Foundation of China(Nos.21677010 and 51808037)Special fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control(No.BZ0344KF21-04).
文摘With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,offers a promising avenue for researchers.However,the question of how to significantly enhance the performance of catalysts has gradually drawn the attention of scholars.Defect engineering,a commonly employed and effective approach to improve catalyst activity,has become a significant research focus in the catalysis field in recent years.Nonmetal vacancies have received extensive attention due to their simple form.Consequently,exploration of metal vacancies has remained stagnant for a considerable period,resulting in a scarcity of comprehensive reviews on this topic.Therefore,based on the latest research findings,this paper summarizes and consolidates the construction strategies for metal vacancies,characterization techniques,and their roles in typical energy and environmental catalytic reactions.Additionally,it outlines potential challenges in the future,aiming to provide valuable references for researchers interested in investigating metal vacancies.
基金funded by the project of Guangdong Provincial Basic and Applied Basic Research Fund Committee(2022A1515240073)the Pearl River Talent Recruitment Program(2019CX01G338),Guangdong Province.
文摘Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.
文摘Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation.
基金supported by the Polish National Science Center(Grant No.2022/06/X/ST10/00320)received by Witold Tisler.
文摘The present study investigates the engineering properties of submerged organic silt(orSi)stabilized with F-class fly ash(FA),with and without the addition of an activator(CaO).The utilization of F-class FA for soil improvement is an important aspect of sustainable and environmentally-conscious geotechnical engineering when marginal usage of lime and concrete is of great interest to engineers and societies.Currently,discussion is predominantly focused on the positive aspects of using the F-class FA,with a paucity of emphasis on the negative aspects.To explore these features more thoroughly,a series of strength and compressibility tests was conducted.The sample preparation and curing methodology were chosen to replicate the in situ conditions where soil is surcharged and submerged in water.It was found that the incorporation of F-class FA without an activator reduces the undrained shear strength of submerged orSi by about 20%–25%and permanently prevents any thixotropic strength restoration.An increase in undrained shear strength is observed when lime(3%–6%)is added to the soil–FA mixture or when only lime(in the same amount of 3%–6%)is used.Consequently,F-class FA can be successfully used as a filler for slurries with minimum lime content in soil mixing methods.The F-class FA(with or without an activator)shifts the so-called“creep delay”in time,consequently reducing the total creep settlements.The shift of“creep delay”is more considerable for orSi stabilized with lime or with FA and lime as an activator,than for orSi stabilized with pure F-class FA.
基金funded by the Major Humanities and Social Sciences Research Projects in Zhejiang Higher Education Institutions,grant number 2023QN131National Innovation Training Program Project in China,grant number 202410451009.
文摘Considering the special features of dynamic environment economic dispatch of power systems with high dimensionality,strong coupling,nonlinearity,and non-convexity,a GA-DE multi-objective optimization algorithm based on dual-population pseudo-parallel genetic algorithm-differential evolution is proposed in this paper.The algorithm is based on external elite archive and Pareto dominance,and it adopts the cooperative co-evolution mechanism of differential evolution and genetic algorithm.Average entropy and cubic chaoticmapping initialization strategies are proposed to increase population diversity.In the proposed method,we analyze the distribution of neighboring solutions and apply a new Pareto solution set pruning approach.Unlike traditional models,this work takes the transmission losses as an optimization target and overcomes complex model constraints through a dynamic relaxation constraint approach.To solve the uncertainty caused by integrating wind and photovoltaic energy in power system scheduling,a multi-objective dynamic environment economical dispatch model is set up that takes the system spinning reserve and network highest losses into account.In this paper,the DE algorithm is improved to form the DGAGE algorithm for the objective optimization of the overall power system,The DE algorithm part of DGAGE is combined with the JAYA algorithm to form the system scheduling HDJ algorithm for multiple energy sources connected to the grid.The effectiveness of the proposed method is demonstrated using CEC2022 and CEC2005 test functions,showing robust optimization performance.Validation on a classical 10-unit system confirms the feasibility of the proposed algorithm in addressing power system scheduling issues.This approach provides a novel solution for dynamic power dispatch systems.
文摘This study provides the first systematic evaluation of image resolution’s effect (50-300 PPI, pixels per inch) on UAV (unmanned aerial vehicle)-based digital close-range photogrammetry accuracy in civil engineering applications, such as infrastructure monitoring and heritage preservation. Using a high-resolution UAV with a 20 MP (MegaPixels) sensor, four images of a brick wall test field were captured and processed in Agisoft Metashape, with resolutions compared against Leica T2002 theodolite measurements (1.0 mm accuracy). Advanced statistical methods (ANOVA (analysis of variance), Tukey tests, Monte Carlo simulations) and ground control points validated the results. Accuracy improved from 25 mm at 50 PPI to 5 mm at 150 PPI (p < 0.01), plateauing at 4 mm beyond 200 PPI, while 150 PPI reduced processing time by 62% compared to 300 PPI. Unlike prior studies, this research uniquely isolates resolution effects in a controlled civil engineering context, offering a novel 150 PPI threshold that balances precision and efficiency. This threshold supports Saudi Vision 2030’s smart infrastructure goals for megaprojects like NEOM, providing a scalable framework for global applications. Future research should leverage deep learning to optimize resolutions in dynamic environments.
文摘Mining activities are often associated with significant environmental degradation,particularly due to the accumulation of mine tailings(MTs).These waste materials are frequently stored in dams or open ponds without adequate treatment,posing serious risk of heavy metals(HMs)contamination to surrounding ecosystems.Given these challenges,restoration of MTs to mitigate their negative impacts has become highly important.This study attempts to compile different types of MTs,their characteristics,and associated issues such as acid mine drainage(AMD)and HMs contamination,along with other environmental impacts.It also explores the fundamentals of phytoremediation,highlighting key processes,recent advancements,benefits,limitations,and strategies for post-harvest management.The findings indicate that MTs are a major source of HM pollution and contribute significantly to environmental deterioration.Phytoremediation has emerged as a promising,cost-effective,and eco-friendly solution for MT restoration.In addition to mitigating contamination,phytoremediation enhances soil quality,prevents erosion,reduces HM leaching into groundwater,and improves the visual appeal of degraded sites.Research suggests that revegetating MT-contaminated soils with specific plant species can effectively remediate these areas,reducing HM leaching risks while improving soil properties.This review serves as a valuable resource for researchers working on MT restoration,offering insights into the latest advancements in phytoremediation technology and its potential to address the environmental challenges posed by MTs.
文摘Photocatalytic hydrogen(H_(2))production using solar energy is a cutting-edge green technology that holds great potential for addressing the urgent fuel and environmental crises[1–3].To achieve high-efficiency H_(2) production,cocatalyst modification is commonly employed to provide active sites for the hydrogen evolution reaction(HER)[4,5].In this context,the kinetics of hydrogen adsorption and desorption at these active sites play a crucial role in enhancing overall photocatalytic H_(2) production efficiency.However,the H adsorption/desorption kinetics often exhibit a trade-off,presenting a significant challenge in achieving an optimal equilibrium between Hads and Hdes in many cocatalyst systems.Therefore,fine-tuning the active sites to optimize the H_(2) evolution kinetics is essential for improving photocatalytic activity[6].
基金supported by the National Natural Science Foundation of China(50867003)。
文摘This study comprehensively investigates the degradation performance and mechanism of environmental persistent pollutants(EPs)by combining experimental and theoretical calculations with dielectric barrier discharge(DBD)plasma synergized with persulfate.The findings demonstrated that DBD plasma could generate reactive radicals,including·OH,^(1)O_(2) and·O_(2)^(-),which primarily activate persulfate through OH and·O_(2)^(-)to produce the potent oxidizing radical SO_4^(-).This process facilitated enhanced degradation and mineralization of MeP wastewater.The performance of DBD/persulfute(PS)in degrading MeP was evaluated by kinetics,energy efficiency,and co-factor calculations,combined with degradation under different influencing factors.The actives in the system were analyzed by free radical scavenging assays and UV spectrophotometric testing to determine their effects.The findings indicated that persulfate was effectively activated by DBD plasma and that·O_(2)^(-)played a significant role.The presence of persulfate elevated the levels of H_(2)O_(2) and O_(3) in the solution.The intermediates formed during the degradation of MeP were detected using LC-MS and then analyzed alongside density-functional theory(DFT)chemical predictions to anticipate the reactive sites and deduce the potential degradation pathways of methylparaben(MeP).Toxicity evaluation software confirmed that the PS/DBD system reduces acute and developmental toxicity in the water column.The study showed that DBD plasma-activated persulfate was successful in addre ssing newly identified contaminants.
文摘This comprehensive review synthesizes findings from the studies conducted for more than two decades to assess en-vironmental and human health impacts near Spain's first hazardous waste incinerator(HWI)located in Constantí(Tarra-gona,Catalonia).Through integrated analysis of polychlorinated dibenzo-p-dioxins/furans(PCDD/Fs)and metals across soil,vegetation,human tissues,and dietary matrices,the studies have shown:(1)PCDD/F concentrations decreased 75-96%in biological samples and dietary intake over 20 years,aligning with global emission reductions rather than HWI-4 operations;(2)metal trajectories showed arsenic intermittently exceeding carcinogenic thresholds in soils(1.1×10^(-4) risk index)and chromium accumulating in autopsy tissues(+16% in kidney),although without HWI-specific spatial gradi-ents;(3)systemic biomarkers revealed policy-driven declines—blood lead dropped 70% post-EU regulations,while mer-cury became undetectable in tissues post-2010.Health risk assessments confirmed that PCDD/F intake(0.122 pg WHO-TEQ/kg/day)remained still below WHO thresholds,with no attributable cancer risks for metals except legacy arsenic.The studies included in the program of surveillance show that PCDD/Fs and metals emissions by the HWI have meant a rather low contribution to population exposure to metals and PCDD/Fs compared to dietary and historical sources.How-ever,residual risks warrant attention.It mainly concerns chromium speciation and arsenic in soils,as well as the effects on vulnerable subpopulations and the synergistic effects among toxicants.Epidemiological studies are also required.
基金supported by the National Key Research and Development Program of China(2022YFB2602103 and 2023YFA1008900)。
文摘Road infrastructure is facing significant digitalization challenges within the context of new infrastructure construction in China and worldwide.Among the advanced digital technologies,digital twin(DT)has gained prominence across various engineering sectors,including the manufacturing and construction industries.Specifically,road engineering has demonstrated a growing interest in DT and has achieved promising results in DT-related applications over the past several years.This paper systematically introduces the development of DT and examines its current state in road engineering by reviewing research articles on DT-enabling technologies,such as model creation,condition sensing,data processing,and interaction,as well as its applications throughout the lifecycle of road infrastructure.The findings indicate that research has primarily focused on data perception and virtual model creation,while realtime data processing and interaction between physical and virtual models remain underexplored.DT in road engineering has been predominantly applied during the operation and maintenance phases,with limited attention given to the construction and demolition phases.Future efforts should focus on establishing uniform standards,developing innovative perception and data interaction techniques,optimizing development costs,and expanding the scope of lifecycle applications to facilitate the digital transformation of road engineering.This review provides a comprehensive overview of state-of-the-art advancements in this field and paves the way for leveraging DT in road infrastructure lifecycle management.
基金supported by the Fine Particle Research Initiative in East Asia Considering National Differences Project through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(No.NRF-2023M3G1A1090660)supported by a grant from the National Institute of Environmental Research(NIER),funded by the Ministry of Environment of the Republic of Korea(No.NIER-2023-04-02-056).
文摘PM_(1.0),particulate matter with an aerodynamic diameter smaller than 1.0μm,can adversely affect human health.However,fewer stations are capable of measuring PM_(1.0) concentrations than PM2.5 and PM10 concentrations in real time(i.e.,only 9 locations for PM_(1.0) vs.623 locations for PM2.5 or PM10)in South Korea,making it impossible to conduct a nationwide health risk analysis of PM_(1.0).Thus,this study aimed to develop a PM_(1.0) prediction model using a random forest algorithm based on PM_(1.0) data from the nine measurement stations and various environmental input factors.Cross validation,in which the model was trained in eight stations and tested in the remaining station,achieved an average R^(2) of 0.913.The high R^(2) value achieved undermutually exclusive training and test locations in the cross validation can be ascribed to the fact that all the locations had similar relationships between PM_(1.0) and the input factors,which were captured by our model.Moreover,results of feature importance analysis showed that PM2.5 and PM10 concentrations were the two most important input features in predicting PM_(1.0) concentration.Finally,the model was used to estimate the PM_(1.0) concentrations in 623 locations,where input factors such as PM2.5 and PM10 can be obtained.Based on the augmented profile,we identified Seoul and Ansan to be PM_(1.0) concentration hotspots.These regions are large cities or the center of anthropogenic and industrial activities.The proposed model and the augmented PM_(1.0) profiles can be used for large epidemiological studies to understand the health impacts of PM_(1.0).