Marine infrastructure is increasingly vulnerable to harsh environmental conditions that accelerate the degradation of traditional materials such as Portland cement concrete and carbon steel.This review systematically ...Marine infrastructure is increasingly vulnerable to harsh environmental conditions that accelerate the degradation of traditional materials such as Portland cement concrete and carbon steel.This review systematically investigates recent advancements in sustainable alternatives,including geopolymer concrete,engineered innovacementitious composites(ECC),bio-concrete,fiber-reinforced polymers(FRPs),and bamboo,stainless steel,and steel-CFRP hybrid bars.Each material is evaluated based on marine durability,mechanical performance,environmental impact,and cost feasibility using life cycle assessment,durability modelling,and a multi-criteria decisionsupport framework.The results reveal that geopolymer concrete and FRP reinforcement’s exhibit superior corrosion resistance and environmental benefits,while ECC and steel-CFRP composites offer structural resilience with moderate environmental trade-offs.However,challenges remain in long-term performance validation,standardization,and market integration.The review concludes that a combined approach involving innovative materials,computational tools,and sustainability assessment is essential for advancing marine infrastructure.Outlook recommendations include focused field studies,development of regulatory guidelines,and interdisciplinary collaboration to drive the practical adoption of eco-efficient materials in coastal and offshore construction.展开更多
A phase-aware cross-modal framework is presented that synthesizes UWF_FA from non-invasive UWF_RI for diabetic retinopathy(DR)stratification.A curated cohort of 1198 patients(2915 UWF_RI and 17,854 UWF_FA images)with ...A phase-aware cross-modal framework is presented that synthesizes UWF_FA from non-invasive UWF_RI for diabetic retinopathy(DR)stratification.A curated cohort of 1198 patients(2915 UWF_RI and 17,854 UWF_FA images)with strict registration quality supports training across three angiographic phases(initial,mid,final).The generator is based on a modified pix2pixHD with an added Gradient Variance Loss to better preserve microvasculature,and is evaluated using MAE,PSNR,SSIM,and MS-SSIM on held-out pairs.Quantitatively,the mid phase achieves the lowestMAE(98.76±42.67),while SSIM remains high across phases.Expert reviewshows substantial agreement(Cohen's κ=0.78–0.82)and Turing-stylemisclassification of 50%–70%of synthetic images as real,indicating strong perceptual realism.For downstream DR stratification,fusing multi-phase synthetic UWF_FA with UWF_RI in a Swin Transformer classifier yields significant gains over a UWF_RI-only baseline,with the full-phase setting(Set D)reaching AUC=0.910 and accuracy=0.829.These results support synthetic UWF_FA as a scalable,non-invasive complement to dye-based angiography that enhances screening accuracy while avoiding injection-related risks.展开更多
Plant health is increasingly threatened by environmental stressors,improper irrigation practices,and animal interference,leading to decreased growth and vitality.Current solutions often fail to integrate autonomous ir...Plant health is increasingly threatened by environmental stressors,improper irrigation practices,and animal interference,leading to decreased growth and vitality.Current solutions often fail to integrate autonomous irrigation with effective deterrent mechanisms in a single system.This paper presents the Intelligent Sapling Shield,an innovative device designed to enhance plant protection and optimize growth conditions.The system features an autonomous soil moisture regulation mechanism to optimize water usage,reducing wastage and irrigation costs,while a vibrational deterrent system mitigates animal interference,preventing crop damage.Constructed from plastic mesh,the device ensures proper sunlight exposure,airflow,and shade,with an integrated waterproof LED strip for night-time illumination.Results demonstrate that the system maintains optimal soil moisture levels,reducing water consumption compared to traditional irrigation methods.Additionally,automated plant care minimizes labour requirements,ensuring consistent hydration and protection while enhancing crop resilience and yield.The design emphasizes affordability,portability,and ease of installation,making it suitable for both small-scale urban gardening and large-scale agricultural deployment.Its modular structure allows for customization depending on plant type and environmental conditions,further extending its applicability.By integrating irrigation efficiency,protective deterrence,and energy-efficient illumination,the Intelligent Sapling Shield creates a holistic solution that addresses multiple challenges faced in plant cultivation.By promoting cost-effective,resource-efficient,and sustainable agricultural practices,the Intelligent Sapling Shield contributes to urban greening initiatives and biodiversity conservation,supporting long-term ecological sustainability and offering significant potential for future smart farming innovations.展开更多
This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain i...This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain in series with the plant output error and a linear filter in parallel with the overall error system.These structural changes do not influence the input/output dynamics of the original plant,but are intentionally introduced to modify the dynamics to be estimated by the extended state observer(ESO)and,thus,promote an increase in the robustness of the method.Some advantages can also be attributed to the proposed methodology,such as(i)the design procedures of both the controller and the ESO only require knowledge of the sign(±)of the plant input channel coefficient(or control gain);(ii)the plant control input is generated directly by a single ESO state variable.Despite the advantages and the characteristics of MP-ADRC mentioned earlier,closed-loop stability cannot be guaranteed when it is applied to dynamical systems that have finite zeros.To overcome this difficulty,this work introduces an extension in the MP-ADRC method.It basically consists of rewriting the minimum phase plant dynamics according to its relative order,and then follows with the design of the ESO by conveniently increasing the number of ESO state variables.The simulation results are also presented to illustrate the application of the proposed method.展开更多
Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate becau...Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate because they cannot capture the complexity of emerging health indicators.These high-dimensional and heterogeneous datasets make traditional machine learning methods difficult,and Skewness and other new biomarkers and psychosocial factors bias the model’s heart health prediction across diverse patient profiles.Modern medical datasets’complexity and high dimensionality challenge traditional predictionmodels like SupportVectorMachines and Decision Trees.Quantum approaches include QSVM,QkNN,QDT,and others.These Constraints drove research.The“QHF-CS:Quantum-Enhanced Heart Failure Prediction using Quantum CNN with Optimized Feature Qubit Selection with Cuckoo Search in Skewed Clinical Data”system was developed in this research.This novel system leverages a Quantum Convolutional Neural Network(QCNN)-based quantum circuit,enhanced by meta-heuristic algorithms—Cuckoo SearchOptimization(CSO),Artificial BeeColony(ABC),and Particle SwarmOptimization(PSO)—for feature qubit selection.Among these,CSO demonstrated superior performance by consistently identifying the most optimal and least skewed feature subsets,which were then encoded into quantum states for circuit construction.By integrating advanced quantum circuit feature maps like ZZFeatureMap,RealAmplitudes,and EfficientSU2,the QHF-CS model efficiently processes complex,high-dimensional data,capturing intricate patterns that classical models overlook.The QHF-CS model improves precision,recall,F1-score,and accuracy to 0.94,0.95,0.94,and 0.94.Quantum computing could revolutionize heart failure diagnostics by improving model accuracy and computational efficiency,enabling complex healthcare diagnostic breakthroughs.展开更多
The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This pape...The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.展开更多
In this paper, a multi-view gait based human recognition system using the fusion of two kinds of features is proposed.We use cross wavelet transform to extract dynamic feature and bipartite graph model to extract stat...In this paper, a multi-view gait based human recognition system using the fusion of two kinds of features is proposed.We use cross wavelet transform to extract dynamic feature and bipartite graph model to extract static feature which are coefficients of quadrature mirror filter(QMF)-graph wavelet filter bank. Feature fusion is done after normalization. For normalization of features, min-max rule is used and mean-variance method is used to find weights for normalized features. Euclidean distance between each feature vector and center of the cluster which is obtained by k-means clustering is used as similarity measure in Bayesian framework. Experiments performed on widely used CASIA B gait database show that, the fusion of these two feature sets preserve discriminant information. We report 99.90 % average recognition rate.展开更多
In this paper,we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case(PPTC)in oblique flow.For our calculations,we used the Reynolds-averaged Navier-Stokes...In this paper,we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case(PPTC)in oblique flow.For our calculations,we used the Reynolds-averaged Navier-Stokes equation(RANSE)solver from the open-source OpenFOAM libraries.We selected the homogeneous mixture approach to solve for multiphase flow with phase change,using the volume of fluid(VoF)approach to solve the multiphase flow and modeling the mass transfer between vapor and water with the Schnerr-Sauer model.Comparing the model results with the experimental measurements collected during the SecondWorkshop on Cavitation and Propeller Performance– SMP’15 enabled our assessment of the reliability of the open-source calculations.Comparisons with the numerical data collected during the workshop enabled further analysis of the reliability of different flow solvers from which we produced an overview of recommended guidelines(mesh arrangements and solver setups)for accurate numerical prediction even in off-design conditions.Lastly,we propose a number of calculations using the boundary element method developed at the University of Genoa for assessing the reliability of this dated but still widely adopted approach for design and optimization in the preliminary stages of very demanding test cases.展开更多
This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shif...This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying(BPSK), quadrature phase shift keying(QPSK), quadrature amplitude modulation(QAM)-16 and QAM-64 with four error correction codes(convolutional code(CC), Reed-Solomon code(RSC)+CC, low density parity check(LDPC)+CC, Turbo+CC) is studied under three channel models(additive white Guassian noise(AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate(BER) and the peak signal to noise ratio(PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance.展开更多
In this article,we review recent advances in the technology of writing fiber Bragg gratings(FBGs)in selected cores of multicore fibers(MCFs)by using femtosecond laser pulses.The writing technology of such a key elemen...In this article,we review recent advances in the technology of writing fiber Bragg gratings(FBGs)in selected cores of multicore fibers(MCFs)by using femtosecond laser pulses.The writing technology of such a key element as the FBG opens up wide opportunities for the creation of next generation fiber lasers and sensors based on MCFs.The advantages of the technology are shown by using the examples of 3D shape sensors,acoustic emission sensors with spatially multiplexed channels,as well as multicore fiber Raman lasers.展开更多
Satellite communication networks have been evolving from standalone networks with ad-hoc infrastructures to possibly interconnected portions of a wider Future Internet architecture. Experts belonging to the fifth-gene...Satellite communication networks have been evolving from standalone networks with ad-hoc infrastructures to possibly interconnected portions of a wider Future Internet architecture. Experts belonging to the fifth-generation(5 G) standardization committees are considering satellites as a technology to integrate in the 5 G environment. Software Defined Networking(SDN) is one of the paradigms of the next generation of mobile and fixed communications. It can be employed to perform different control functionalities, such as routing, because it allows traffic flow identification based on different parameters and traffic flow management in a centralized way. A centralized set of controllers makes the decisions and sends the corresponding forwarding rules for each traffic flow to the involved intermediate nodes that practically forward data up to the destination. The time to perform this process in integrated terrestrial-satellite networks could be not negligible due to satellite link delays. The aim of this paper is to introduce an SDN-based terrestrial satellite network architecture and to estimate the mean time to deliver the data of a new traffic flow from the source to the destination including the time required to transfer SDN control actions. The practical effect is to identify the maximum performance than can be expected.展开更多
A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The t...A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.展开更多
Correct evaluation of rudder performance is a key issue in assessing ship maneuverability.This paper presents a simplified approach based on a viscous flow solver to address propeller and rudder interactions.Viscous f...Correct evaluation of rudder performance is a key issue in assessing ship maneuverability.This paper presents a simplified approach based on a viscous flow solver to address propeller and rudder interactions.Viscous flow solvers have been applied to this type of problems,but the large computational requests limit(or even prevent)their application at a preliminary ship design stage.Based on this idea,a simplified approach to include the propeller effect in front of the rudder is considered to speed up the solution.Based on the concept of body forces,this approach enables sufficiently fast computation for a preliminary ship design stage,therebymaintaining its reliability.To define the limitations of the proposed procedure,an extensive analysis of the simplified method is performed and the results are compared with experimental data presented in the literature.Initially,the reported results show the capability of the body-force approach to represent the inflow field to the rudder without the full description of the propeller,also with regard to the complex bollard pull condition.Consequently,the rudder forces are satisfactorily predicted at least with regard to the lift force.However,the drag force evaluation ismore problematic and causes higher discrepancies.Nevertheless,these discrepancies may be accepted due to their lower influence on the overall ship maneuverability performance.展开更多
In this paper,the design of a resonator rectenna,based on metamaterials and capable of harvesting radio-frequency energy at 2.45 GHz to power any low-power devices,is presented.The proposed design uses a simple and in...In this paper,the design of a resonator rectenna,based on metamaterials and capable of harvesting radio-frequency energy at 2.45 GHz to power any low-power devices,is presented.The proposed design uses a simple and inexpensive circuit consisting of a microstrip patch antenna with a mushroom-like electromagnetic band gap(EBG),partially reflective surface(PRS)structure,rectifier circuit,voltage multiplier circuit,and 2.45 GHzWi-Fi module.The mushroom-like EBG sheet was fabricated on an FR4 substrate surrounding the conventional patch antenna to suppress surface waves so as to enhance the antenna performance.Furthermore,the antenna performance was improved more by utilizing the slotted I-shaped structure as a superstrate called a PRS surface.The enhancement occurred via the reflection of the transmitted power.The proposed rectenna achieved a maximum directive gain of 11.62 dBi covering the industrial,scientific,and medical radio band of 2.40–2.48 GHz.A Wi-Fi 4231 access point transmitted signals in the 2.45 GHz band.The rectenna,located 45◦anticlockwise relative to the access point,could achieve a maximum power of 0.53μW.In this study,the rectenna was fully characterized and charged to low-power devices.展开更多
In this paper we have designed an implemented an integrated framework of QoS for Three Level Mobility Model(TLMM),which has been recently proved to be the optimal mobility management solution for next generation wirel...In this paper we have designed an implemented an integrated framework of QoS for Three Level Mobility Model(TLMM),which has been recently proved to be the optimal mobility management solution for next generation wireless IP-based networks.The QoS solution uses a combination of IntServ and DiffServ models incorporated in TLMM architecture.The paper also proposes an effi cient dynamic handover policy that takes care of false handover.Simulation and analytical results have shown that this infrastructure guarantees eff icient QoS handling and scalability among end users.To provide a comparative understanding of the QoS mechanism and signaling load of TLMM we have used TeleMIP(without QoS support) and MIP as alternative mobility management protocols.展开更多
In present-day society,train tunnels are extensively used as a means of transportation.Therefore,to ensure safety,streamlined train operations,and uninterrupted internet access inside train tunnels,reliable wave propa...In present-day society,train tunnels are extensively used as a means of transportation.Therefore,to ensure safety,streamlined train operations,and uninterrupted internet access inside train tunnels,reliable wave propagation modeling is required.We have experimented and measured wave propagation models in a 1674 m long straight train tunnel in South Korea.The measured path loss and the received signal strength were modeled with the Close-In(CI),Floating intercept(FI),CI model with a frequency-weighted path loss exponent(CIF),and alpha-beta-gamma(ABG)models,where the model parameters were determined using minimum mean square error(MMSE)methods.The measured and the CI,FI,CIF,and ABG modelderived path loss was plotted in graphs,and the model closest to the measured path loss was identified through investigation.Based on the measured results,it was observed that every model had a comparatively lower(n<2)path loss exponent(PLE)inside the tunnel.We also determined the path loss component’s possible deviation(shadow factor)through a Gaussian distribution considering zero mean and standard deviation calculations of random error variables.The FI model outperformed all the examined models as it yielded a path loss closer to the measured datasets,as well as a minimum standard deviation of the shadow factor.展开更多
Biomedical image processing is a hot research topic which helps to majorly assist the disease diagnostic process.At the same time,breast cancer becomes the deadliest disease among women and can be detected by the use ...Biomedical image processing is a hot research topic which helps to majorly assist the disease diagnostic process.At the same time,breast cancer becomes the deadliest disease among women and can be detected by the use of different imaging techniques.Digital mammograms can be used for the earlier identification and diagnostic of breast cancer to minimize the death rate.But the proper identification of breast cancer has mainly relied on the mammography findings and results to increased false positives.For resolving the issues of false positives of breast cancer diagnosis,this paper presents an automated deep learning based breast cancer diagnosis(ADL-BCD)model using digital mammograms.The goal of the ADL-BCD technique is to properly detect the existence of breast lesions using digital mammograms.The proposed model involves Gaussian filter based pre-processing and Tsallis entropy based image segmentation.In addition,Deep Convolutional Neural Network based Residual Network(ResNet 34)is applied for feature extraction purposes.Specifically,a hyper parameter tuning process using chimp optimization algorithm(COA)is applied to tune the parameters involved in ResNet 34 model.The wavelet neural network(WNN)is used for the classification of digital mammograms for the detection of breast cancer.The ADL-BCD method is evaluated using a benchmark dataset and the results are analyzed under several performance measures.The simulation outcome indicated that the ADL-BCD model outperforms the state of art methods in terms of different measures.展开更多
In this paper,after the successful applications to open water propeller performance estimations,the influence of transition sensitive and modified mass transfer models tuned to account for the laminar flow in the pred...In this paper,after the successful applications to open water propeller performance estimations,the influence of transition sensitive and modified mass transfer models tuned to account for the laminar flow in the prediction of the cavitation inception of marine propulsors is investigated from the point of view of the unsteady functioning and induced pressure pulses.The VP1304(also known as PPTC)test case,for which dedicated data were collected during several workshops,is considered first.After preliminary analyses using RANS,also Detached Eddy Simulations(DES)are included to better account for the vortex dynamics and its influence on pressure pulses.Similarly to what observed in uniform inflow,results show a better agreement with the available measurements of propeller performances and confirm the reliability of the proposed approaches for unsteady,non-cavitating,model scale propeller predictions.The overall cavitation pattern is improved too by the application of the transition sensitive correction to the mass transfer model,but the complex dynamics of bubble cavitation observed in experiments prevents quantitatively better predictions in terms of thrust/torque breakdown and induced pressure pulses levels regardless the use of RANS or DES methods.展开更多
The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover con...The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover configuration resulting from the merging of two classical shapes: a conventional SWATH and a fast catamaran. The final hull design exhibits a wedge-like waterline shape with the maximum beam at the stem; the hull ends with a very narrow entrance angle, has a prominent bulbous bow typical of SWATH vessels, and features full stern to arrange waterjet propellers. Our analysis aims to perform a preliminary assessment of the hydrodynamic performance of a hull with such a complex shape both in terms of resistance of the hull in calm water and seakeeping capability in regular head waves and compare the performance with that of a conventional SWATH. The analysis is performed using a boundary element method that was preliminarily validated on a conventional SWATH vessel.展开更多
In this paper,we presented the development of a navigation control system for a sailboat based on spiking neural networks(SNN).Our inspiration for this choice of network lies in their potential to achieve fast and low...In this paper,we presented the development of a navigation control system for a sailboat based on spiking neural networks(SNN).Our inspiration for this choice of network lies in their potential to achieve fast and low-energy computing on specialized hardware.To train our system,we use the modulated spike time-dependent plasticity reinforcement learning rule and a simulation environment based on the BindsNET library and USVSim simulator.Our objective was to develop a spiking neural network-based control systems that can learn policies allowing sailboats to navigate between two points by following a straight line or performing tacking and gybing strategies,depending on the sailing scenario conditions.We presented the mathematical definition of the problem,the operation scheme of the simulation environment,the spiking neural network controllers,and the control strategy used.As a result,we obtained 425 SNN-based controllers that completed the proposed navigation task,indicating that the simulation environment and the implemented control strategy work effectively.Finally,we compare the behavior of our best controller with other algorithms and present some possible strategies to improve its performance.展开更多
文摘Marine infrastructure is increasingly vulnerable to harsh environmental conditions that accelerate the degradation of traditional materials such as Portland cement concrete and carbon steel.This review systematically investigates recent advancements in sustainable alternatives,including geopolymer concrete,engineered innovacementitious composites(ECC),bio-concrete,fiber-reinforced polymers(FRPs),and bamboo,stainless steel,and steel-CFRP hybrid bars.Each material is evaluated based on marine durability,mechanical performance,environmental impact,and cost feasibility using life cycle assessment,durability modelling,and a multi-criteria decisionsupport framework.The results reveal that geopolymer concrete and FRP reinforcement’s exhibit superior corrosion resistance and environmental benefits,while ECC and steel-CFRP composites offer structural resilience with moderate environmental trade-offs.However,challenges remain in long-term performance validation,standardization,and market integration.The review concludes that a combined approach involving innovative materials,computational tools,and sustainability assessment is essential for advancing marine infrastructure.Outlook recommendations include focused field studies,development of regulatory guidelines,and interdisciplinary collaboration to drive the practical adoption of eco-efficient materials in coastal and offshore construction.
基金funded by theDeanship of Research andGraduate Studies at King Khalid University through Large Research Project under grant number RGP2/417/46.
文摘A phase-aware cross-modal framework is presented that synthesizes UWF_FA from non-invasive UWF_RI for diabetic retinopathy(DR)stratification.A curated cohort of 1198 patients(2915 UWF_RI and 17,854 UWF_FA images)with strict registration quality supports training across three angiographic phases(initial,mid,final).The generator is based on a modified pix2pixHD with an added Gradient Variance Loss to better preserve microvasculature,and is evaluated using MAE,PSNR,SSIM,and MS-SSIM on held-out pairs.Quantitatively,the mid phase achieves the lowestMAE(98.76±42.67),while SSIM remains high across phases.Expert reviewshows substantial agreement(Cohen's κ=0.78–0.82)and Turing-stylemisclassification of 50%–70%of synthetic images as real,indicating strong perceptual realism.For downstream DR stratification,fusing multi-phase synthetic UWF_FA with UWF_RI in a Swin Transformer classifier yields significant gains over a UWF_RI-only baseline,with the full-phase setting(Set D)reaching AUC=0.910 and accuracy=0.829.These results support synthetic UWF_FA as a scalable,non-invasive complement to dye-based angiography that enhances screening accuracy while avoiding injection-related risks.
文摘Plant health is increasingly threatened by environmental stressors,improper irrigation practices,and animal interference,leading to decreased growth and vitality.Current solutions often fail to integrate autonomous irrigation with effective deterrent mechanisms in a single system.This paper presents the Intelligent Sapling Shield,an innovative device designed to enhance plant protection and optimize growth conditions.The system features an autonomous soil moisture regulation mechanism to optimize water usage,reducing wastage and irrigation costs,while a vibrational deterrent system mitigates animal interference,preventing crop damage.Constructed from plastic mesh,the device ensures proper sunlight exposure,airflow,and shade,with an integrated waterproof LED strip for night-time illumination.Results demonstrate that the system maintains optimal soil moisture levels,reducing water consumption compared to traditional irrigation methods.Additionally,automated plant care minimizes labour requirements,ensuring consistent hydration and protection while enhancing crop resilience and yield.The design emphasizes affordability,portability,and ease of installation,making it suitable for both small-scale urban gardening and large-scale agricultural deployment.Its modular structure allows for customization depending on plant type and environmental conditions,further extending its applicability.By integrating irrigation efficiency,protective deterrence,and energy-efficient illumination,the Intelligent Sapling Shield creates a holistic solution that addresses multiple challenges faced in plant cultivation.By promoting cost-effective,resource-efficient,and sustainable agricultural practices,the Intelligent Sapling Shield contributes to urban greening initiatives and biodiversity conservation,supporting long-term ecological sustainability and offering significant potential for future smart farming innovations.
基金supported in part by the Brazilian research agencies CNPq and CAPESby the Fundação Carlos Chagas Filho de AmparoàPesquisa do Estado do Rio de Janeiro,FAPERJ-Brasil(Project E-26/210.425/2024).
文摘This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain in series with the plant output error and a linear filter in parallel with the overall error system.These structural changes do not influence the input/output dynamics of the original plant,but are intentionally introduced to modify the dynamics to be estimated by the extended state observer(ESO)and,thus,promote an increase in the robustness of the method.Some advantages can also be attributed to the proposed methodology,such as(i)the design procedures of both the controller and the ESO only require knowledge of the sign(±)of the plant input channel coefficient(or control gain);(ii)the plant control input is generated directly by a single ESO state variable.Despite the advantages and the characteristics of MP-ADRC mentioned earlier,closed-loop stability cannot be guaranteed when it is applied to dynamical systems that have finite zeros.To overcome this difficulty,this work introduces an extension in the MP-ADRC method.It basically consists of rewriting the minimum phase plant dynamics according to its relative order,and then follows with the design of the ESO by conveniently increasing the number of ESO state variables.The simulation results are also presented to illustrate the application of the proposed method.
文摘Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate because they cannot capture the complexity of emerging health indicators.These high-dimensional and heterogeneous datasets make traditional machine learning methods difficult,and Skewness and other new biomarkers and psychosocial factors bias the model’s heart health prediction across diverse patient profiles.Modern medical datasets’complexity and high dimensionality challenge traditional predictionmodels like SupportVectorMachines and Decision Trees.Quantum approaches include QSVM,QkNN,QDT,and others.These Constraints drove research.The“QHF-CS:Quantum-Enhanced Heart Failure Prediction using Quantum CNN with Optimized Feature Qubit Selection with Cuckoo Search in Skewed Clinical Data”system was developed in this research.This novel system leverages a Quantum Convolutional Neural Network(QCNN)-based quantum circuit,enhanced by meta-heuristic algorithms—Cuckoo SearchOptimization(CSO),Artificial BeeColony(ABC),and Particle SwarmOptimization(PSO)—for feature qubit selection.Among these,CSO demonstrated superior performance by consistently identifying the most optimal and least skewed feature subsets,which were then encoded into quantum states for circuit construction.By integrating advanced quantum circuit feature maps like ZZFeatureMap,RealAmplitudes,and EfficientSU2,the QHF-CS model efficiently processes complex,high-dimensional data,capturing intricate patterns that classical models overlook.The QHF-CS model improves precision,recall,F1-score,and accuracy to 0.94,0.95,0.94,and 0.94.Quantum computing could revolutionize heart failure diagnostics by improving model accuracy and computational efficiency,enabling complex healthcare diagnostic breakthroughs.
文摘The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.
文摘In this paper, a multi-view gait based human recognition system using the fusion of two kinds of features is proposed.We use cross wavelet transform to extract dynamic feature and bipartite graph model to extract static feature which are coefficients of quadrature mirror filter(QMF)-graph wavelet filter bank. Feature fusion is done after normalization. For normalization of features, min-max rule is used and mean-variance method is used to find weights for normalized features. Euclidean distance between each feature vector and center of the cluster which is obtained by k-means clustering is used as similarity measure in Bayesian framework. Experiments performed on widely used CASIA B gait database show that, the fusion of these two feature sets preserve discriminant information. We report 99.90 % average recognition rate.
文摘In this paper,we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case(PPTC)in oblique flow.For our calculations,we used the Reynolds-averaged Navier-Stokes equation(RANSE)solver from the open-source OpenFOAM libraries.We selected the homogeneous mixture approach to solve for multiphase flow with phase change,using the volume of fluid(VoF)approach to solve the multiphase flow and modeling the mass transfer between vapor and water with the Schnerr-Sauer model.Comparing the model results with the experimental measurements collected during the SecondWorkshop on Cavitation and Propeller Performance– SMP’15 enabled our assessment of the reliability of the open-source calculations.Comparisons with the numerical data collected during the workshop enabled further analysis of the reliability of different flow solvers from which we produced an overview of recommended guidelines(mesh arrangements and solver setups)for accurate numerical prediction even in off-design conditions.Lastly,we propose a number of calculations using the boundary element method developed at the University of Genoa for assessing the reliability of this dated but still widely adopted approach for design and optimization in the preliminary stages of very demanding test cases.
文摘This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying(BPSK), quadrature phase shift keying(QPSK), quadrature amplitude modulation(QAM)-16 and QAM-64 with four error correction codes(convolutional code(CC), Reed-Solomon code(RSC)+CC, low density parity check(LDPC)+CC, Turbo+CC) is studied under three channel models(additive white Guassian noise(AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate(BER) and the peak signal to noise ratio(PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance.
基金supported by the Russian Ministry of Science and Higher Education (14.Y26.31.0017)Russian Foundation for Basic Research(18-52-7822)the work concerning MCF fiber Raman lasers was supported by Russian Science Foundation (21-72-30024)
文摘In this article,we review recent advances in the technology of writing fiber Bragg gratings(FBGs)in selected cores of multicore fibers(MCFs)by using femtosecond laser pulses.The writing technology of such a key element as the FBG opens up wide opportunities for the creation of next generation fiber lasers and sensors based on MCFs.The advantages of the technology are shown by using the examples of 3D shape sensors,acoustic emission sensors with spatially multiplexed channels,as well as multicore fiber Raman lasers.
文摘Satellite communication networks have been evolving from standalone networks with ad-hoc infrastructures to possibly interconnected portions of a wider Future Internet architecture. Experts belonging to the fifth-generation(5 G) standardization committees are considering satellites as a technology to integrate in the 5 G environment. Software Defined Networking(SDN) is one of the paradigms of the next generation of mobile and fixed communications. It can be employed to perform different control functionalities, such as routing, because it allows traffic flow identification based on different parameters and traffic flow management in a centralized way. A centralized set of controllers makes the decisions and sends the corresponding forwarding rules for each traffic flow to the involved intermediate nodes that practically forward data up to the destination. The time to perform this process in integrated terrestrial-satellite networks could be not negligible due to satellite link delays. The aim of this paper is to introduce an SDN-based terrestrial satellite network architecture and to estimate the mean time to deliver the data of a new traffic flow from the source to the destination including the time required to transfer SDN control actions. The practical effect is to identify the maximum performance than can be expected.
文摘A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.
文摘Correct evaluation of rudder performance is a key issue in assessing ship maneuverability.This paper presents a simplified approach based on a viscous flow solver to address propeller and rudder interactions.Viscous flow solvers have been applied to this type of problems,but the large computational requests limit(or even prevent)their application at a preliminary ship design stage.Based on this idea,a simplified approach to include the propeller effect in front of the rudder is considered to speed up the solution.Based on the concept of body forces,this approach enables sufficiently fast computation for a preliminary ship design stage,therebymaintaining its reliability.To define the limitations of the proposed procedure,an extensive analysis of the simplified method is performed and the results are compared with experimental data presented in the literature.Initially,the reported results show the capability of the body-force approach to represent the inflow field to the rudder without the full description of the propeller,also with regard to the complex bollard pull condition.Consequently,the rudder forces are satisfactorily predicted at least with regard to the lift force.However,the drag force evaluation ismore problematic and causes higher discrepancies.Nevertheless,these discrepancies may be accepted due to their lower influence on the overall ship maneuverability performance.
基金supported by the Rajamangala University of Technology Thanyaburi research and development fund.
文摘In this paper,the design of a resonator rectenna,based on metamaterials and capable of harvesting radio-frequency energy at 2.45 GHz to power any low-power devices,is presented.The proposed design uses a simple and inexpensive circuit consisting of a microstrip patch antenna with a mushroom-like electromagnetic band gap(EBG),partially reflective surface(PRS)structure,rectifier circuit,voltage multiplier circuit,and 2.45 GHzWi-Fi module.The mushroom-like EBG sheet was fabricated on an FR4 substrate surrounding the conventional patch antenna to suppress surface waves so as to enhance the antenna performance.Furthermore,the antenna performance was improved more by utilizing the slotted I-shaped structure as a superstrate called a PRS surface.The enhancement occurred via the reflection of the transmitted power.The proposed rectenna achieved a maximum directive gain of 11.62 dBi covering the industrial,scientific,and medical radio band of 2.40–2.48 GHz.A Wi-Fi 4231 access point transmitted signals in the 2.45 GHz band.The rectenna,located 45◦anticlockwise relative to the access point,could achieve a maximum power of 0.53μW.In this study,the rectenna was fully characterized and charged to low-power devices.
文摘In this paper we have designed an implemented an integrated framework of QoS for Three Level Mobility Model(TLMM),which has been recently proved to be the optimal mobility management solution for next generation wireless IP-based networks.The QoS solution uses a combination of IntServ and DiffServ models incorporated in TLMM architecture.The paper also proposes an effi cient dynamic handover policy that takes care of false handover.Simulation and analytical results have shown that this infrastructure guarantees eff icient QoS handling and scalability among end users.To provide a comparative understanding of the QoS mechanism and signaling load of TLMM we have used TeleMIP(without QoS support) and MIP as alternative mobility management protocols.
文摘In present-day society,train tunnels are extensively used as a means of transportation.Therefore,to ensure safety,streamlined train operations,and uninterrupted internet access inside train tunnels,reliable wave propagation modeling is required.We have experimented and measured wave propagation models in a 1674 m long straight train tunnel in South Korea.The measured path loss and the received signal strength were modeled with the Close-In(CI),Floating intercept(FI),CI model with a frequency-weighted path loss exponent(CIF),and alpha-beta-gamma(ABG)models,where the model parameters were determined using minimum mean square error(MMSE)methods.The measured and the CI,FI,CIF,and ABG modelderived path loss was plotted in graphs,and the model closest to the measured path loss was identified through investigation.Based on the measured results,it was observed that every model had a comparatively lower(n<2)path loss exponent(PLE)inside the tunnel.We also determined the path loss component’s possible deviation(shadow factor)through a Gaussian distribution considering zero mean and standard deviation calculations of random error variables.The FI model outperformed all the examined models as it yielded a path loss closer to the measured datasets,as well as a minimum standard deviation of the shadow factor.
文摘Biomedical image processing is a hot research topic which helps to majorly assist the disease diagnostic process.At the same time,breast cancer becomes the deadliest disease among women and can be detected by the use of different imaging techniques.Digital mammograms can be used for the earlier identification and diagnostic of breast cancer to minimize the death rate.But the proper identification of breast cancer has mainly relied on the mammography findings and results to increased false positives.For resolving the issues of false positives of breast cancer diagnosis,this paper presents an automated deep learning based breast cancer diagnosis(ADL-BCD)model using digital mammograms.The goal of the ADL-BCD technique is to properly detect the existence of breast lesions using digital mammograms.The proposed model involves Gaussian filter based pre-processing and Tsallis entropy based image segmentation.In addition,Deep Convolutional Neural Network based Residual Network(ResNet 34)is applied for feature extraction purposes.Specifically,a hyper parameter tuning process using chimp optimization algorithm(COA)is applied to tune the parameters involved in ResNet 34 model.The wavelet neural network(WNN)is used for the classification of digital mammograms for the detection of breast cancer.The ADL-BCD method is evaluated using a benchmark dataset and the results are analyzed under several performance measures.The simulation outcome indicated that the ADL-BCD model outperforms the state of art methods in terms of different measures.
文摘In this paper,after the successful applications to open water propeller performance estimations,the influence of transition sensitive and modified mass transfer models tuned to account for the laminar flow in the prediction of the cavitation inception of marine propulsors is investigated from the point of view of the unsteady functioning and induced pressure pulses.The VP1304(also known as PPTC)test case,for which dedicated data were collected during several workshops,is considered first.After preliminary analyses using RANS,also Detached Eddy Simulations(DES)are included to better account for the vortex dynamics and its influence on pressure pulses.Similarly to what observed in uniform inflow,results show a better agreement with the available measurements of propeller performances and confirm the reliability of the proposed approaches for unsteady,non-cavitating,model scale propeller predictions.The overall cavitation pattern is improved too by the application of the transition sensitive correction to the mass transfer model,but the complex dynamics of bubble cavitation observed in experiments prevents quantitatively better predictions in terms of thrust/torque breakdown and induced pressure pulses levels regardless the use of RANS or DES methods.
文摘The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover configuration resulting from the merging of two classical shapes: a conventional SWATH and a fast catamaran. The final hull design exhibits a wedge-like waterline shape with the maximum beam at the stem; the hull ends with a very narrow entrance angle, has a prominent bulbous bow typical of SWATH vessels, and features full stern to arrange waterjet propellers. Our analysis aims to perform a preliminary assessment of the hydrodynamic performance of a hull with such a complex shape both in terms of resistance of the hull in calm water and seakeeping capability in regular head waves and compare the performance with that of a conventional SWATH. The analysis is performed using a boundary element method that was preliminarily validated on a conventional SWATH vessel.
基金supported by the University of Antioquia with project PRG2017-16182by the Colombia Scientific Program within the framework of the call Ecosistema Científico(Contract No.FP44842-218-2018).
文摘In this paper,we presented the development of a navigation control system for a sailboat based on spiking neural networks(SNN).Our inspiration for this choice of network lies in their potential to achieve fast and low-energy computing on specialized hardware.To train our system,we use the modulated spike time-dependent plasticity reinforcement learning rule and a simulation environment based on the BindsNET library and USVSim simulator.Our objective was to develop a spiking neural network-based control systems that can learn policies allowing sailboats to navigate between two points by following a straight line or performing tacking and gybing strategies,depending on the sailing scenario conditions.We presented the mathematical definition of the problem,the operation scheme of the simulation environment,the spiking neural network controllers,and the control strategy used.As a result,we obtained 425 SNN-based controllers that completed the proposed navigation task,indicating that the simulation environment and the implemented control strategy work effectively.Finally,we compare the behavior of our best controller with other algorithms and present some possible strategies to improve its performance.