Long-term mulching has improved crop yields and farmland productivity in semiarid areas,but it has also increased greenhouse gas(GHG)emissions and depleted soil fertility.Biochar application has emerged as a promising...Long-term mulching has improved crop yields and farmland productivity in semiarid areas,but it has also increased greenhouse gas(GHG)emissions and depleted soil fertility.Biochar application has emerged as a promising solution for addressing these issues.In this study,we investigated the effects of four biochar application rates(no biochar(N)=0 t ha^(-1),low(L)=3 t ha^(-1),medium(M)=6 t ha^(-1),and high(H)=9 t ha^(-1))under film mulching and no mulching conditions over three growing seasons.We assessed the impacts on GHG emissions,soil organic carbon sequestration(SOCS),and maize yield to evaluate the productivity and sustainability of farmland ecosystems.Our results demonstrated that mulching increased maize yield(18.68-41.80%),total fixed C in straw(23.64%),grain(28.87%),and root(46.31%)biomass,and GHG emissions(CO_(2),10.78%;N_(2)O,3.41%),while reducing SOCS(6.57%)and GHG intensity(GHGI;13.61%).Under mulching,biochar application significantly increased maize yield(10.20%),total fixed C in straw(17.97%),grain(17.69%)and root(16.75%)biomass,and SOCS(4.78%).Moreover,it reduced the GHG emissions(CO_(2),3.09%;N_(2)O,6.36%)and GHGI(12.28%).These effects correlated with the biochar addition rate,with the optimal rate being 9.0 t ha^(-1).In conclusion,biochar application reduces CO_(2) and N_(2)O emissions,enhances CH_(4) absorption,and improves maize yield under film mulching.It also improves the soil carbon fixation capacity while mitigating the warming potential,making it a promising sustainable management method for mulched farmland in semiarid areas.展开更多
Accurate spatio-temporal land cover information in agricultural irrigation districts is crucial for effective agricultural management and crop production.Therefore,a spectralphenological-based land cover classificatio...Accurate spatio-temporal land cover information in agricultural irrigation districts is crucial for effective agricultural management and crop production.Therefore,a spectralphenological-based land cover classification(SPLC)method combined with a fusion model(flexible spatiotemporal data fusion,FSDAF)(abbreviated as SPLC-F)was proposed to map multi-year land cover and crop type(LC-CT)distribution in agricultural irrigated areas with complex landscapes and cropping system,using time series optical images(Landsat and MODIS).The SPLC-F method was well validated and applied in a super-large irrigated area(Hetao)of the upper Yellow River Basin(YRB).Results showed that the SPLC-F method had a satisfactory performance in producing long-term LC-CT maps in Hetao,without the requirement of field sampling.Then,the spatio-temporal variation and the driving factors of the cropping systems were further analyzed with the aid of detailed household surveys and statistics.We clarified that irrigation and salinity conditions were the main factors that had impacts on crop spatial distribution in the upper YRB.Investment costs,market demand,and crop price are the main driving factors in determining the temporal variations in cropping distribution.Overall,this study provided essential multi-year LC-CT maps for sustainable management of agriculture,eco-environments,and food security in the upper YRB.展开更多
While biochar amendment enhances plant productivity and water-use efficiency(WUE),particularly under waterlimited conditions,the specific mechanisms driving these benefits remain unclear.Thus,the present study aims to...While biochar amendment enhances plant productivity and water-use efficiency(WUE),particularly under waterlimited conditions,the specific mechanisms driving these benefits remain unclear.Thus,the present study aims to elucidate the synergistic effects of biochar and reduced irrigation on maize(Zea mays L.)plants,focusing on xylem composition,root-to-shoot signaling,stomatal behavior,and WUE.Maize plants were cultivated in splitroot pots filled with clay loam soil,amended by either wheat-straw biochar(WSB)or softwood biochar(SWB)at 2%(w/w).Plants received full irrigation(FI),deficit irrigation(DI),or partial root-zone drying rrigation(PRD)from the 4-leaf to the grain-filling stage.Our results revealed that the WSB amendment significantly enhanced plant water status,biomass accumulation,and WUE under reduced irrigation,particularly when combined with PRD.Although reduced irrigation inhibited photosynthesis,it enhanced WUE by modulating stomatal morphology and conductance.Biochar amendment combined with reduced rrigation significantly increased xylem K^(+),Ca^(2+),Mg^(2+),NO_(3)^(-),Cl^(-),PO_(4)^(3-),and SO_(4)^(2-)-but decreased Na+,which in turn lowered xylem pH.Moreover,biochar amendment and especially WSB amendment further increased abscisic acid(ABA)contents in both leaf and xylem sap under reduced irrigation conditions due to changes in xylem ionic constituents and pH.The synergistic interactions between xylem components and ABA led to refined adjustments in stomatal size and density,thereby affecting stomatal conductance and ultimately improving the WUE of maize plants at different scales.The combined application of WSB and PRD can,therefore,emerge as a promising approach for improving the overall plant performance of maize plants with increased stomatal adaptations and WUE,especially under water-limited conditions.展开更多
Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regiona...Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regional hydrological cycle.The deuterium excess(d-excess)indicates deviation in isotope fractionation during evaporation and can trace water vapor sources.This study analyzed 443 precipitation samples collected from the Gannan Plateau,China in 2022 to assess precipitation isotope variations and their driving factors.Water vapor sources were evaluated using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT),Concentration Weighted Trajectory(CWT),and Potential Source Contribution Factor(PSCF)models.Results showed that precipitation isotope values showed significant spatial and temporal variations on the Gannan Plateau.Temporally,precipitation isotope values peaked in June(when evaporation dominated)and minimized in March(depletion effect of air masses in the westerly wind belt).Spatially,the isotope values showed a distribution pattern of"high in the east and low in the west",which was mainly regulated by the differences in altitude and local meteorological conditions.Compared with the global meteoric water line(GMWL)with equation of δ^(2)H=8.00δ^(18)O+10.00,the slope and intercept of local meteoric water line(LMWL)for precipitation on the Gannan Plateau were smaller(7.49 and 7.63,respectively),reflecting the existence of a stronger secondary evaporation effect under the clouds in the region.The sources of water vapor on the Gannan Plateau showed significant seasonality and spatial heterogeneity.Specifically,the westerly belt and monsoon were the main water vapor transport paths at each sampling point,with Central Asian continental water vapor dominating in spring(53.49%),Indian Ocean water vapor dominating in summer(52.53%),Atlantic Ocean water vapor dominating in autumn(46.74%),and Atlantic Ocean and Mediterranean Sea water vapor dominating in winter(42.30%and 33.68%,respectively).Changes in the intensity of convective activity and Outgoing Longwave Radiation(OLR)affected the enrichment of isotopic values,which exhibited the same change trends as δ^(18)O.During the precipitation process,the δ^(18)O value first decreased and then increased.During the initial and final stages of precipitation process,precipitation was mainly influenced by continental air masses,while during the middle stage,it was controlled by marine air masses.The systematic research on precipitation isotopes and water vapor sources is important for climate change research and extreme precipitation prediction on the Gannan Plateau and other similar areas.展开更多
Rural resilience,a core capability for addressing systemic risks and enabling sustainable development,is increasingly vital to promoting urban-rural integrated development and rural revitalization strategies.However,c...Rural resilience,a core capability for addressing systemic risks and enabling sustainable development,is increasingly vital to promoting urban-rural integrated development and rural revitalization strategies.However,current research lacks exploration of the collaborative mechanisms between rural economic resilience(RER)and rural social resilience(RSR)in ecologically vulnerable areas.Based on the practical context of rural sustainable development in such regions,this study investigates the interaction between RER and RSR from a resilience coordination perspective.In this paper,a rural resilience evaluation framework for collaborative development of economic and social resilience was established.By employing the coupling coordination degree model,obstacle degree model,and equilibrium entropy model,this paper examines the synergies,constraints,and potential of rural resilience subsystems in Jinchang City,Gansu Province,China,in 2020.The results reveal that:1)RER contributes to RSR by stabilizing the economy,enhancing community adaptability,and driving modernization.In turn,RSR strengthens RER by mitigating instability,building social capital,and fostering confidence—together forming a mutually reinforcing coupling mechanism.2)The rural economic and social resilience level in Jinchang City remains generally low with spatially clustered patterns,while the coupling coordination degree is at an intermediate level overall,with 62.59%of villages exhibiting unbalanced development between rural economic and social resilience.3)RER and RSR demonstrate synergistic degradation in ecologically vulnerable areas,where low-level rural economic and social resilience induce integrated systemic deterioration.4)Considering the unbalanced development of rural economic and social resilience in ecologically fragile areas,differentiated coordination pathways are proposed for three village typologies:RER-lagging villages,RSR-lagging villages,and villages where RER and RSR develop synchronously but lack effective coordination.These findings offer spatial governance strategies and practical guidance for enhancing rural resilience and advancing sustainable development in ecologically vulnerable regions.展开更多
Due to irrational human activities and extreme climate,the Qinghai-Xizang Plateau,China,faces a serious threat of desertification.Desertification has a detrimental effect on the ecological environment and socioeconomi...Due to irrational human activities and extreme climate,the Qinghai-Xizang Plateau,China,faces a serious threat of desertification.Desertification has a detrimental effect on the ecological environment and socioeconomic development.In this study,the desertification sensitivity index(DSI)model was established by integrating the spatial distance model and environmentally sensitive area index evaluation method,and then the model was used to quantitatively analyze the spatial and temporal characteristics of desertification sensitivity of the Qinghai-Xizang Plateau from 1990 to 2020.The results revealed that:(1)a general increasing tendency from southeast to northwest was identified in the spatial distribution of desertification sensitivity.The low-sensitivity areas were mostly concentrated in the Hengduan and Nyaingqêntanglha mountains and surrounding forest and meadow areas.The high-sensitivity areas were located mainly in the Kunlun and Altun mountains and surrounding decertified areas.The center of gravity of all types of desertification-sensitive areas moved to the northwest,and the desertification sensitivity showed a decreasing trend as a whole;(2)the area of highly sensitive desertification areas decreased by 8.37%,with extreme sensitivity being the largest change among the sensitivity types.The desertification sensitivity transfer was characterized by a greater shift to lower sensitivity levels(24.56%)than to higher levels(2.03%),which demonstrated a declining trend;(3)since 1990,the change in desertification sensitivity has been dominated by the stabilizing type Ⅰ(29.30%),with the area of continuously increasing desertification sensitivity accounting for only 1.10%,indicating that the management of desertification has achieved positive results in recent years;and(4)natural factors have had a more significant impact on desertification sensitivity on the Xizang Plateau,whereas socioeconomic factors affected only localized areas.The main factors influencing desertification sensitivity were vegetation drought tolerance and aridity index.Studying spatiotemporal variations in desertification sensitivity and its influencing factors can provide a scientific foundation for developing strategies to control desertification on the Qinghai-Xizang Plateau.Dividing different desertification-sensitive areas on the basis of these patterns of change can facilitate the formulation of more targeted management and protection measures,contributing to ecological construction and sustainable economic development in the area.展开更多
Under current climate warming, the growth resilience of plantation forests after extreme droughts has garnered increasing attention. Platycladus orientalis Linn. is an evergreen tree species commonly used for afforest...Under current climate warming, the growth resilience of plantation forests after extreme droughts has garnered increasing attention. Platycladus orientalis Linn. is an evergreen tree species commonly used for afforestation, and the stability of P. orientalis plantation forests in the Loess Hilly region directly affects the ecological and environmental security of the entire Loess Plateau of China.However, systematic analyses of the growth resilience of P. orientalis plantation forests after extreme droughts along precipitation gradients remain scarce. In this study, we collected tree ring samples of P.orientalis along a precipitation gradient(255, 400, and 517 mm) from 2021 to 2023 and used dendroecological methods to explore the growth resilience of P. orientalis to drought stress on the Loess Plateau. Our findings revealed that the growth resilience of P. orientalis increased with increasing precipitation, enabling the trees to recover to the pre-drought growth levels. In regions with low precipitation(255 mm), the plantation forests were more sensitive to extreme droughts, struggling to recover to previous growth levels, necessitating conditional artificial irrigation. In regions with medium precipitation(400 mm), the growth of P. orientalis was significantly limited by drought stress and exhibited some recovery ability after extreme droughts, therefore warranting management through rainwater harvesting and conservation measures. Conversely, in regions with high precipitation(517 mm), the impacts of extreme droughts on P. orientalis plantation forests were relatively minor. This study underscored the need for targeted strategies tailored to different precipitation conditions rather than a "one-size-fits-all" approach to utilize precipitation resources effectively and maximize the ecological benefits of plantation forests. The findings will help maintain the stability of plantation forests and improve their ecosystem service functions in arid and semi-arid areas.展开更多
The removal of arsenic from water is essential for the protection of public health. To investigate the adsorption capabilities of laterite, sandstone, and shale for the removal of arsenic from aqueous solutions, colum...The removal of arsenic from water is essential for the protection of public health. To investigate the adsorption capabilities of laterite, sandstone, and shale for the removal of arsenic from aqueous solutions, column experiments were conducted. In this study, raw materials and heat-treated (calcined) materials were examined. The experiments assessed the influence of various parameters, including initial concentration, bed depth, and the effects of heat treatment. The findings revealed that the breakthrough curves were influenced by the initial concentration of arsenic, the depth of the bed, and the type of material used. For an initial arsenic concentration of 5 mg/L, columns containing 85 cm of calcined laterite, sandstone, and shale produced volumes of 7460 ml (1492 min), 3510 ml (702 min), and 4400 ml (880 min) of water with arsenic levels below 0.01 mg/L, respectively. These calcined materials demonstrate significant potential for the effective removal of arsenic from water.展开更多
Snow cover in mountainous areas is characterized by high reflectivity,strong spatial heterogeneity,rapid changes,and susceptibility to cloud interference.However,due to the limitations of a single sensor,it is challen...Snow cover in mountainous areas is characterized by high reflectivity,strong spatial heterogeneity,rapid changes,and susceptibility to cloud interference.However,due to the limitations of a single sensor,it is challenging to obtain high-resolution satellite remote sensing data for monitoring the dynamic changes of snow cover within a day.This study focuses on two typical data fusion methods for polar-orbiting satellites(Sentinel-3 SLSTR)and geostationary satellites(Himawari-9 AHI),and explores the snow cover detection accuracy of a multitemporal cloud-gap snow cover identification model(Loose data fusion)and the ESTARFM(Spatiotemporal data fusion).Taking the Qilian Mountains as the research area,the accuracy of two data fusion results was verified using the snow cover extracted from Landsat-8 SR products.The results showed that both data fusion models could effectively capture the spatiotemporal variations of snow cover,but the ESTARFM demonstrated superior performance.It not only obtained fusion images at any target time,but also extracted snow cover that was closer to the spatial distribution of real satellite images.Therefore,the ESTARFM was utilized to fuse images for hourly reconstruction of the snow cover on February 14–15,2023.It was found that the maximum snow cover area of this snowfall reached 83.84%of the Qilian Mountains area,and the melting rate of the snow was extremely rapid,with a change of up to 4.30%per hour of the study area.This study offers reliable high spatiotemporal resolution satellite remote sensing data for monitoring snow cover changes in mountainous areas,contributing to more accurate and timely assessments.展开更多
Heavy metal(loid)(HM)pollution in agricultural soils has become an environmental concern in antimony(Sb)mining areas.However,priority pollution sources identification and deep understanding of environmental risks of H...Heavy metal(loid)(HM)pollution in agricultural soils has become an environmental concern in antimony(Sb)mining areas.However,priority pollution sources identification and deep understanding of environmental risks of HMs face great challenges due to multiple and complex pollution sources coexist.Herein,an integrated approach was conducted to distinguish pollution sources and assess human health risk(HHR)and ecological risk(ER)in a typical Sb mining watershed in Southern China.This approach combines absolute principal component score-multiple linear regression(APCS-MLR)and positivematrix factorization(PMF)models with ER and HHR assessments.Four pollution sources were distinguished for both models,and APCS-MLR model was more accurate and plausible.Predominant HM concentration source was natural source(39.1%),followed by industrial and agricultural activities(23.0%),unknown sources(21.5%)and Sb mining and smelting activities(16.4%).Although natural source contributed the most to HM concentrations,it did not pose a significant ER.Industrial and agricultural activities predominantly contributed to ER,and attention should be paid to Cd and Sb.Sb mining and smelting activities were primary anthropogenic sources of HHR,particularly Sb and As contaminations.Considering ER and HHR assessments,Sb mining and smelting,and industrial and agricultural activities are critical sources,causing serious ecological and health threats.This study showed the advantages of multiple receptor model application in obtaining reliable source identification and providing better source-oriented risk assessments.HM pollution management,such as regulating mining and smelting and implementing soil remediation in polluted agricultural soils,is strongly recommended for protecting ecosystems and humans.展开更多
The significant threat of wildfires to forest ecology and biodiversity,particularly in tropical and subtropical regions,underscores the necessity for advanced predictive models amidst shifting climate patterns.There i...The significant threat of wildfires to forest ecology and biodiversity,particularly in tropical and subtropical regions,underscores the necessity for advanced predictive models amidst shifting climate patterns.There is a need to evaluate and enhance wildfire prediction methods,focusing on their application during extended periods of intense heat and drought.This study reviews various wildfire modelling approaches,including traditional physical,semi-empirical,numerical,and emerging machine learning(ML)-based models.We critically assess these models’capabilities in predicting fire susceptibility and post-ignition spread,highlighting their strengths and limitations.Our findings indicate that while traditional models provide foundational insights,they often fall short in dynamically estimating parameters and predicting ignition events.Cellular automata models,despite their potential,face challenges in data integration and computational demands.Conversely,ML models demonstrate superior efficiency and accuracy by leveraging diverse datasets,though they encounter interpretability issues.This review recommends hybrid modelling approaches that integrate multiple methods to harness their combined strengths.By incorporating data assimilation techniques with dynamic forecasting models,the predictive capabilities of ML-based predictions can be significantly enhanced.This review underscores the necessity for continued refinement of these models to ensure their reliability in real-world applications,ultimately contributing to more effective wildfire mitigation and management strategies.Future research should focus on improving hybrid models and exploring new data integration methods to advance predictive capabilities.展开更多
In this study,the occurrence,sources,and ecological risk of microplastics(>60μm)in the surface and bottom seawater were investigated in the Beibu Gulf,the northern South China Sea.The average abundance of micropla...In this study,the occurrence,sources,and ecological risk of microplastics(>60μm)in the surface and bottom seawater were investigated in the Beibu Gulf,the northern South China Sea.The average abundance of microplastics in surface and bottom waters was 1.35±0.93 and 0.79±0.50 items/m~3,respectively.Microplastics in both surface and bottom waters were predominantly in the form of fragments,and mostly in green.The composition of microplastics in surface water was primarily poly(methyl methacrylate)(PMA),whereas in bottom water,polyethylene(PE)dominated.Positive matrix factorization(PMF)modeling revealed that the primary sources of microplastics were pipeline abrasion,fishing activities,plastic waste,landfill disposal,transportation,aquaculture,and construction activities.The pollution load index(PLI)indicated that the overall risk of microplastic pollution in the Beibu Gulf was low.Conversely,the polymer hazard index(PHI)for microplastics was relatively high.These data underscore the importance of timely and effective reduction of human-intensive activities contributing to microplastic pollution and provide valuable information for further research in microplastic ecotoxicology and biogeochemistry.展开更多
Cyclosporin A fermentation residue(CFR)is a type of organic waste generated during the production of cyclosporin A,which are abundant in nutrients including organic matter,phosphorus,nitrogen and potassium.Inappropria...Cyclosporin A fermentation residue(CFR)is a type of organic waste generated during the production of cyclosporin A,which are abundant in nutrients including organic matter,phosphorus,nitrogen and potassium.Inappropriate handling of CFR not only waste valuable bioresources,but may also lead to the cyclosporin A and associated resistance genes into the natural environment,posing a significant threat to ecological system and human health.Land application was an effective way to resource recovery of CFR after aerobic composting(CAC).This study investigated the impact of CAC on soil fertility and environmental safety.The results indicated that CAC could improve soil nutrient contents and enhance enzyme activities.CAC altered the diversity and community composition of soil bacteria,resulting in an increase in the abundance of relevant bacteria beneficial for organic matter decomposition and cyclosporin A degradation.The introduced cyclosporin A(71.69μg/kg)completely degraded within 20 days due to soil biodegradation.The significantly increased abundance of intIl,mdr3,pgp,TSR and pmra in the soil cultivation early stage were restored to the soil background level within 90 days,indicating a reduced risk of antimicrobial resistance.The results demonstrated that reasonable land application of CAC could improve soil fertility without antimicrobial resistance risk,which is helpful for evaluating the resource utilization value and environmental risks of antibiotic fermentation residue after aerobic composting.展开更多
The irrigation method used in winter wheat fields affects micro-environment factors, such as relative humidity(RH) within canopy, soil temperature, topsoil bulk density, soil matric potential, and soil nutrients, an...The irrigation method used in winter wheat fields affects micro-environment factors, such as relative humidity(RH) within canopy, soil temperature, topsoil bulk density, soil matric potential, and soil nutrients, and these changes may affect plant root growth.An experiment was carried out to explore the effects of irrigation method on micro-environments and root distribution in a winter wheat field in the 2007–2008 and 2008–2009 growing seasons.The results showed that border irrigation(BI), sprinkler irrigation(SI), and surface drip irrigation(SDI) had no significant effects on soil temperature.Topsoil bulk density, RH within the canopy, soil available N distribution, and soil matric potential were significantly affected by the three treatments.The change in soil matric potential was the key reason for the altered root profile distribution patterns.Additionally, more fine roots were produced in the BI treatment when soil water content was low and topsoil bulk density was high.Root growth was most stimulated in the top soil layers and inhibited in the deep layers in the SDI treatment, followed by SI and BI, which was due to the different water application frequencies.As a result, the root profile distribution differed, depending on the irrigation method used.The root distribution pattern changes could be described by the power level variation in the exponential function.A good knowledge of root distribution patterns is important when attempting to model water and nutrient movements and when studying soil-plant interactions.展开更多
Soil loss due to crop harvesting (SLCH) is a soil erosion process that signiifcantly contributes to soil degradation in crop-lands. However, little is known about soil nutrient losses caused by SLCH and its environm...Soil loss due to crop harvesting (SLCH) is a soil erosion process that signiifcantly contributes to soil degradation in crop-lands. However, little is known about soil nutrient losses caused by SLCH and its environmental impacts. In the North China Plain area, we measured the losses of soil organic carbon (SOC) and nitrogen as wel as phosphorus due to SLCH and assessed their relationship with soil particle size composition, agronomic practices and soil moisture content. Our results show that the losses by harvesting potato of SOC, total nitrogen (TN), available nitrogen (AN), available phosphorus (AP) and total phosphorus (TP) were 1.7, 1.8, 1.8, 15.9 and 14.1 times compared by harvesting sweet potato, respectively. The variation of SOC, N and P loss by SLCH are mainly explained by the variation of plant density (PD) (17–50%), net mass of an individual tuber (Mcrop/p) (16–74%), soil clay content (34–70%) and water content (19–46%). Taking into account the current sewage treatment system and the ratio of the nutrients adhering to the tubers during transportation from the ifeld (NTRP/SP), the loss of TN and TP by harvesting of potato and sweet potato in the North China Plain area amounts to 3% N and 20% P loads in the water bodies of this region. The fate of the exported N and P in the sewage treatment system ultimately controls the contribution of N and P to the polution of lakes and rivers. Our results suggest that a large amount of SLCH-induced soil nutrient export during transportation from the ifeld is a potential polutant source for agricultural water for vast planting areas of tuber crops in China, and should not be overlooked.展开更多
In order to cope with drought and water shortages,the working people in the arid areas of Northwest China have developed a drought-resistant planting method,namely,gravel-sand mulching,after long-term agricultural pra...In order to cope with drought and water shortages,the working people in the arid areas of Northwest China have developed a drought-resistant planting method,namely,gravel-sand mulching,after long-term agricultural practices.To understand the effects of gravel-sand mulching on soil water evaporation,we selected Baifeng peach(Amygdalus persica L.)orchards in Northwest China as the experimental field in 2021.Based on continuously collected soil water stable isotopes data,we evaluated the soil evaporation loss rate in a gravel-sand mulching environment using the line-conditioned excess(lc-excess)coupled Rayleigh fractionation model and Craig-Gordon model.The results show that the average soil water content in the plots with gravel-sand mulching is 1.86%higher than that without gravel-sand mulching.The monthly variation of the soil water content is smaller in the plots with gravel-sand mulching than that without gravel-sand mulching.Moreover,the average lc-excess value in the plots without gravel-sand mulching is smaller.In addition,the soil evaporation loss rate in the plots with gravel-sand mulching is lower than that in the plots without gravel-sand mulching.The lc-excess value was negative for both the plots with and without gravel-sand mulching,and it has good correlation with relative humidity,average temperature,input water content,and soil water content.The effect of gravel-sand mulching on soil evaporation is most prominent in August.Compared with the evaporation data of similar environments in the literature,the lc-excess coupled Rayleigh fractionation model is better.Stable isotopes evidence shows that gravel-sand mulching can effectively reduce soil water evaporation,which provides a theoretical basis for agricultural water management and optimization of water-saving methods in arid areas.展开更多
Light-emitting diodes(LEDs)have been widely applied in the controlled environment agriculture,which are characterized by relatively narrow-band spectra and energetical efficiency.Most recently,the spectrum of Sunlike ...Light-emitting diodes(LEDs)have been widely applied in the controlled environment agriculture,which are characterized by relatively narrow-band spectra and energetical efficiency.Most recently,the spectrum of Sunlike LEDs has been engineered and it closely resembles solar spectrum in the range of photosynthetic active radiation(PAR,400–700 nm).To investigate how plant growth responses to the spectrum of Sunlike LEDs,cucumber and lettuce plants were cultivated and their responses were compared with the conventional white LEDs as well as composite of red and blue LEDs(RB,R/B ratio was 9:1).We observed that although Sunlike LEDs resulted in a longer stem in cucumber,dry weight and leaf area were similar as those under RB LEDs,and significantly higher than those under white LEDs.Moreover,cucumber leaves grown under Sunlike and white LEDs showed higher photosynthetic capacity than those grown under RB LEDs.For lettuce,plants grown under Sunlike LEDs showed larger leaf area and higher dry weight than the other two treatments.However,the leaf photosynthetic capacity of lettuce grown under Sunlike LEDs was the lowest.In this context,the spectrum induced plant functions are species-dependent.Furthermore,the three types of LEDs show distinct light spectra and they are different in many aspects.Therefore,it is difficult to attribute the different plant responses to certain specific light spectra.We conclude that plants grown under Sunlike LEDs exhibit larger leaf area,which may be due to some specific spectrum distributions(such as more far-red radiation),and consequently are favorable for light interception and therefore result in greater production.展开更多
Hydropower if scientifically developed is considered to be one of the clean and non-polluted renewable energy sources.But its impacts always exist on physical and social environment of the area.The present study was c...Hydropower if scientifically developed is considered to be one of the clean and non-polluted renewable energy sources.But its impacts always exist on physical and social environment of the area.The present study was conducted in the River Satluj basin which is well known for its hydropower potential.The main objective of the study was to understand the vulnerability of the Satluj basin and to develop a strategy for the development of hydropower projects.This basin has been facing many problems relating to construction of haphazard development of hydropower projects.This has led multi-hazards like landslides,floods,earthquakes,etc.Here,vulnerability assessment index was assessed quantitatively and qualitatively.Geographical Information System and people’s perception were used to study these aspects in the basin.The parameters considered for vulnerability assessment were slope,slope profile,relative relief,curvature,slope aspect,soil texture,lithology,river morphometry,precipitation,hydroelectric projects,land use and land cover,mass-movement,flood,geological elements and earthquake occurrences.The highest vulnerability was found in the middle zone,and finally on the basis of parameters analyzed;the hydropower’s development strategy was developed.展开更多
Dry-hot wind stress causes losses in wheat productivity in major growing regions worldwide,especially winter wheat in the Huang-Huai-Hai Plain of China,and both the occurrence and severity of such events are likely to...Dry-hot wind stress causes losses in wheat productivity in major growing regions worldwide,especially winter wheat in the Huang-Huai-Hai Plain of China,and both the occurrence and severity of such events are likely to increase with global climate change.To investigate the recovery of physiological functions and yield formation using a new noncommercial chemical regulator(NCR)following dry-hot wind stress,we conducted a three-year field experiment(2018-2021)with sprayed treatments of tap water(control),monopotassium phosphate(CKP),NCR at both the jointing and flowering stages(CFS),and NCR only at the jointing stage(FSJ)or flowering stage(FSF).The leaf physiology,biomass accumulation and translocation,grain-filling process,and yield components in winter wheat were assessed.Among the single spraying treatments,the FSJ treatment was beneficial for the accumulation of dry matter before anthesis,as well as larger increases in the maximum grain-filling rate and mean grain-filling rate.The FSF treatment performed better in maintaining a high relative chlorophyll content as indicated by the SPAD value,and a low rate of excised leaf water loss in flag leaves,promoting dry matter accumulation and the contribution to grain after anthesis,prolonging the duration of grain filling,and causing the period until the maximum grain-filling rate reached earlier.The CFS treatment was better than any other treatments in relieving the effects of dry-hot wind.The exogenous NCR treatments significantly increased grain yields by 12.45-18.20% in 2018-2019,8.89-13.82% in 2019-2020,and 8.10-9.00% in 2020-2021.The conventional measure of the CKP treatment only increased grain yield by 6.69% in 2020-2021.The CFS treatment had the greatest mitigating effect on yield loss under dry-hot wind stress,followed by the FSF and FSJ treatments,and the CKP treatment only had a minimal effect.In summary,the CFS treatment could be used as the main chemical control measure for wheat stress resistance and yield stability in areas with a high incidence of dry-hot wind.This treatment can effectively regulate green retention and the water status of leaves,promote dry matter accumulation and efficient translocation,improve the grain-filling process,and ultimately reduce yield losses.展开更多
基金supported by the National Key Research and Development Program of China(2021YFE0101300 and 2021YFD1901102)the project supported by the Natural Science Basic Research Plan in Shaanxi Province,China(2023-JC-YB-185)the Ningxia Key Research and Development Program,China(2023BCF01018)。
文摘Long-term mulching has improved crop yields and farmland productivity in semiarid areas,but it has also increased greenhouse gas(GHG)emissions and depleted soil fertility.Biochar application has emerged as a promising solution for addressing these issues.In this study,we investigated the effects of four biochar application rates(no biochar(N)=0 t ha^(-1),low(L)=3 t ha^(-1),medium(M)=6 t ha^(-1),and high(H)=9 t ha^(-1))under film mulching and no mulching conditions over three growing seasons.We assessed the impacts on GHG emissions,soil organic carbon sequestration(SOCS),and maize yield to evaluate the productivity and sustainability of farmland ecosystems.Our results demonstrated that mulching increased maize yield(18.68-41.80%),total fixed C in straw(23.64%),grain(28.87%),and root(46.31%)biomass,and GHG emissions(CO_(2),10.78%;N_(2)O,3.41%),while reducing SOCS(6.57%)and GHG intensity(GHGI;13.61%).Under mulching,biochar application significantly increased maize yield(10.20%),total fixed C in straw(17.97%),grain(17.69%)and root(16.75%)biomass,and SOCS(4.78%).Moreover,it reduced the GHG emissions(CO_(2),3.09%;N_(2)O,6.36%)and GHGI(12.28%).These effects correlated with the biochar addition rate,with the optimal rate being 9.0 t ha^(-1).In conclusion,biochar application reduces CO_(2) and N_(2)O emissions,enhances CH_(4) absorption,and improves maize yield under film mulching.It also improves the soil carbon fixation capacity while mitigating the warming potential,making it a promising sustainable management method for mulched farmland in semiarid areas.
基金National Natural Science Foundation of China,No.52379053,No.52022108The Key Research Project of Science and Technology in Inner Mongolia Autonomous Region of China,No.NMKJXM202208,No.NMKJXM202301The Project Funded by the Water Resources Department of Inner Mongolia Autonomous Region of China,No.NSK202103。
文摘Accurate spatio-temporal land cover information in agricultural irrigation districts is crucial for effective agricultural management and crop production.Therefore,a spectralphenological-based land cover classification(SPLC)method combined with a fusion model(flexible spatiotemporal data fusion,FSDAF)(abbreviated as SPLC-F)was proposed to map multi-year land cover and crop type(LC-CT)distribution in agricultural irrigated areas with complex landscapes and cropping system,using time series optical images(Landsat and MODIS).The SPLC-F method was well validated and applied in a super-large irrigated area(Hetao)of the upper Yellow River Basin(YRB).Results showed that the SPLC-F method had a satisfactory performance in producing long-term LC-CT maps in Hetao,without the requirement of field sampling.Then,the spatio-temporal variation and the driving factors of the cropping systems were further analyzed with the aid of detailed household surveys and statistics.We clarified that irrigation and salinity conditions were the main factors that had impacts on crop spatial distribution in the upper YRB.Investment costs,market demand,and crop price are the main driving factors in determining the temporal variations in cropping distribution.Overall,this study provided essential multi-year LC-CT maps for sustainable management of agriculture,eco-environments,and food security in the upper YRB.
基金supported by the Natural Science Basic Research Program of Shaanxi Province,China(2024JCYBQN-0491)Heng Wan would like to thank the Chinese Scholarship Council(CsC)(202206300064)。
文摘While biochar amendment enhances plant productivity and water-use efficiency(WUE),particularly under waterlimited conditions,the specific mechanisms driving these benefits remain unclear.Thus,the present study aims to elucidate the synergistic effects of biochar and reduced irrigation on maize(Zea mays L.)plants,focusing on xylem composition,root-to-shoot signaling,stomatal behavior,and WUE.Maize plants were cultivated in splitroot pots filled with clay loam soil,amended by either wheat-straw biochar(WSB)or softwood biochar(SWB)at 2%(w/w).Plants received full irrigation(FI),deficit irrigation(DI),or partial root-zone drying rrigation(PRD)from the 4-leaf to the grain-filling stage.Our results revealed that the WSB amendment significantly enhanced plant water status,biomass accumulation,and WUE under reduced irrigation,particularly when combined with PRD.Although reduced irrigation inhibited photosynthesis,it enhanced WUE by modulating stomatal morphology and conductance.Biochar amendment combined with reduced rrigation significantly increased xylem K^(+),Ca^(2+),Mg^(2+),NO_(3)^(-),Cl^(-),PO_(4)^(3-),and SO_(4)^(2-)-but decreased Na+,which in turn lowered xylem pH.Moreover,biochar amendment and especially WSB amendment further increased abscisic acid(ABA)contents in both leaf and xylem sap under reduced irrigation conditions due to changes in xylem ionic constituents and pH.The synergistic interactions between xylem components and ABA led to refined adjustments in stomatal size and density,thereby affecting stomatal conductance and ultimately improving the WUE of maize plants at different scales.The combined application of WSB and PRD can,therefore,emerge as a promising approach for improving the overall plant performance of maize plants with increased stomatal adaptations and WUE,especially under water-limited conditions.
基金supported by the National Natural Science Foundation of China(42161007)the Innovation Foundation of Higher Education Institutions of Gansu Province(2021B-081)the Foundation for Distinguished Young Scholars of Gansu Province(20JR10RA112).
文摘Precipitation isotopes(δ^(18)O and δ^(2)H)are closely related to meteorological conditions for precipitation generation and the initial state of water vapor source areas,and are essential to the study of the regional hydrological cycle.The deuterium excess(d-excess)indicates deviation in isotope fractionation during evaporation and can trace water vapor sources.This study analyzed 443 precipitation samples collected from the Gannan Plateau,China in 2022 to assess precipitation isotope variations and their driving factors.Water vapor sources were evaluated using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT),Concentration Weighted Trajectory(CWT),and Potential Source Contribution Factor(PSCF)models.Results showed that precipitation isotope values showed significant spatial and temporal variations on the Gannan Plateau.Temporally,precipitation isotope values peaked in June(when evaporation dominated)and minimized in March(depletion effect of air masses in the westerly wind belt).Spatially,the isotope values showed a distribution pattern of"high in the east and low in the west",which was mainly regulated by the differences in altitude and local meteorological conditions.Compared with the global meteoric water line(GMWL)with equation of δ^(2)H=8.00δ^(18)O+10.00,the slope and intercept of local meteoric water line(LMWL)for precipitation on the Gannan Plateau were smaller(7.49 and 7.63,respectively),reflecting the existence of a stronger secondary evaporation effect under the clouds in the region.The sources of water vapor on the Gannan Plateau showed significant seasonality and spatial heterogeneity.Specifically,the westerly belt and monsoon were the main water vapor transport paths at each sampling point,with Central Asian continental water vapor dominating in spring(53.49%),Indian Ocean water vapor dominating in summer(52.53%),Atlantic Ocean water vapor dominating in autumn(46.74%),and Atlantic Ocean and Mediterranean Sea water vapor dominating in winter(42.30%and 33.68%,respectively).Changes in the intensity of convective activity and Outgoing Longwave Radiation(OLR)affected the enrichment of isotopic values,which exhibited the same change trends as δ^(18)O.During the precipitation process,the δ^(18)O value first decreased and then increased.During the initial and final stages of precipitation process,precipitation was mainly influenced by continental air masses,while during the middle stage,it was controlled by marine air masses.The systematic research on precipitation isotopes and water vapor sources is important for climate change research and extreme precipitation prediction on the Gannan Plateau and other similar areas.
基金Under the auspices of National Natural Science Foundation of China(No.42271222)Natural Science Foundation of Gansu Province(No.22JR5RA130)。
文摘Rural resilience,a core capability for addressing systemic risks and enabling sustainable development,is increasingly vital to promoting urban-rural integrated development and rural revitalization strategies.However,current research lacks exploration of the collaborative mechanisms between rural economic resilience(RER)and rural social resilience(RSR)in ecologically vulnerable areas.Based on the practical context of rural sustainable development in such regions,this study investigates the interaction between RER and RSR from a resilience coordination perspective.In this paper,a rural resilience evaluation framework for collaborative development of economic and social resilience was established.By employing the coupling coordination degree model,obstacle degree model,and equilibrium entropy model,this paper examines the synergies,constraints,and potential of rural resilience subsystems in Jinchang City,Gansu Province,China,in 2020.The results reveal that:1)RER contributes to RSR by stabilizing the economy,enhancing community adaptability,and driving modernization.In turn,RSR strengthens RER by mitigating instability,building social capital,and fostering confidence—together forming a mutually reinforcing coupling mechanism.2)The rural economic and social resilience level in Jinchang City remains generally low with spatially clustered patterns,while the coupling coordination degree is at an intermediate level overall,with 62.59%of villages exhibiting unbalanced development between rural economic and social resilience.3)RER and RSR demonstrate synergistic degradation in ecologically vulnerable areas,where low-level rural economic and social resilience induce integrated systemic deterioration.4)Considering the unbalanced development of rural economic and social resilience in ecologically fragile areas,differentiated coordination pathways are proposed for three village typologies:RER-lagging villages,RSR-lagging villages,and villages where RER and RSR develop synchronously but lack effective coordination.These findings offer spatial governance strategies and practical guidance for enhancing rural resilience and advancing sustainable development in ecologically vulnerable regions.
基金funded by the National Natural Science Foundation of China(42371219)the Key Natural Science Foundation of Gansu Province(24JRRA135)the Oasis Scientific Research Achievements Breakthrough Action Plan Project of Northwest Normal University(NWNU-LZKX-202302).
文摘Due to irrational human activities and extreme climate,the Qinghai-Xizang Plateau,China,faces a serious threat of desertification.Desertification has a detrimental effect on the ecological environment and socioeconomic development.In this study,the desertification sensitivity index(DSI)model was established by integrating the spatial distance model and environmentally sensitive area index evaluation method,and then the model was used to quantitatively analyze the spatial and temporal characteristics of desertification sensitivity of the Qinghai-Xizang Plateau from 1990 to 2020.The results revealed that:(1)a general increasing tendency from southeast to northwest was identified in the spatial distribution of desertification sensitivity.The low-sensitivity areas were mostly concentrated in the Hengduan and Nyaingqêntanglha mountains and surrounding forest and meadow areas.The high-sensitivity areas were located mainly in the Kunlun and Altun mountains and surrounding decertified areas.The center of gravity of all types of desertification-sensitive areas moved to the northwest,and the desertification sensitivity showed a decreasing trend as a whole;(2)the area of highly sensitive desertification areas decreased by 8.37%,with extreme sensitivity being the largest change among the sensitivity types.The desertification sensitivity transfer was characterized by a greater shift to lower sensitivity levels(24.56%)than to higher levels(2.03%),which demonstrated a declining trend;(3)since 1990,the change in desertification sensitivity has been dominated by the stabilizing type Ⅰ(29.30%),with the area of continuously increasing desertification sensitivity accounting for only 1.10%,indicating that the management of desertification has achieved positive results in recent years;and(4)natural factors have had a more significant impact on desertification sensitivity on the Xizang Plateau,whereas socioeconomic factors affected only localized areas.The main factors influencing desertification sensitivity were vegetation drought tolerance and aridity index.Studying spatiotemporal variations in desertification sensitivity and its influencing factors can provide a scientific foundation for developing strategies to control desertification on the Qinghai-Xizang Plateau.Dividing different desertification-sensitive areas on the basis of these patterns of change can facilitate the formulation of more targeted management and protection measures,contributing to ecological construction and sustainable economic development in the area.
基金funded by the National Natural Science Foundation of China (42071047)Innovation Fund Project for College Teachers in Gansu Province (2025A-008)+1 种基金Research Capability Enhancement Plan for Young Teachers at Northwest Normal University (NWNU-LKQN2024-19)Basic Research Innovation Group Project of Gansu Province (22JR5RA129)。
文摘Under current climate warming, the growth resilience of plantation forests after extreme droughts has garnered increasing attention. Platycladus orientalis Linn. is an evergreen tree species commonly used for afforestation, and the stability of P. orientalis plantation forests in the Loess Hilly region directly affects the ecological and environmental security of the entire Loess Plateau of China.However, systematic analyses of the growth resilience of P. orientalis plantation forests after extreme droughts along precipitation gradients remain scarce. In this study, we collected tree ring samples of P.orientalis along a precipitation gradient(255, 400, and 517 mm) from 2021 to 2023 and used dendroecological methods to explore the growth resilience of P. orientalis to drought stress on the Loess Plateau. Our findings revealed that the growth resilience of P. orientalis increased with increasing precipitation, enabling the trees to recover to the pre-drought growth levels. In regions with low precipitation(255 mm), the plantation forests were more sensitive to extreme droughts, struggling to recover to previous growth levels, necessitating conditional artificial irrigation. In regions with medium precipitation(400 mm), the growth of P. orientalis was significantly limited by drought stress and exhibited some recovery ability after extreme droughts, therefore warranting management through rainwater harvesting and conservation measures. Conversely, in regions with high precipitation(517 mm), the impacts of extreme droughts on P. orientalis plantation forests were relatively minor. This study underscored the need for targeted strategies tailored to different precipitation conditions rather than a "one-size-fits-all" approach to utilize precipitation resources effectively and maximize the ecological benefits of plantation forests. The findings will help maintain the stability of plantation forests and improve their ecosystem service functions in arid and semi-arid areas.
文摘The removal of arsenic from water is essential for the protection of public health. To investigate the adsorption capabilities of laterite, sandstone, and shale for the removal of arsenic from aqueous solutions, column experiments were conducted. In this study, raw materials and heat-treated (calcined) materials were examined. The experiments assessed the influence of various parameters, including initial concentration, bed depth, and the effects of heat treatment. The findings revealed that the breakthrough curves were influenced by the initial concentration of arsenic, the depth of the bed, and the type of material used. For an initial arsenic concentration of 5 mg/L, columns containing 85 cm of calcined laterite, sandstone, and shale produced volumes of 7460 ml (1492 min), 3510 ml (702 min), and 4400 ml (880 min) of water with arsenic levels below 0.01 mg/L, respectively. These calcined materials demonstrate significant potential for the effective removal of arsenic from water.
基金funded by the National Natural Science Foundation of China(42361058)supported by the Science and Technology Program of Gansu Province(22YF7FA074)。
文摘Snow cover in mountainous areas is characterized by high reflectivity,strong spatial heterogeneity,rapid changes,and susceptibility to cloud interference.However,due to the limitations of a single sensor,it is challenging to obtain high-resolution satellite remote sensing data for monitoring the dynamic changes of snow cover within a day.This study focuses on two typical data fusion methods for polar-orbiting satellites(Sentinel-3 SLSTR)and geostationary satellites(Himawari-9 AHI),and explores the snow cover detection accuracy of a multitemporal cloud-gap snow cover identification model(Loose data fusion)and the ESTARFM(Spatiotemporal data fusion).Taking the Qilian Mountains as the research area,the accuracy of two data fusion results was verified using the snow cover extracted from Landsat-8 SR products.The results showed that both data fusion models could effectively capture the spatiotemporal variations of snow cover,but the ESTARFM demonstrated superior performance.It not only obtained fusion images at any target time,but also extracted snow cover that was closer to the spatial distribution of real satellite images.Therefore,the ESTARFM was utilized to fuse images for hourly reconstruction of the snow cover on February 14–15,2023.It was found that the maximum snow cover area of this snowfall reached 83.84%of the Qilian Mountains area,and the melting rate of the snow was extremely rapid,with a change of up to 4.30%per hour of the study area.This study offers reliable high spatiotemporal resolution satellite remote sensing data for monitoring snow cover changes in mountainous areas,contributing to more accurate and timely assessments.
基金supported by the National Natural Science Foundation of China(No.42107394)the Major Project of the National Natural Science Foundation of China(No.71991483)the Central Public-interest Scientific Institution Basal Research Fund(No.BSRF202309).
文摘Heavy metal(loid)(HM)pollution in agricultural soils has become an environmental concern in antimony(Sb)mining areas.However,priority pollution sources identification and deep understanding of environmental risks of HMs face great challenges due to multiple and complex pollution sources coexist.Herein,an integrated approach was conducted to distinguish pollution sources and assess human health risk(HHR)and ecological risk(ER)in a typical Sb mining watershed in Southern China.This approach combines absolute principal component score-multiple linear regression(APCS-MLR)and positivematrix factorization(PMF)models with ER and HHR assessments.Four pollution sources were distinguished for both models,and APCS-MLR model was more accurate and plausible.Predominant HM concentration source was natural source(39.1%),followed by industrial and agricultural activities(23.0%),unknown sources(21.5%)and Sb mining and smelting activities(16.4%).Although natural source contributed the most to HM concentrations,it did not pose a significant ER.Industrial and agricultural activities predominantly contributed to ER,and attention should be paid to Cd and Sb.Sb mining and smelting activities were primary anthropogenic sources of HHR,particularly Sb and As contaminations.Considering ER and HHR assessments,Sb mining and smelting,and industrial and agricultural activities are critical sources,causing serious ecological and health threats.This study showed the advantages of multiple receptor model application in obtaining reliable source identification and providing better source-oriented risk assessments.HM pollution management,such as regulating mining and smelting and implementing soil remediation in polluted agricultural soils,is strongly recommended for protecting ecosystems and humans.
基金funding enabled and organized by CAUL and its Member Institutions.
文摘The significant threat of wildfires to forest ecology and biodiversity,particularly in tropical and subtropical regions,underscores the necessity for advanced predictive models amidst shifting climate patterns.There is a need to evaluate and enhance wildfire prediction methods,focusing on their application during extended periods of intense heat and drought.This study reviews various wildfire modelling approaches,including traditional physical,semi-empirical,numerical,and emerging machine learning(ML)-based models.We critically assess these models’capabilities in predicting fire susceptibility and post-ignition spread,highlighting their strengths and limitations.Our findings indicate that while traditional models provide foundational insights,they often fall short in dynamically estimating parameters and predicting ignition events.Cellular automata models,despite their potential,face challenges in data integration and computational demands.Conversely,ML models demonstrate superior efficiency and accuracy by leveraging diverse datasets,though they encounter interpretability issues.This review recommends hybrid modelling approaches that integrate multiple methods to harness their combined strengths.By incorporating data assimilation techniques with dynamic forecasting models,the predictive capabilities of ML-based predictions can be significantly enhanced.This review underscores the necessity for continued refinement of these models to ensure their reliability in real-world applications,ultimately contributing to more effective wildfire mitigation and management strategies.Future research should focus on improving hybrid models and exploring new data integration methods to advance predictive capabilities.
基金Supported by the National Natural Science Foundation of China(No.U20A20103)the Scientific Research Fund of the Fourth Institute of Oceanography+1 种基金Guangxi Funding Project(No.304024XM20N0006)the Guangxi Talent Science and Technology Project(No.2019AC17008)。
文摘In this study,the occurrence,sources,and ecological risk of microplastics(>60μm)in the surface and bottom seawater were investigated in the Beibu Gulf,the northern South China Sea.The average abundance of microplastics in surface and bottom waters was 1.35±0.93 and 0.79±0.50 items/m~3,respectively.Microplastics in both surface and bottom waters were predominantly in the form of fragments,and mostly in green.The composition of microplastics in surface water was primarily poly(methyl methacrylate)(PMA),whereas in bottom water,polyethylene(PE)dominated.Positive matrix factorization(PMF)modeling revealed that the primary sources of microplastics were pipeline abrasion,fishing activities,plastic waste,landfill disposal,transportation,aquaculture,and construction activities.The pollution load index(PLI)indicated that the overall risk of microplastic pollution in the Beibu Gulf was low.Conversely,the polymer hazard index(PHI)for microplastics was relatively high.These data underscore the importance of timely and effective reduction of human-intensive activities contributing to microplastic pollution and provide valuable information for further research in microplastic ecotoxicology and biogeochemistry.
基金supported by the National Natural Science Foundation of China(No.52170138)the National Key Research and Development Program of China(No.2023YFD1900305)+3 种基金Qingdao Agricultural University Doctoral Start-Up Fund(No.6631122003)the Project of Talent IntroductionEducation Program of Youth Innovation Teams in Universities of Shandong Province(2021–05)Shandong Provincial College Youth Innovation Team Program(No.2023KJ169).
文摘Cyclosporin A fermentation residue(CFR)is a type of organic waste generated during the production of cyclosporin A,which are abundant in nutrients including organic matter,phosphorus,nitrogen and potassium.Inappropriate handling of CFR not only waste valuable bioresources,but may also lead to the cyclosporin A and associated resistance genes into the natural environment,posing a significant threat to ecological system and human health.Land application was an effective way to resource recovery of CFR after aerobic composting(CAC).This study investigated the impact of CAC on soil fertility and environmental safety.The results indicated that CAC could improve soil nutrient contents and enhance enzyme activities.CAC altered the diversity and community composition of soil bacteria,resulting in an increase in the abundance of relevant bacteria beneficial for organic matter decomposition and cyclosporin A degradation.The introduced cyclosporin A(71.69μg/kg)completely degraded within 20 days due to soil biodegradation.The significantly increased abundance of intIl,mdr3,pgp,TSR and pmra in the soil cultivation early stage were restored to the soil background level within 90 days,indicating a reduced risk of antimicrobial resistance.The results demonstrated that reasonable land application of CAC could improve soil fertility without antimicrobial resistance risk,which is helpful for evaluating the resource utilization value and environmental risks of antibiotic fermentation residue after aerobic composting.
基金the National Natural Science Foundation of China(51109214,31101074 and 51309211)the National Key Technology Research and Development Program of China(2011BAD32B)the Basic Scientific Research Foundation of National Non-Profit Scientific Institute of China(BSRF201303)
文摘The irrigation method used in winter wheat fields affects micro-environment factors, such as relative humidity(RH) within canopy, soil temperature, topsoil bulk density, soil matric potential, and soil nutrients, and these changes may affect plant root growth.An experiment was carried out to explore the effects of irrigation method on micro-environments and root distribution in a winter wheat field in the 2007–2008 and 2008–2009 growing seasons.The results showed that border irrigation(BI), sprinkler irrigation(SI), and surface drip irrigation(SDI) had no significant effects on soil temperature.Topsoil bulk density, RH within the canopy, soil available N distribution, and soil matric potential were significantly affected by the three treatments.The change in soil matric potential was the key reason for the altered root profile distribution patterns.Additionally, more fine roots were produced in the BI treatment when soil water content was low and topsoil bulk density was high.Root growth was most stimulated in the top soil layers and inhibited in the deep layers in the SDI treatment, followed by SI and BI, which was due to the different water application frequencies.As a result, the root profile distribution differed, depending on the irrigation method used.The root distribution pattern changes could be described by the power level variation in the exponential function.A good knowledge of root distribution patterns is important when attempting to model water and nutrient movements and when studying soil-plant interactions.
基金the National Natural Science Foundation of China(31000944 and 41171231)the International Atomic Energy Agency,Vienna(18176 and 17908)+1 种基金the State Level Public Welfare Institute Basic Scientific Research Project of China(BSRF201407)the National Key Technologies R&D Program of China during the 12th Five-year Plan period(2013BAD11B03)for financial supports
文摘Soil loss due to crop harvesting (SLCH) is a soil erosion process that signiifcantly contributes to soil degradation in crop-lands. However, little is known about soil nutrient losses caused by SLCH and its environmental impacts. In the North China Plain area, we measured the losses of soil organic carbon (SOC) and nitrogen as wel as phosphorus due to SLCH and assessed their relationship with soil particle size composition, agronomic practices and soil moisture content. Our results show that the losses by harvesting potato of SOC, total nitrogen (TN), available nitrogen (AN), available phosphorus (AP) and total phosphorus (TP) were 1.7, 1.8, 1.8, 15.9 and 14.1 times compared by harvesting sweet potato, respectively. The variation of SOC, N and P loss by SLCH are mainly explained by the variation of plant density (PD) (17–50%), net mass of an individual tuber (Mcrop/p) (16–74%), soil clay content (34–70%) and water content (19–46%). Taking into account the current sewage treatment system and the ratio of the nutrients adhering to the tubers during transportation from the ifeld (NTRP/SP), the loss of TN and TP by harvesting of potato and sweet potato in the North China Plain area amounts to 3% N and 20% P loads in the water bodies of this region. The fate of the exported N and P in the sewage treatment system ultimately controls the contribution of N and P to the polution of lakes and rivers. Our results suggest that a large amount of SLCH-induced soil nutrient export during transportation from the ifeld is a potential polutant source for agricultural water for vast planting areas of tuber crops in China, and should not be overlooked.
基金supportedby the National Natural Science Foundation of China(41771035,42071047)。
文摘In order to cope with drought and water shortages,the working people in the arid areas of Northwest China have developed a drought-resistant planting method,namely,gravel-sand mulching,after long-term agricultural practices.To understand the effects of gravel-sand mulching on soil water evaporation,we selected Baifeng peach(Amygdalus persica L.)orchards in Northwest China as the experimental field in 2021.Based on continuously collected soil water stable isotopes data,we evaluated the soil evaporation loss rate in a gravel-sand mulching environment using the line-conditioned excess(lc-excess)coupled Rayleigh fractionation model and Craig-Gordon model.The results show that the average soil water content in the plots with gravel-sand mulching is 1.86%higher than that without gravel-sand mulching.The monthly variation of the soil water content is smaller in the plots with gravel-sand mulching than that without gravel-sand mulching.Moreover,the average lc-excess value in the plots without gravel-sand mulching is smaller.In addition,the soil evaporation loss rate in the plots with gravel-sand mulching is lower than that in the plots without gravel-sand mulching.The lc-excess value was negative for both the plots with and without gravel-sand mulching,and it has good correlation with relative humidity,average temperature,input water content,and soil water content.The effect of gravel-sand mulching on soil evaporation is most prominent in August.Compared with the evaporation data of similar environments in the literature,the lc-excess coupled Rayleigh fractionation model is better.Stable isotopes evidence shows that gravel-sand mulching can effectively reduce soil water evaporation,which provides a theoretical basis for agricultural water management and optimization of water-saving methods in arid areas.
基金financially supported by the National Key Research and Development Program of China(2017YFB0403902)the National Natural Science Foundation of China(31872955)the Central Publicinterest Scientific Institution Basal Research Fund,China(BSRF201911)。
文摘Light-emitting diodes(LEDs)have been widely applied in the controlled environment agriculture,which are characterized by relatively narrow-band spectra and energetical efficiency.Most recently,the spectrum of Sunlike LEDs has been engineered and it closely resembles solar spectrum in the range of photosynthetic active radiation(PAR,400–700 nm).To investigate how plant growth responses to the spectrum of Sunlike LEDs,cucumber and lettuce plants were cultivated and their responses were compared with the conventional white LEDs as well as composite of red and blue LEDs(RB,R/B ratio was 9:1).We observed that although Sunlike LEDs resulted in a longer stem in cucumber,dry weight and leaf area were similar as those under RB LEDs,and significantly higher than those under white LEDs.Moreover,cucumber leaves grown under Sunlike and white LEDs showed higher photosynthetic capacity than those grown under RB LEDs.For lettuce,plants grown under Sunlike LEDs showed larger leaf area and higher dry weight than the other two treatments.However,the leaf photosynthetic capacity of lettuce grown under Sunlike LEDs was the lowest.In this context,the spectrum induced plant functions are species-dependent.Furthermore,the three types of LEDs show distinct light spectra and they are different in many aspects.Therefore,it is difficult to attribute the different plant responses to certain specific light spectra.We conclude that plants grown under Sunlike LEDs exhibit larger leaf area,which may be due to some specific spectrum distributions(such as more far-red radiation),and consequently are favorable for light interception and therefore result in greater production.
基金the ‘Director, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand- 263 647, India’ for providing fundthe Inhouse funded project by the Institute titled, ‘Strategic Environmental Assessment of Hydropower Projects in the Indian Himalayan region’
文摘Hydropower if scientifically developed is considered to be one of the clean and non-polluted renewable energy sources.But its impacts always exist on physical and social environment of the area.The present study was conducted in the River Satluj basin which is well known for its hydropower potential.The main objective of the study was to understand the vulnerability of the Satluj basin and to develop a strategy for the development of hydropower projects.This basin has been facing many problems relating to construction of haphazard development of hydropower projects.This has led multi-hazards like landslides,floods,earthquakes,etc.Here,vulnerability assessment index was assessed quantitatively and qualitatively.Geographical Information System and people’s perception were used to study these aspects in the basin.The parameters considered for vulnerability assessment were slope,slope profile,relative relief,curvature,slope aspect,soil texture,lithology,river morphometry,precipitation,hydroelectric projects,land use and land cover,mass-movement,flood,geological elements and earthquake occurrences.The highest vulnerability was found in the middle zone,and finally on the basis of parameters analyzed;the hydropower’s development strategy was developed.
基金supported by the National Key Research and Development Program of China(2019YFE0197100)the earmarked fund for China Agriculture Research System(CARS-03-01A)the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences。
文摘Dry-hot wind stress causes losses in wheat productivity in major growing regions worldwide,especially winter wheat in the Huang-Huai-Hai Plain of China,and both the occurrence and severity of such events are likely to increase with global climate change.To investigate the recovery of physiological functions and yield formation using a new noncommercial chemical regulator(NCR)following dry-hot wind stress,we conducted a three-year field experiment(2018-2021)with sprayed treatments of tap water(control),monopotassium phosphate(CKP),NCR at both the jointing and flowering stages(CFS),and NCR only at the jointing stage(FSJ)or flowering stage(FSF).The leaf physiology,biomass accumulation and translocation,grain-filling process,and yield components in winter wheat were assessed.Among the single spraying treatments,the FSJ treatment was beneficial for the accumulation of dry matter before anthesis,as well as larger increases in the maximum grain-filling rate and mean grain-filling rate.The FSF treatment performed better in maintaining a high relative chlorophyll content as indicated by the SPAD value,and a low rate of excised leaf water loss in flag leaves,promoting dry matter accumulation and the contribution to grain after anthesis,prolonging the duration of grain filling,and causing the period until the maximum grain-filling rate reached earlier.The CFS treatment was better than any other treatments in relieving the effects of dry-hot wind.The exogenous NCR treatments significantly increased grain yields by 12.45-18.20% in 2018-2019,8.89-13.82% in 2019-2020,and 8.10-9.00% in 2020-2021.The conventional measure of the CKP treatment only increased grain yield by 6.69% in 2020-2021.The CFS treatment had the greatest mitigating effect on yield loss under dry-hot wind stress,followed by the FSF and FSJ treatments,and the CKP treatment only had a minimal effect.In summary,the CFS treatment could be used as the main chemical control measure for wheat stress resistance and yield stability in areas with a high incidence of dry-hot wind.This treatment can effectively regulate green retention and the water status of leaves,promote dry matter accumulation and efficient translocation,improve the grain-filling process,and ultimately reduce yield losses.