This paper presents the improvement of eco-friendly and power consumption saving refrigerants for refrigeration systems.The novel azeotropic refrigerant mixtures of HFCs and HCs can replace refrigeration systems,and u...This paper presents the improvement of eco-friendly and power consumption saving refrigerants for refrigeration systems.The novel azeotropic refrigerant mixtures of HFCs and HCs can replace refrigeration systems,and using the R134,R32,R125,and R1270 refrigerants in several compositions found using the decision tree function of the RapidMiner software(which camefirst in the KDnuggets annual software poll).All refrigerant results are mixed of POE,which is A1 classification refrigerant,non-flammable,and innocuous refrigerant,and using REFPROP software and CYCLE_D-HX software are under the CAN/ANSI/AHRI540 standards.The boiling point of the new refrigerant mix R-No.595 is 4.58%,lower than that of R404A,with a higher refrigerant effect and 50.34%lower GWP value than R404A.The proposed mix R-No.595 can be operated in hot environmental country and has high critical temperature and heat-rejection effects,due to the presence of R32 and R1270.The COPc of R463A is 13.49%,higher than R404A in freeze condition.The novel refrigerant mixes provide alternate refrig-erant options mixed of 1%R1270,and which are related with the development of current refrigerants,containing a compose of HFOs and eco refrigerants for producing low-GWP,zero ODP,high-refrigerant effect,low-operating pressure,and innocuous refrigerants.展开更多
Distribution of PM_(0.1),PM_(1) and PM_(2.5) particle-and gas-polycyclic aromatic hydrocarbons(PAHs)during the 2019 normal,partial and strong haze periods at a background location in southern Thailand were investigate...Distribution of PM_(0.1),PM_(1) and PM_(2.5) particle-and gas-polycyclic aromatic hydrocarbons(PAHs)during the 2019 normal,partial and strong haze periods at a background location in southern Thailand were investigated to understand the behaviors and carcinogenic risks.PM1 was the predominant component,during partial and strong haze periods,accounting for 45.1% and 52.9% of total suspended particulate matter,respectively,while during normal period the contribution was only 34.0%.PM_(0.1) concentrations,during the strong haze period,were approximately 2 times higher than those during the normal period.Substantially increased levels of particle-PAHs for PM_(0.1),PM_(1) and PM_(2.5) were observed during strong haze period,about 3,5 and 6 times higher than those during normal period.Gas-PAH concentrations were 10 to 36 times higher than those of particle-PAHs for PM_(2.5).Average total Benzo[a]Pyrene Toxic Equivalency Quotients(BaP-TEQ)in PM_(0.1),PM_(1) and PM_(2.5) during haze periodswere about 2–6 times higher than in the normal period.The total accumulated Incremental Lifetime Cancer Risks(ILCRs)in PM_(0.1),PM_(1) and PM_(2.5) for all the age-specific groups during the haze effected scenario were approximately 1.5 times higher than those in nonhaze scenario,indicating a higher potential carcinogenic risk.These observations suggest PM_(0.1),PM_(1) and PM_(2.5) were the significant sources of carcinogenic aerosols and were significantly affected by transboundary haze from peatland fires.This leads to an increase in the volume of smoke aerosol,exerting a significant impact on air quality in southern Thailand,as well as many other countries in lower southeast Asia.展开更多
This research aims to develop the appropriate biorefinery process integrating anaerobic digestion(AD)and hydrothermal carbonization(HTC)to recover the highest energy from the pretreated elephant dung.Initially,the raw...This research aims to develop the appropriate biorefinery process integrating anaerobic digestion(AD)and hydrothermal carbonization(HTC)to recover the highest energy from the pretreated elephant dung.Initially,the raw elephant dung was physically processed by washing with water to generate the liquid waste,i.e.,washing water(WW),and solid waste,i.e.,washed fiber(WF).The appropriate substrate-to-inoculum ratio(SIR)and the inoculum source of the AD of WW were determined and the HTC temperature of WF was also examined.The results indicated that the AD of WW with the SIR of 1:2 and anaerobically digested swine manure as the inoculum presented the highest methane and energy yields of 412.3±9.9 N mL/g VS added and 2,220.1±53.03 MJ/ton dry wt.,respectively.For HTC of WF,the optimum condition was the hydrothermal temperature of 170℃ at the residence time of 60 min.The highest hydrochar and energy yields were 76.8%±1.9%dry wt.and 12,067.0±452.1 MJ/ton dry wt.,respectively.Thus,this biorefinery process could simultaneously treat elephant campderived waste and produce clean energy.展开更多
基金supported by Prince of Songkla University and SANYO S.M.I.(Thailand)Co.,Ltd.
文摘This paper presents the improvement of eco-friendly and power consumption saving refrigerants for refrigeration systems.The novel azeotropic refrigerant mixtures of HFCs and HCs can replace refrigeration systems,and using the R134,R32,R125,and R1270 refrigerants in several compositions found using the decision tree function of the RapidMiner software(which camefirst in the KDnuggets annual software poll).All refrigerant results are mixed of POE,which is A1 classification refrigerant,non-flammable,and innocuous refrigerant,and using REFPROP software and CYCLE_D-HX software are under the CAN/ANSI/AHRI540 standards.The boiling point of the new refrigerant mix R-No.595 is 4.58%,lower than that of R404A,with a higher refrigerant effect and 50.34%lower GWP value than R404A.The proposed mix R-No.595 can be operated in hot environmental country and has high critical temperature and heat-rejection effects,due to the presence of R32 and R1270.The COPc of R463A is 13.49%,higher than R404A in freeze condition.The novel refrigerant mixes provide alternate refrig-erant options mixed of 1%R1270,and which are related with the development of current refrigerants,containing a compose of HFOs and eco refrigerants for producing low-GWP,zero ODP,high-refrigerant effect,low-operating pressure,and innocuous refrigerants.
基金financially supported by Thailand Science Research and Innovation (TSRI) and Electricity Generating Authority of Thailand (EGAT) under grant number RDG60D0002supported by the Interdisciplinary Graduate School of Energy Systems,Prince of Songkla University via student scholarships under grant number IGS-Energy 1-2018/09Equipment support from the East Asia Nanoparticle Monitoring Network (EA-Nano Net)
文摘Distribution of PM_(0.1),PM_(1) and PM_(2.5) particle-and gas-polycyclic aromatic hydrocarbons(PAHs)during the 2019 normal,partial and strong haze periods at a background location in southern Thailand were investigated to understand the behaviors and carcinogenic risks.PM1 was the predominant component,during partial and strong haze periods,accounting for 45.1% and 52.9% of total suspended particulate matter,respectively,while during normal period the contribution was only 34.0%.PM_(0.1) concentrations,during the strong haze period,were approximately 2 times higher than those during the normal period.Substantially increased levels of particle-PAHs for PM_(0.1),PM_(1) and PM_(2.5) were observed during strong haze period,about 3,5 and 6 times higher than those during normal period.Gas-PAH concentrations were 10 to 36 times higher than those of particle-PAHs for PM_(2.5).Average total Benzo[a]Pyrene Toxic Equivalency Quotients(BaP-TEQ)in PM_(0.1),PM_(1) and PM_(2.5) during haze periodswere about 2–6 times higher than in the normal period.The total accumulated Incremental Lifetime Cancer Risks(ILCRs)in PM_(0.1),PM_(1) and PM_(2.5) for all the age-specific groups during the haze effected scenario were approximately 1.5 times higher than those in nonhaze scenario,indicating a higher potential carcinogenic risk.These observations suggest PM_(0.1),PM_(1) and PM_(2.5) were the significant sources of carcinogenic aerosols and were significantly affected by transboundary haze from peatland fires.This leads to an increase in the volume of smoke aerosol,exerting a significant impact on air quality in southern Thailand,as well as many other countries in lower southeast Asia.
基金supported by Thailand Science Research and Innovation(TSRI)with a fundamental fund(Basic Research Fund)from Chiang Mai Rajabhat University(Grant No.TSRI.39/66)Office of the Permanent Secretary,Ministry of Higher Education,Science,Research and Innovation(OPS MHESI)(Grant No.RGNS 63-199).
文摘This research aims to develop the appropriate biorefinery process integrating anaerobic digestion(AD)and hydrothermal carbonization(HTC)to recover the highest energy from the pretreated elephant dung.Initially,the raw elephant dung was physically processed by washing with water to generate the liquid waste,i.e.,washing water(WW),and solid waste,i.e.,washed fiber(WF).The appropriate substrate-to-inoculum ratio(SIR)and the inoculum source of the AD of WW were determined and the HTC temperature of WF was also examined.The results indicated that the AD of WW with the SIR of 1:2 and anaerobically digested swine manure as the inoculum presented the highest methane and energy yields of 412.3±9.9 N mL/g VS added and 2,220.1±53.03 MJ/ton dry wt.,respectively.For HTC of WF,the optimum condition was the hydrothermal temperature of 170℃ at the residence time of 60 min.The highest hydrochar and energy yields were 76.8%±1.9%dry wt.and 12,067.0±452.1 MJ/ton dry wt.,respectively.Thus,this biorefinery process could simultaneously treat elephant campderived waste and produce clean energy.