Aeration plays an important role in the treatment of activated sludge due tothe interactions among bubbles, sewage and activated sludge in an aeration tank. The aerationperformance is directly concerned with the effic...Aeration plays an important role in the treatment of activated sludge due tothe interactions among bubbles, sewage and activated sludge in an aeration tank. The aerationperformance is directly concerned with the efficiency of sewage disposal. So the three-dimensionaltwo-fluid model was established with emphasis on the phase interaction terms in this paper. Thismodel, as an extension of the two-phase flow model, involved the motion laws of three-phases, andwas compared with experimental studies. The finite volume method was used in the numericalsimulation of gas-liquid two-phase flow and gas-liquid-solid three-phase flow. In order to discussthe influence of gas-phase, liquid-phase and solid-phase motions in an aeration tank on the sewagedisposal, three kinds of boundary and initial conditions were adopted. The simulated results of theflow structure show qualitatively good agreement with the experimental data. And the theoreticalbasis for designing the best aeration tank was discussed according to the simulated results.展开更多
An inverse analysis algorithm is proposed for estimating liquid phase flowfield from measurement data of bubble motion. This kind of technology will be applied in future forvarious estimation of fluid flow in rivers, ...An inverse analysis algorithm is proposed for estimating liquid phase flowfield from measurement data of bubble motion. This kind of technology will be applied in future forvarious estimation of fluid flow in rivers, lakes, sea surface flow, and also microscopic channelflow as the problem-handling in civil, mechanical, electronic, and chemical engineering. Therelationship between the dispersion motion and the carrier phase flow is governed and expressed bythe trans-lational motion equation of spherical dispersion. The equation consists of all the forcecomponents including inertia, added inertia, drag, lift, pressure gradient force and gravity force.Using this equation enables us to estimate the carrier phase flow structure using only the data ofthe dispersion motioa Whole field liquid flow structure is also estimated using spatial or temporalinterpolation method. In order to verify this principle, the Taylor-Green vortex flow, and theKarman vortex shedding from a square cylinder have been chosea The results show that the combinationof the inverse analysis and Particle Tracking Velocimetry (PTV) with the spatio-temporalpostprocessing algorithm could reconstruct well the carrier phase flow of the gas-liquid two-phaseflow.展开更多
文摘Aeration plays an important role in the treatment of activated sludge due tothe interactions among bubbles, sewage and activated sludge in an aeration tank. The aerationperformance is directly concerned with the efficiency of sewage disposal. So the three-dimensionaltwo-fluid model was established with emphasis on the phase interaction terms in this paper. Thismodel, as an extension of the two-phase flow model, involved the motion laws of three-phases, andwas compared with experimental studies. The finite volume method was used in the numericalsimulation of gas-liquid two-phase flow and gas-liquid-solid three-phase flow. In order to discussthe influence of gas-phase, liquid-phase and solid-phase motions in an aeration tank on the sewagedisposal, three kinds of boundary and initial conditions were adopted. The simulated results of theflow structure show qualitatively good agreement with the experimental data. And the theoreticalbasis for designing the best aeration tank was discussed according to the simulated results.
文摘An inverse analysis algorithm is proposed for estimating liquid phase flowfield from measurement data of bubble motion. This kind of technology will be applied in future forvarious estimation of fluid flow in rivers, lakes, sea surface flow, and also microscopic channelflow as the problem-handling in civil, mechanical, electronic, and chemical engineering. Therelationship between the dispersion motion and the carrier phase flow is governed and expressed bythe trans-lational motion equation of spherical dispersion. The equation consists of all the forcecomponents including inertia, added inertia, drag, lift, pressure gradient force and gravity force.Using this equation enables us to estimate the carrier phase flow structure using only the data ofthe dispersion motioa Whole field liquid flow structure is also estimated using spatial or temporalinterpolation method. In order to verify this principle, the Taylor-Green vortex flow, and theKarman vortex shedding from a square cylinder have been chosea The results show that the combinationof the inverse analysis and Particle Tracking Velocimetry (PTV) with the spatio-temporalpostprocessing algorithm could reconstruct well the carrier phase flow of the gas-liquid two-phaseflow.