Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces ...Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.展开更多
Robotic computing systems play an important role in enabling intelligent robotic tasks through intelligent algo-rithms and supporting hardware.In recent years,the evolution of robotic algorithms indicates a roadmap fr...Robotic computing systems play an important role in enabling intelligent robotic tasks through intelligent algo-rithms and supporting hardware.In recent years,the evolution of robotic algorithms indicates a roadmap from traditional robotics to hierarchical and end-to-end models.This algorithmic advancement poses a critical challenge in achieving balanced system-wide performance.Therefore,algorithm-hardware co-design has emerged as the primary methodology,which ana-lyzes algorithm behaviors on hardware to identify common computational properties.These properties can motivate algo-rithm optimization to reduce computational complexity and hardware innovation from architecture to circuit for high performance and high energy efficiency.We then reviewed recent works on robotic and embodied AI algorithms and computing hard-ware to demonstrate this algorithm-hardware co-design methodology.In the end,we discuss future research opportunities by answering two questions:(1)how to adapt the computing platforms to the rapid evolution of embodied AI algorithms,and(2)how to transform the potential of emerging hardware innovations into end-to-end inference improvements.展开更多
Besides the common short-channel effect(SCE)of threshold voltage(V_(th))roll-off during the channel length(L)downscaling of In GaZnO(IGZO)thin-film transistors(TFTs),an opposite V_(th)roll-up was reported in this work...Besides the common short-channel effect(SCE)of threshold voltage(V_(th))roll-off during the channel length(L)downscaling of In GaZnO(IGZO)thin-film transistors(TFTs),an opposite V_(th)roll-up was reported in this work.Both roll-off and roll-up effects of Vth were comparatively investigated on IGZO transistors with varied gate insulator(GI),source/drain(S/D),and device architecture.For IGZO transistors with thinner GI,the SCE was attenuated due to the enhanced gate controllability over the variation of channel carrier concentration,while the Vth roll-up became more noteworthy.The latter was found to depend on the relative ratio of S/D series resistance(R_(SD))over channel resistance(R_(CH)),as verified on transistors with different S/D.Thus,an ideal S/D engineering with small R_(SD)but weak dopant diffusion is highly expected during the downscaling of L and GI in IGZO transistors.展开更多
Compact antenna designs have become a critical component in the recent advancements of wireless communication technologies over the past few decades. This paper presents a self-multiplexing antenna based on diplexing ...Compact antenna designs have become a critical component in the recent advancements of wireless communication technologies over the past few decades. This paper presents a self-multiplexing antenna based on diplexing and quadruplexing Substrate-Integrated Waveguide (SIW) cavities. The diplexing structure incorporates two V-shaped slots, while the quadruplexing structure advances this concept by combining the slots to form a cross-shaped configuration within the cavity. The widths and lengths of the slots are carefully tuned to achieve variations in the respective operating frequencies without affecting the others. The proposed diplexing antenna resonates at 8.48 and 9.2 GHz, with a frequency ratio of 1.08, while the quadruplexing antenna operates at 6.9, 7.1, 7.48, and 8.2GHz. Both designs exhibit isolation levels well below –20dB and achieve a simulated peak gain of 5.6 dBi at the highest frequency, with a compact cavity area of 0.56 λg^(2). The proposed antennas operate within the NR bands (n12, n18, n26), making them suitable for modern high-speed wireless communication systems. Moreover, the properties like multiband operation, compactness, high isolation, low loss, and low interference make the antenna favorable for the high-speed railway communication systems.展开更多
Macrophages and neutrophils are key components of myeloid cells and play critical roles in innate immune responses,organ formation,and tissue homeostasis.The integrity of their functions heavily relies on the generati...Macrophages and neutrophils are key components of myeloid cells and play critical roles in innate immune responses,organ formation,and tissue homeostasis.The integrity of their functions heavily relies on the generation of a proper number of mature macrophages and neutrophils through embryonic and adult myelopoiesis.In mammalian adult myelopoiesis,oligopotent common myeloid progenitors(CMPs)are known to be the earliest myeloid progenitors,which give rise to granulocyte-macrophage progenitors(GMPs),subsequently differentiate into unipotent neutrophil and macrophage precursors,and finally,mature macrophages and neutrophils(Orkin and Zon,2008).In contrast,the ontogeny of embryonic myelopoiesis and the mechanism underlying the formation of macrophages and neutrophils remainless understood.展开更多
This year marks the tenth anniversary of the State Key Laboratory of Advanced Displays and Optoelectronics Technologies(SKLADOT)at the Hong Kong University of Science and Technology(HKUST).The predecessor of SKLADOT w...This year marks the tenth anniversary of the State Key Laboratory of Advanced Displays and Optoelectronics Technologies(SKLADOT)at the Hong Kong University of Science and Technology(HKUST).The predecessor of SKLADOT was the Center for Display Research(CDR)which was started in 1995.Thus display research has a long history at HKUST.展开更多
Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled...Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.展开更多
The blood system originates from hematopoietic stem cells(HSCs),capable of self-renewal and differentiation,generating diverse blood cell types(Eaves,2015;Lucas,2021).The concept of the hematopoietic niche was first p...The blood system originates from hematopoietic stem cells(HSCs),capable of self-renewal and differentiation,generating diverse blood cell types(Eaves,2015;Lucas,2021).The concept of the hematopoietic niche was first proposed in 1978(Schofield,1978),which is crucial for maintaining hematopoietic balance.The following studies,particularly in mammals,have utilized targeted genetic manipulation to identify and define these niches.展开更多
Compared to the last decade when the convolution neu-ral network(CNN)dominated the research field,machine learn-ing(ML)algorithms have reached a pivotal moment called the generative artificial intelligence(AI)era.With...Compared to the last decade when the convolution neu-ral network(CNN)dominated the research field,machine learn-ing(ML)algorithms have reached a pivotal moment called the generative artificial intelligence(AI)era.With the emer-gence of large-scale foundation models[1],such as large multi-modal model(LMM)GPT-4[2]and text-to-image generative model DALL·E[3].展开更多
Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that ...Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that OI reflects defects in the activity of bone-forming osteoblasts,it is currently unclear whether OI also reflects defects in the many other cell types comprising bone,including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility.展开更多
We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote...We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote estimation of the transferred charge to measure electric field changes caused by charge loss at the time of a lightning strike at multiple locations.For multiple-station measurement of electric field changes,not only speed but also phase for exposure and shielding of the sensing plates inside each EFM of the array should be synchronized to maintain the sensitivities of the deployed instruments.Currently,there is no such EFM with specified speed and phase control performance of the rotary part.Thus,we developed a new EFM in which the rotary mechanism was controlled consistently to within 3%error by a GPS module.Five EFMs had been distributed in the Hokuriku area of Japan during the winter season of 2022-2023 for a test observation.Here we describe the design and a simple calibration method for our new EFM array.Data analysis method based on the assumption of a simple monopole charge structure is also summarized.For validation,locations of assumed point charges were compared with three-dimensional lightning mapping data estimated by radio observations in the MF-HF bands.Initial results indicated the validity to estimate transferred charge amounts and positions of winter cloud-to-ground lightning discharges with our new EFM array.展开更多
Palladium diselenide(PdSe_(2)),a novel two-dimensional(2D)material with a unique pentagonal crystal structure including anisotropic properties,has emerged as a highly promising candidate for developing the next genera...Palladium diselenide(PdSe_(2)),a novel two-dimensional(2D)material with a unique pentagonal crystal structure including anisotropic properties,has emerged as a highly promising candidate for developing the next generation photoelectronic devices.In this review,firstly,we have shed light on key figures of merit for polarization detection.After that,this review mainly highlights the structural and electronic properties of PdSe_(2)focusing on its strong polarization sensitivity,tunable bandgap,and excellent environmental stability,making it ideal for developing the photoelectronic devices such as broadband photodetectors and their further applications in polarization detection-based imaging systems.We also discuss challenges in scalable synthesis,material stability,and integration with other low-dimensional materials,offering future research directions to optimize PdSe_(2)for commercial applications.Owing to the outstanding optoelectronic properties of PdSe_(2),it stands at the forefront of optoelectronic materials,poised to enable new innovations in polarization photodetection.展开更多
Maintaining population diversity is an important task in the multimodal multi-objective optimization.Although the zoning search(ZS)can improve the diversity in the decision space,assigning the same computational costs...Maintaining population diversity is an important task in the multimodal multi-objective optimization.Although the zoning search(ZS)can improve the diversity in the decision space,assigning the same computational costs to each search subspace may be wasteful when computational resources are limited,especially on imbalanced problems.To alleviate the above-mentioned issue,a zoning search with adaptive resource allocating(ZS-ARA)method is proposed in the current study.In the proposed ZS-ARA,the entire search space is divided into many subspaces to preserve the diversity in the decision space and to reduce the problem complexity.Moreover,the computational resources can be automatically allocated among all the subspaces.The ZS-ARA is compared with seven algorithms on two different types of multimodal multi-objective problems(MMOPs),namely,balanced and imbalanced MMOPs.The results indicate that,similarly to the ZS,the ZS-ARA achieves high performance with the balanced MMOPs.Also,it can greatly assist a“regular”algorithm in improving its performance on the imbalanced MMOPs,and is capable of allocating the limited computational resources dynamically.展开更多
The terahertz band lies between the microwave and infrared regions of the electromagnetic spectrum.This radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues.It is...The terahertz band lies between the microwave and infrared regions of the electromagnetic spectrum.This radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues.It is strongly attenuated by water and very sensitive to water content.Unique absorption spectra due to intermolecular vibrations in this region have been found in different biological materials.These unique features make tera-hertz imaging very attractive for medical applications in order to provide complimentary information to existing imaging techniques.There has been an increasing interest in terahertz imaging and spectroscopy of biologically related applications within the last few years and more and more terahertz spectra are being reported.This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques,and a number of applications such as molecular spectroscopy,tissue characterization and skin imaging are discussed.展开更多
In recent years, there have been a significant number of demonstrations of small metallic and plasmonic lasers. The vast majority of these demonstrations have been for optically pumped devices. Electrically pumped dev...In recent years, there have been a significant number of demonstrations of small metallic and plasmonic lasers. The vast majority of these demonstrations have been for optically pumped devices. Electrically pumped devices are advantageous for applications and could demonstrate concepts not amenable for optical pumping. However, there have been relatively few demonstrations of electrically pumped small metal cavity lasers. This lack of results is due to the following reasons: there are limited types of electrically pumped gain media available; there is a significantly greater level of complexity required in the fabrication of electrically pumped devices; finally, the required components for electrical pumping restrict cavity design options and furthermore make it intrinsically more difficult to achieve lasing. This review looks at the motivation for electrically pumped nanolasers, the key issues that need addressing for them to be realized, the results that have been achieved so far including devices where lasing has not been achieved, and potential new directions that could be pursued.展开更多
Poly(methyl methacrylate)(PMMA) is widely used for graphene transfer and device fabrication.However,it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of devi...Poly(methyl methacrylate)(PMMA) is widely used for graphene transfer and device fabrication.However,it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of device performance.How to eliminate contamination and restore clean surfaces of graphene is still highly demanded.In this paper,we present a reliable and position-controllable method to remove the polymer residues on graphene films by laser exposure.Under proper laser conditions,PMMA residues can be substantially reduced without introducing defects to the underlying graphene.Furthermore,by applying this laser cleaning technique to the channel and contacts of graphene fieldeffect transistors(GFETs),higher carrier mobility as well as lower contact resistance can be realized.This work opens a way for probing intrinsic properties of contaminant-free graphene and fabricating high-performance GFETs with both clean channel and intimate graphene/metal contact.展开更多
An effective and low-cost front-side anti-reflection(AR) technique has long been sought to enhance the performance of highly efficient photovoltaic devices due to its capability of maximizing the light absorption in p...An effective and low-cost front-side anti-reflection(AR) technique has long been sought to enhance the performance of highly efficient photovoltaic devices due to its capability of maximizing the light absorption in photovoltaic devices. In order to achieve high throughput fabrication of nanostructured flexible and anti-reflection films, large-scale, nano-engineered wafer molds were fabricated in this work. Additionally, to gain in-depth understanding of the optical and electrical performance enhancement with AR films on polycrystalline Si solar cells, both theoretical and experimental studies were performed. Intriguingly,the nanocone structures demonstrated an efficient light trapping effect which reduced the surface reflection of a solar cell by17.7% and therefore enhanced the overall electric output power of photovoltaic devices by 6% at normal light incidence. Notably, the output power improvement is even more significant at a larger light incident angle which is practically meaningful for daily operation of solar panels. The application of the developed AR films is not only limited to crystalline Si solar cells explored here, but also compatible with any types of photovoltaic technology for performance enhancement.展开更多
In this paper, a concise but effective interface circuit for transforming a memristor into meminductive and memcapac- itive systems is designed. This newly proposed interface circuit, constructed by only two current c...In this paper, a concise but effective interface circuit for transforming a memristor into meminductive and memcapac- itive systems is designed. This newly proposed interface circuit, constructed by only two current conveyors, is equipped with three available ports, which can provide six connecting combinations in terms of one resistor, one capacitor, and one memristor. For the sake of confirming the design effectiveness, theoretical and simulation discussions are hence introduced and all the experimental waveforms provide conclusive evidence to validate the correctness of these new mutators. The most attractive features of this new interface circuit are the floating terminals and convenient practical implementation.展开更多
Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finitedifference Schrodinger equation of the non-dlssipative mesoscopic inductance and capacity coupling circuit is a...Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finitedifference Schrodinger equation of the non-dlssipative mesoscopic inductance and capacity coupling circuit is achieved. The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finlte-dlfference Schrodinger equation can be divided into two Mathieu equations in representation." With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.展开更多
基金supported by the Technology Innovation Program(20023566,‘Development and Demonstration of Industrial IoT and AI-Based Process Facility Intelligence Support System in Small and Medium Manufacturing Sites’)funded by the Ministry of Trade,Industry,&Energy(MOTIE,Republic of Korea).
文摘Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.
基金supported in part by NSFC under Grant 62422407in part by RGC under Grant 26204424in part by ACCESS–AI Chip Center for Emerging Smart Systems, sponsored by the Inno HK initiative of the Innovation and Technology Commission of the Hong Kong Special Administrative Region Government
文摘Robotic computing systems play an important role in enabling intelligent robotic tasks through intelligent algo-rithms and supporting hardware.In recent years,the evolution of robotic algorithms indicates a roadmap from traditional robotics to hierarchical and end-to-end models.This algorithmic advancement poses a critical challenge in achieving balanced system-wide performance.Therefore,algorithm-hardware co-design has emerged as the primary methodology,which ana-lyzes algorithm behaviors on hardware to identify common computational properties.These properties can motivate algo-rithm optimization to reduce computational complexity and hardware innovation from architecture to circuit for high performance and high energy efficiency.We then reviewed recent works on robotic and embodied AI algorithms and computing hard-ware to demonstrate this algorithm-hardware co-design methodology.In the end,we discuss future research opportunities by answering two questions:(1)how to adapt the computing platforms to the rapid evolution of embodied AI algorithms,and(2)how to transform the potential of emerging hardware innovations into end-to-end inference improvements.
基金supported financially by National key Research and Development Program under Grant 2021YFB3600802Shenzhen Municipal Scientific Program under Grant KJZD20230923114111021。
文摘Besides the common short-channel effect(SCE)of threshold voltage(V_(th))roll-off during the channel length(L)downscaling of In GaZnO(IGZO)thin-film transistors(TFTs),an opposite V_(th)roll-up was reported in this work.Both roll-off and roll-up effects of Vth were comparatively investigated on IGZO transistors with varied gate insulator(GI),source/drain(S/D),and device architecture.For IGZO transistors with thinner GI,the SCE was attenuated due to the enhanced gate controllability over the variation of channel carrier concentration,while the Vth roll-up became more noteworthy.The latter was found to depend on the relative ratio of S/D series resistance(R_(SD))over channel resistance(R_(CH)),as verified on transistors with different S/D.Thus,an ideal S/D engineering with small R_(SD)but weak dopant diffusion is highly expected during the downscaling of L and GI in IGZO transistors.
文摘Compact antenna designs have become a critical component in the recent advancements of wireless communication technologies over the past few decades. This paper presents a self-multiplexing antenna based on diplexing and quadruplexing Substrate-Integrated Waveguide (SIW) cavities. The diplexing structure incorporates two V-shaped slots, while the quadruplexing structure advances this concept by combining the slots to form a cross-shaped configuration within the cavity. The widths and lengths of the slots are carefully tuned to achieve variations in the respective operating frequencies without affecting the others. The proposed diplexing antenna resonates at 8.48 and 9.2 GHz, with a frequency ratio of 1.08, while the quadruplexing antenna operates at 6.9, 7.1, 7.48, and 8.2GHz. Both designs exhibit isolation levels well below –20dB and achieve a simulated peak gain of 5.6 dBi at the highest frequency, with a compact cavity area of 0.56 λg^(2). The proposed antennas operate within the NR bands (n12, n18, n26), making them suitable for modern high-speed wireless communication systems. Moreover, the properties like multiband operation, compactness, high isolation, low loss, and low interference make the antenna favorable for the high-speed railway communication systems.
基金supported by grants from the National Natural Science Foundation of China/Research Grants Council Joint Research Scheme(31961160726)the National Key Research and Development Program of China(2018YFA0800200)+1 种基金the Major Program of Shenzhen Bay Laboratory(S201101002)the Research Grants Council of Hong Kong(RGC/NFSC N_HKUST603/19,16102022,16101621,T13-605/18-W,T13-602/21-N).
文摘Macrophages and neutrophils are key components of myeloid cells and play critical roles in innate immune responses,organ formation,and tissue homeostasis.The integrity of their functions heavily relies on the generation of a proper number of mature macrophages and neutrophils through embryonic and adult myelopoiesis.In mammalian adult myelopoiesis,oligopotent common myeloid progenitors(CMPs)are known to be the earliest myeloid progenitors,which give rise to granulocyte-macrophage progenitors(GMPs),subsequently differentiate into unipotent neutrophil and macrophage precursors,and finally,mature macrophages and neutrophils(Orkin and Zon,2008).In contrast,the ontogeny of embryonic myelopoiesis and the mechanism underlying the formation of macrophages and neutrophils remainless understood.
文摘This year marks the tenth anniversary of the State Key Laboratory of Advanced Displays and Optoelectronics Technologies(SKLADOT)at the Hong Kong University of Science and Technology(HKUST).The predecessor of SKLADOT was the Center for Display Research(CDR)which was started in 1995.Thus display research has a long history at HKUST.
文摘Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.
基金supported by the National Key Research and Development Program of China(2018YFA0800200)the National Natural Science Foundation of China/ResearchGrantsCouncilJointResearchScheme(31961160726)+1 种基金the National Natural Science Foundation of China(32170827 and 32370886)the Research Grants Council of Hong Kong(RGC/NFSC N_HKUST603/19).
文摘The blood system originates from hematopoietic stem cells(HSCs),capable of self-renewal and differentiation,generating diverse blood cell types(Eaves,2015;Lucas,2021).The concept of the hematopoietic niche was first proposed in 1978(Schofield,1978),which is crucial for maintaining hematopoietic balance.The following studies,particularly in mammals,have utilized targeted genetic manipulation to identify and define these niches.
基金This research was supported in part by ACCESS-AI Chip Center for Emerging Smart Systems,sponsored by InnoHK funding,Hong Kong SAR,and HKUST-HKUST(GZ)20 for 20 Cross-campus Collaborative Research Scheme C031.
文摘Compared to the last decade when the convolution neu-ral network(CNN)dominated the research field,machine learn-ing(ML)algorithms have reached a pivotal moment called the generative artificial intelligence(AI)era.With the emer-gence of large-scale foundation models[1],such as large multi-modal model(LMM)GPT-4[2]and text-to-image generative model DALL·E[3].
基金supported by the National Natural Science Foundation of China (81972034,92068104 and 82002262 to R.X.)the National Key R&D Program of China (2020YFA0112900 to R.X.)+5 种基金Project of Xiamen Cell Therapy Research Center (3502Z20214001 to R.X.)supported by a the NIH grant of US (R01AR075585,R01HD115274,R01CA282815 to M.B.G.)Career Award for Medical Scientists from the Burroughs Wellcome Funda Pershing Square Sohn Cancer Research Alliance and the Maximizing Innovation in Neuroscience Discovery (MIND)Prizesupported by a Jump Start Research Career Development Award from Weill Cornell Medicinea Study Abroad Scholarships from the Mogam Science Scholarship Foundation。
文摘Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that OI reflects defects in the activity of bone-forming osteoblasts,it is currently unclear whether OI also reflects defects in the many other cell types comprising bone,including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility.
基金This research is based on results obtained from Project JPNP07015the New Energy and Industrial Technology Development Organization(NEDO)and is also partly supported by the Japan Society for the Promotion of Science KAKENHI Program(Grant No.21K18795)。
文摘We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote estimation of the transferred charge to measure electric field changes caused by charge loss at the time of a lightning strike at multiple locations.For multiple-station measurement of electric field changes,not only speed but also phase for exposure and shielding of the sensing plates inside each EFM of the array should be synchronized to maintain the sensitivities of the deployed instruments.Currently,there is no such EFM with specified speed and phase control performance of the rotary part.Thus,we developed a new EFM in which the rotary mechanism was controlled consistently to within 3%error by a GPS module.Five EFMs had been distributed in the Hokuriku area of Japan during the winter season of 2022-2023 for a test observation.Here we describe the design and a simple calibration method for our new EFM array.Data analysis method based on the assumption of a simple monopole charge structure is also summarized.For validation,locations of assumed point charges were compared with three-dimensional lightning mapping data estimated by radio observations in the MF-HF bands.Initial results indicated the validity to estimate transferred charge amounts and positions of winter cloud-to-ground lightning discharges with our new EFM array.
基金supported by the National Key Research and Development Program of China under Grant No.2019YFB 2203400the“111 project”under Grant No.B20030.
文摘Palladium diselenide(PdSe_(2)),a novel two-dimensional(2D)material with a unique pentagonal crystal structure including anisotropic properties,has emerged as a highly promising candidate for developing the next generation photoelectronic devices.In this review,firstly,we have shed light on key figures of merit for polarization detection.After that,this review mainly highlights the structural and electronic properties of PdSe_(2)focusing on its strong polarization sensitivity,tunable bandgap,and excellent environmental stability,making it ideal for developing the photoelectronic devices such as broadband photodetectors and their further applications in polarization detection-based imaging systems.We also discuss challenges in scalable synthesis,material stability,and integration with other low-dimensional materials,offering future research directions to optimize PdSe_(2)for commercial applications.Owing to the outstanding optoelectronic properties of PdSe_(2),it stands at the forefront of optoelectronic materials,poised to enable new innovations in polarization photodetection.
基金This work was partially supported by the Shandong Joint Fund of the National Nature Science Foundation of China(U2006228)the National Nature Science Foundation of China(61603244).
文摘Maintaining population diversity is an important task in the multimodal multi-objective optimization.Although the zoning search(ZS)can improve the diversity in the decision space,assigning the same computational costs to each search subspace may be wasteful when computational resources are limited,especially on imbalanced problems.To alleviate the above-mentioned issue,a zoning search with adaptive resource allocating(ZS-ARA)method is proposed in the current study.In the proposed ZS-ARA,the entire search space is divided into many subspaces to preserve the diversity in the decision space and to reduce the problem complexity.Moreover,the computational resources can be automatically allocated among all the subspaces.The ZS-ARA is compared with seven algorithms on two different types of multimodal multi-objective problems(MMOPs),namely,balanced and imbalanced MMOPs.The results indicate that,similarly to the ZS,the ZS-ARA achieves high performance with the balanced MMOPs.Also,it can greatly assist a“regular”algorithm in improving its performance on the imbalanced MMOPs,and is capable of allocating the limited computational resources dynamically.
基金Supported by in part for this work from the Research Grants Council of the Hong Kong Government and the Shun Hing Institute of Advanced Engineering, Hong Kong
文摘The terahertz band lies between the microwave and infrared regions of the electromagnetic spectrum.This radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues.It is strongly attenuated by water and very sensitive to water content.Unique absorption spectra due to intermolecular vibrations in this region have been found in different biological materials.These unique features make tera-hertz imaging very attractive for medical applications in order to provide complimentary information to existing imaging techniques.There has been an increasing interest in terahertz imaging and spectroscopy of biologically related applications within the last few years and more and more terahertz spectra are being reported.This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques,and a number of applications such as molecular spectroscopy,tissue characterization and skin imaging are discussed.
基金Project supported by an Australian Research Council Future Fellowship Grant
文摘In recent years, there have been a significant number of demonstrations of small metallic and plasmonic lasers. The vast majority of these demonstrations have been for optically pumped devices. Electrically pumped devices are advantageous for applications and could demonstrate concepts not amenable for optical pumping. However, there have been relatively few demonstrations of electrically pumped small metal cavity lasers. This lack of results is due to the following reasons: there are limited types of electrically pumped gain media available; there is a significantly greater level of complexity required in the fabrication of electrically pumped devices; finally, the required components for electrical pumping restrict cavity design options and furthermore make it intrinsically more difficult to achieve lasing. This review looks at the motivation for electrically pumped nanolasers, the key issues that need addressing for them to be realized, the results that have been achieved so far including devices where lasing has not been achieved, and potential new directions that could be pursued.
基金the National Basic Research Program of China(Grant No.2013CBA01604)the National Science and Technology Major Project of China(Grant No.2011ZX02707)
文摘Poly(methyl methacrylate)(PMMA) is widely used for graphene transfer and device fabrication.However,it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of device performance.How to eliminate contamination and restore clean surfaces of graphene is still highly demanded.In this paper,we present a reliable and position-controllable method to remove the polymer residues on graphene films by laser exposure.Under proper laser conditions,PMMA residues can be substantially reduced without introducing defects to the underlying graphene.Furthermore,by applying this laser cleaning technique to the channel and contacts of graphene fieldeffect transistors(GFETs),higher carrier mobility as well as lower contact resistance can be realized.This work opens a way for probing intrinsic properties of contaminant-free graphene and fabricating high-performance GFETs with both clean channel and intimate graphene/metal contact.
基金supported by National Natural Science Foundation of China(Project No.51672231)Shen Zhen Science and Technology Innovation Commission(Project No.JCYJ20170818114107730)+1 种基金Hong Kong Research Grant Council(General Research Fund Project Nos.16237816,16309018)the support from the Center for 1D/2D Quantum Materials and the State Key Laboratory on Advanced Displays and Optoelectronics at HKUST
文摘An effective and low-cost front-side anti-reflection(AR) technique has long been sought to enhance the performance of highly efficient photovoltaic devices due to its capability of maximizing the light absorption in photovoltaic devices. In order to achieve high throughput fabrication of nanostructured flexible and anti-reflection films, large-scale, nano-engineered wafer molds were fabricated in this work. Additionally, to gain in-depth understanding of the optical and electrical performance enhancement with AR films on polycrystalline Si solar cells, both theoretical and experimental studies were performed. Intriguingly,the nanocone structures demonstrated an efficient light trapping effect which reduced the surface reflection of a solar cell by17.7% and therefore enhanced the overall electric output power of photovoltaic devices by 6% at normal light incidence. Notably, the output power improvement is even more significant at a larger light incident angle which is practically meaningful for daily operation of solar panels. The application of the developed AR films is not only limited to crystalline Si solar cells explored here, but also compatible with any types of photovoltaic technology for performance enhancement.
基金supported by the National Natural Science Foundation of China(Grant No.51307174)the Fundamental Research Funds for the Central Universitiesof Ministry of Education of China(Grant No.2013QNB28)the China Postdoctoral Science Foundation(Grant No.2013M531423)
文摘In this paper, a concise but effective interface circuit for transforming a memristor into meminductive and memcapac- itive systems is designed. This newly proposed interface circuit, constructed by only two current conveyors, is equipped with three available ports, which can provide six connecting combinations in terms of one resistor, one capacitor, and one memristor. For the sake of confirming the design effectiveness, theoretical and simulation discussions are hence introduced and all the experimental waveforms provide conclusive evidence to validate the correctness of these new mutators. The most attractive features of this new interface circuit are the floating terminals and convenient practical implementation.
基金The project supported by National Natural Science Foundation of China under Grant No. 10405009 and Natural Science Foundation of Hebei Province of China under Grant No. 103143
文摘Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finitedifference Schrodinger equation of the non-dlssipative mesoscopic inductance and capacity coupling circuit is achieved. The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finlte-dlfference Schrodinger equation can be divided into two Mathieu equations in representation." With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.