Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor m...Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent.展开更多
This study focuses on the teaching reform of the communication application development course based on the core requirements of engineering education accreditation.To address key challenges such as the disconnection b...This study focuses on the teaching reform of the communication application development course based on the core requirements of engineering education accreditation.To address key challenges such as the disconnection between software and hardware teaching and insufficient practical skills among students,a project-driven“learning-practiceapplication”teaching model is proposed.By optimizing course content,innovating teaching methods,and introducing university-industry collaboration mechanisms,the reform aligns the curriculum more closely with engineering education standards and industry demands.The approach significantly enhances students’comprehensive skills,practical abilities,and employability.This study provides theoretical foundations and practical strategies for the teaching reform of courses in communication engineering.展开更多
Traffic datasets exhibit complex spatiotemporal characteristics,including significant fluctuations in traffic volume and intricate periodical patterns,which pose substantial challenges for the accurate forecasting and...Traffic datasets exhibit complex spatiotemporal characteristics,including significant fluctuations in traffic volume and intricate periodical patterns,which pose substantial challenges for the accurate forecasting and effective management of traffic conditions.Traditional forecasting models often struggle to adequately capture these complexities,leading to suboptimal predictive performance.While neural networks excel at modeling intricate and nonlinear data structures,they are also highly susceptible to overfitting,resulting in inefficient use of computational resources and decreased model generalization.This paper introduces a novel heuristic feature extraction method that synergistically combines the strengths of non-neural network algorithms with neural networks to enhance the identification and representation of relevant features from traffic data.We begin by evaluating the significance of various temporal characteristics using three distinct assessment strategies grounded in non-neural methodologies.These evaluated features are then aggregated through a weighted fusion mechanism to create heuristic features,which are subsequently integrated into neural network models for more accurate and robust traffic prediction.Experimental results derived from four real-world datasets,collected from diverse urban environments,show that the proposed method significantly improves the accuracy of long-term traffic forecasting without compromising performance.Additionally,the approach helps streamline neural network architectures,leading to a considerable reduction in computational overhead.By addressing both prediction accuracy and computational efficiency,this study not only presents an innovative and effective method for traffic condition forecasting but also offers valuable insights that can inform the future development of data-driven traffic management systems and transportation strategies.展开更多
Higher education is at the top of the educational hierarchy.With the booming development of the economy and society in China,its scale is also expanding greatly.Professional course teaching is a key component of highe...Higher education is at the top of the educational hierarchy.With the booming development of the economy and society in China,its scale is also expanding greatly.Professional course teaching is a key component of higher education,and it plays a vital role in cultivating professionalism and even the overall level of students.According to several problems existing in the current teaching practice of professional courses at our universities,in order to improve the teaching quality to meet the requirements in the emerging engineering era,related strategies and approaches for teaching reform are proposed as follows.Firstly,we advance the traditional classroom teaching into the modern one with equal double-subjects of teachers and students to cultivate the active and comprehensive learning ability of students.Secondly,the scientific research practice-oriented teaching method is introduced,and it contributes to connecting theory with engineering practice for students.Thirdly,the diversified course assessment system is explored,and a closed-loop quality control strategy is discussed on the basis of a questionnaire survey and face-to-face interview.By questionnaires and final assessments,it is clear that teaching qualities of related professional courses are satisfactory in recent years,and the methods and strategies can be widely applied to the teaching practice of other courses.展开更多
Ultra-thin crystalline silicon stands as a cornerstone material in the foundation of modern micro and nano electronics.Despite the proliferation of various materials including oxide-based,polymer-based,carbon-based,an...Ultra-thin crystalline silicon stands as a cornerstone material in the foundation of modern micro and nano electronics.Despite the proliferation of various materials including oxide-based,polymer-based,carbon-based,and two-dimensional(2D)materials,crystal silicon continues to maintain its stronghold,owing to its superior functionality,scalability,stability,reliability,and uniformity.Nonetheless,the inherent rigidity of the bulk silicon leads to incompatibility with soft tissues,hindering the utilization amid biomedical applications.Because of such issues,decades of research have enabled successful utilization of various techniques to precisely control the thickness and morphology of silicon layers at the scale of several nanometres.This review provides a comprehensive exploration on the features of ultra-thin single crystalline silicon as a semiconducting material,and its role especially among the frontier of advanced bioelectronics.Key processes that enable the transition of rigid silicon to flexible form factors are exhibited,in accordance with their chronological sequence.The inspected stages span both prior and subsequent to transferring the silicon membrane,categorized respectively as on-wafer manufacturing and rigid-to-soft integration.Extensive guidelines to unlock the full potential of flexible electronics are provided through ordered analysis of each manufacturing procedure,the latest findings of biomedical applications,along with practical perspectives for researchers and manufacturers.展开更多
The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(...The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.展开更多
Through strategies such as process optimization,solvent selection,and component tuning,the crystallization of perovskite materials has been effectively controlled,enabling perovskite solar cells(PSCs)to achieve over 2...Through strategies such as process optimization,solvent selection,and component tuning,the crystallization of perovskite materials has been effectively controlled,enabling perovskite solar cells(PSCs)to achieve over 25%power conversion efficiency(PCE).However,as PCE continues to improve,interfacial issues within the devices have emerged as critical bottlenecks,hindering further performance enhancements.Recently,interfacial engineering has driven transformative progress,pushing PCEs to nearly 27%.Building upon these developments,this review first summarizes the pivotal role of interfacial modifications in elevating device performance and then,as a starting point,provides a comprehensive overview of recent advancements in normal,inverted,and tandem structure devices.Finally,based on the current progress of PSCs,preliminary perspectives on future directions are presented.展开更多
Cation segregation on cathode surfaces plays a key role in determining the activity and operational stability of solid oxide fuel cells(SOFCs).The double perovskite oxide PrBa_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(PBCC)has been...Cation segregation on cathode surfaces plays a key role in determining the activity and operational stability of solid oxide fuel cells(SOFCs).The double perovskite oxide PrBa_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(PBCC)has been widely studied as an active cathode but still suffer from serious detrimental segregations.To enhance the cathode stability,a PBCC derived A-site medium-entropy Pr_(0.6)La_(0.1)Nd_(0.1)Sm_(0.1)Gd_(0.1)Ba_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(ME-PBCC)oxide was prepared and its segregation behaviors were investigated under different conditions.Compared with initial PBCC oxide,the segregations of BaO and Co_(3)O_(4)on the surface of ME-PBCC material are significantly suppressed,especially for Co_(3)O_(4),which is attributed to its higher configuration entropy.Our results also confirm the improved electrochemical performance and structural stability of ME-PBCC material,enabling it as a promising cathode for SOFCs.展开更多
The Cooling Storage Ring(CSR)external-target experiment(CEE)will be the first large-scale nuclear physics experiment at the Heavy Ion Research Facility in Lanzhou(HIRFL).A beam monitor has been developed to monitor th...The Cooling Storage Ring(CSR)external-target experiment(CEE)will be the first large-scale nuclear physics experiment at the Heavy Ion Research Facility in Lanzhou(HIRFL).A beam monitor has been developed to monitor the beam status and to improve the reconstruction resolution of the primary vertex.Custom-designed pixel charge sensors,named TopmetalCEEv1,are employed in the detector to locate the position of each particle.Readout electronics for the beam monitor were designed,including front-end electronics utilizing the Topmetal-CEEv1 sensors,as well as a readout and control unit that communicates with the DAQ,trigger,and clock systems.A series of tests were performed to validate the functionality and performance of the system,including basic electronic verifications and responses toαparticles and heavy-ion beams.The results show that all designed functions of the readout electronics system work well,and this system could be used for beam monitoring in the CEE experiment.展开更多
The presence of a van Hove singularity(vHS)at the Fermi level can trigger magnetic instability by mediating a spontaneous transition from paramagnetic to magnetically ordered states.While electrostatic doping(typicall...The presence of a van Hove singularity(vHS)at the Fermi level can trigger magnetic instability by mediating a spontaneous transition from paramagnetic to magnetically ordered states.While electrostatic doping(typically achieved via ionic gating)to shift the vHS to the Fermi level provides a general mechanism for engineering such magnetism,its volatile nature often leads to the collapse of induced states upon gate field removal.Here,a novel scheme is presented for non-volatile magnetic control by utilizing ferroelectric heterostructures to achieve reversible magnetism switching.Using two-dimensional VSiN_(3),a nonmagnetic material with Mexican-hat electronic band dispersions hosting vHSs,as a prototype,it is preliminarily demonstrated that both electron and hole doping can robustly induce magnetism.Further,by interfacing VSiN_(3)with ferroelectric Sc_(2)CO_(2),reversible switching of its magnetic state via polarization-driven heterointerfacial charge transfer is achieved.This mechanism enables a dynamic transition between insulating and half-metallic phases in VSiN_(3),establishing a pathway to design multiferroic tunnel junctions with giant tunneling electroresistance or magnetoresistance.This work bridges non-volatile ferroelectric control with vHS-enhanced magnetism,opening opportunities for energy-efficient and high-performance spintronic devices and non-volatile memory devices.展开更多
In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints o...In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach.展开更多
In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar perce...In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.展开更多
Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been...Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.展开更多
Ambient-air,moisture-assisted annealing is widely used in fabricating perovskite solar cells(PSCs).However,the inherent sensitivity of perovskite intermediate-phase to moisture—due to fast and spontaneous intermolecu...Ambient-air,moisture-assisted annealing is widely used in fabricating perovskite solar cells(PSCs).However,the inherent sensitivity of perovskite intermediate-phase to moisture—due to fast and spontaneous intermolecular exchange reaction—requires strict control of ambient humidity and immediate thermal annealing treatment,raising manufacturing costs and causing fast nucleation of perovskite films.We report herein a self-buffered molecular migration strategy to slow down the intermolecular exchange reaction by introducing a n-butylammonium bromide shielding layer,which limits moisture diffusion into intermediate-phase film.This further endows the notably wide nucleation time and humidity windows for perovskite crystallization in ambient air.Consequently,the optimized 1.68 e V-bandgap n-i-p structured PSC reaches a record-high reverse-scan(RS)PCE of 22.09%.Furthermore,the versatility and applicability of as-proposed self-buffered molecular migration strategy are certified by employing various shielding materials and 1.53 eV-/1.77 eV-bandgap perovskite materials.The n-i-p structured PSCs based on 1.53 eV-and 1.77 eV-bandgap perovskite films achieve outstanding RS PCEs of 25.23%and 19.09%,respectively,both of which are beyond of the state-of-the-art ambient-air processed PSCs.展开更多
Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Alth...Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Although organic additives can enhance the antifreeze properties of electrolytes,their weak polarity diminishes ionic conductivity,and their flammability poses safety concerns,undermining the inherent advantages of aqueous systems.Herein,we present a cost-effective and highly stable Na_(2)SO_(4)additive introduced into a Zn(ClO_(4))2-based electrolyte to create an organic-free antifreeze electrolyte.Through Raman spectroscopy,in situ optical microscopy,densityfunctional theory computations,and molecular dynamics simulations,we demonstrate that Na+ions improve low-temperature electrolyte performance and mitigate dendrite formation by regulating uniform Zn^(2+)deposition through preferential adsorption and electrostatic interactions.As a result,the Zn||Zn cells using this electrolyte achieve a remarkable cycling life of 360 h at-40℃ with 61% depth of discharge,and the Zn||PANI cells retained an ultrahigh capacity retention of 91%even after 8000 charge/discharge cycles at-40℃.This work proposes a cost-effective and practical approach for enhancing the long-term operational stability of AZMBs in low-temperature environments.展开更多
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,...Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.展开更多
The ZDPS-1A pico-satellites are the first satellites in China within the 1-10 kg mass range that are successfully operated on orbit. Unlike common pico-satellites, they are designed to be "larger but stronger" with ...The ZDPS-1A pico-satellites are the first satellites in China within the 1-10 kg mass range that are successfully operated on orbit. Unlike common pico-satellites, they are designed to be "larger but stronger" with more powerful platforms and unique payloads so as to bear a better promise for real applications. Through their space flight mission, the functionality and perform- ance of the two flight models are tested on orbit and validated to be mostly normal and in consistency with design and ground tests with only several inconforming occasions. Moreover, they have worked properly on orbit for one year so far, well exceed- ing their life expectancy of three months. Therefore, the space flight mission has reached all its goals, and verified that the design concept and the engineering process of the pico-satellites are sufficient in allowing them the desired functionality and perform- ance in, and the adaption to the launch procedure and the low-Earth orbit space environment. In the foreseeable future, the plat- form together with the design concept and the engineering process of the pico-satellites are expected to be applied to more com- plicated real space applications.展开更多
The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability poss...The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability possesses the better control performance and disturbance rejection property. Different from the finite-time stability, the fixed-time stability has a faster convergence speed and the upper bound of the settling time can be estimated. Moreover, the convergent time does not rely on the initial information.This work aims at presenting an overview of the finite/fixed-time stabilization and tracking control and its applications in engineering systems. Firstly, several fundamental definitions on the finite/fixed-time stability are recalled. Then, the research results on the finite/fixed-time stabilization and tracking control are reviewed in detail and categorized via diverse input signal structures and engineering applications. Finally, some challenging problems needed to be solved are presented.展开更多
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M...Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.展开更多
The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly co...The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly consists of two parts,i.e.,an analog electronics section(including a pre-amplifier,a signal shaper and filter,a constant fraction timing circuit,and a peak hold circuit)and a digital electronics section(including an ADC and a TDC).Test results with X-ray sources show that an energy dynamic range of 1-10 keV with an integral nonlinearity of less than 0.1%can be achieved,and the energy resolution is better than 160 eV @ 5.9 keV FWHM.Using a waveform generator,test results also indicate that time resolution of the electronics system is about 3.7 ns,which is much less than the transit time spread of SDD(<100 ns)and satisfies the requirements of future applications.展开更多
基金supported by the National Natural Science Foundation of China(No.62374142)Fundamental Research Funds for the Central Universities(Nos.20720220085 and 20720240064)+2 种基金External Cooperation Program of Fujian(No.2022I0004)Major Science and Technology Project of Xiamen in China(No.3502Z20191015)Xiamen Natural Science Foundation Youth Project(No.3502Z202471002)。
文摘Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent.
基金Quality Engineering Project of Higher Education Institutions in Anhui Province(2023aqnujyxm26,2023sx060,2023zyxwjxalk124)Natural Science Key Research Project for Higher Education Institutions of Anhui Province(2024AH051117,2024AH051126)+1 种基金Excellent Young Backbone Teachers’Domestic and Foreign Visiting and Training Program in Universities(gxgnfx20220262022)Research and Industrialization Project of High Precision Positioning System for Intelligent Connected Vehicles。
文摘This study focuses on the teaching reform of the communication application development course based on the core requirements of engineering education accreditation.To address key challenges such as the disconnection between software and hardware teaching and insufficient practical skills among students,a project-driven“learning-practiceapplication”teaching model is proposed.By optimizing course content,innovating teaching methods,and introducing university-industry collaboration mechanisms,the reform aligns the curriculum more closely with engineering education standards and industry demands.The approach significantly enhances students’comprehensive skills,practical abilities,and employability.This study provides theoretical foundations and practical strategies for the teaching reform of courses in communication engineering.
基金supported by the Shandong Province Higher Education Young Innovative Talents Cultivation Programme Project:TJY2114Jinan City-School Integration Development Strategy Project:JNSX2023015the Natural Science Foundation of Shandong Province:ZR2021M F074.
文摘Traffic datasets exhibit complex spatiotemporal characteristics,including significant fluctuations in traffic volume and intricate periodical patterns,which pose substantial challenges for the accurate forecasting and effective management of traffic conditions.Traditional forecasting models often struggle to adequately capture these complexities,leading to suboptimal predictive performance.While neural networks excel at modeling intricate and nonlinear data structures,they are also highly susceptible to overfitting,resulting in inefficient use of computational resources and decreased model generalization.This paper introduces a novel heuristic feature extraction method that synergistically combines the strengths of non-neural network algorithms with neural networks to enhance the identification and representation of relevant features from traffic data.We begin by evaluating the significance of various temporal characteristics using three distinct assessment strategies grounded in non-neural methodologies.These evaluated features are then aggregated through a weighted fusion mechanism to create heuristic features,which are subsequently integrated into neural network models for more accurate and robust traffic prediction.Experimental results derived from four real-world datasets,collected from diverse urban environments,show that the proposed method significantly improves the accuracy of long-term traffic forecasting without compromising performance.Additionally,the approach helps streamline neural network architectures,leading to a considerable reduction in computational overhead.By addressing both prediction accuracy and computational efficiency,this study not only presents an innovative and effective method for traffic condition forecasting but also offers valuable insights that can inform the future development of data-driven traffic management systems and transportation strategies.
基金Undergraduate Education Reform Project of Dalian Maritime University(BJG-C2024072)Postgraduate Education Reform Project of Liaoning Province([2022]249-209)+1 种基金Education Reform Project of Dalian Minzu University(YB202547,YJS2024JG55,B2109)First-Class Undergraduate Courses of Liaoning Province([2022]302-1433,[2022]302-1452)。
文摘Higher education is at the top of the educational hierarchy.With the booming development of the economy and society in China,its scale is also expanding greatly.Professional course teaching is a key component of higher education,and it plays a vital role in cultivating professionalism and even the overall level of students.According to several problems existing in the current teaching practice of professional courses at our universities,in order to improve the teaching quality to meet the requirements in the emerging engineering era,related strategies and approaches for teaching reform are proposed as follows.Firstly,we advance the traditional classroom teaching into the modern one with equal double-subjects of teachers and students to cultivate the active and comprehensive learning ability of students.Secondly,the scientific research practice-oriented teaching method is introduced,and it contributes to connecting theory with engineering practice for students.Thirdly,the diversified course assessment system is explored,and a closed-loop quality control strategy is discussed on the basis of a questionnaire survey and face-to-face interview.By questionnaires and final assessments,it is clear that teaching qualities of related professional courses are satisfactory in recent years,and the methods and strategies can be widely applied to the teaching practice of other courses.
基金support received from National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT)(RS-2024-00353768)the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT)(RS-2025-02217919)+1 种基金funded by the Yonsei Fellowshipfunded by Lee Youn Jae and the KIST Institutional Program Project No.2E31603-22-140 (KJY).
文摘Ultra-thin crystalline silicon stands as a cornerstone material in the foundation of modern micro and nano electronics.Despite the proliferation of various materials including oxide-based,polymer-based,carbon-based,and two-dimensional(2D)materials,crystal silicon continues to maintain its stronghold,owing to its superior functionality,scalability,stability,reliability,and uniformity.Nonetheless,the inherent rigidity of the bulk silicon leads to incompatibility with soft tissues,hindering the utilization amid biomedical applications.Because of such issues,decades of research have enabled successful utilization of various techniques to precisely control the thickness and morphology of silicon layers at the scale of several nanometres.This review provides a comprehensive exploration on the features of ultra-thin single crystalline silicon as a semiconducting material,and its role especially among the frontier of advanced bioelectronics.Key processes that enable the transition of rigid silicon to flexible form factors are exhibited,in accordance with their chronological sequence.The inspected stages span both prior and subsequent to transferring the silicon membrane,categorized respectively as on-wafer manufacturing and rigid-to-soft integration.Extensive guidelines to unlock the full potential of flexible electronics are provided through ordered analysis of each manufacturing procedure,the latest findings of biomedical applications,along with practical perspectives for researchers and manufacturers.
基金supported by the National Natural Science Foundation of China (Nos. 12222512, 12375193, U2031206, U1831206, and U2032209)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (GJJSTD20210009)+1 种基金the CAS Pioneer Hundred Talent Programthe CAS Light of West China Program
文摘The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.
基金supported by National Natural Science Foundation of China(52302229,62404072)the Key Lab of Modern Optical Technologies of Education Ministry of China,Soochow University(KJS2425)+1 种基金Doctoral Foundation of Henan Polytech-nic University(B2024-72)Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant No.GJJ2400702).
文摘Through strategies such as process optimization,solvent selection,and component tuning,the crystallization of perovskite materials has been effectively controlled,enabling perovskite solar cells(PSCs)to achieve over 25%power conversion efficiency(PCE).However,as PCE continues to improve,interfacial issues within the devices have emerged as critical bottlenecks,hindering further performance enhancements.Recently,interfacial engineering has driven transformative progress,pushing PCEs to nearly 27%.Building upon these developments,this review first summarizes the pivotal role of interfacial modifications in elevating device performance and then,as a starting point,provides a comprehensive overview of recent advancements in normal,inverted,and tandem structure devices.Finally,based on the current progress of PSCs,preliminary perspectives on future directions are presented.
基金Project supported by the National Natural Science Foundation of China(22279025,21773048,52302119)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Cation segregation on cathode surfaces plays a key role in determining the activity and operational stability of solid oxide fuel cells(SOFCs).The double perovskite oxide PrBa_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(PBCC)has been widely studied as an active cathode but still suffer from serious detrimental segregations.To enhance the cathode stability,a PBCC derived A-site medium-entropy Pr_(0.6)La_(0.1)Nd_(0.1)Sm_(0.1)Gd_(0.1)Ba_(0.8)Ca_(0.2)Co_(2)O_(5+δ)(ME-PBCC)oxide was prepared and its segregation behaviors were investigated under different conditions.Compared with initial PBCC oxide,the segregations of BaO and Co_(3)O_(4)on the surface of ME-PBCC material are significantly suppressed,especially for Co_(3)O_(4),which is attributed to its higher configuration entropy.Our results also confirm the improved electrochemical performance and structural stability of ME-PBCC material,enabling it as a promising cathode for SOFCs.
基金supported by the National Natural Science Foundation of China(Nos.11927901,12105110,U2032209,12275105)the National Key Research and Development Program of China(Nos.2020YFE0202002,2022YFA1602103)the Fundamental Research Funds for the Central Universities(No.CCNU22QN005)。
文摘The Cooling Storage Ring(CSR)external-target experiment(CEE)will be the first large-scale nuclear physics experiment at the Heavy Ion Research Facility in Lanzhou(HIRFL).A beam monitor has been developed to monitor the beam status and to improve the reconstruction resolution of the primary vertex.Custom-designed pixel charge sensors,named TopmetalCEEv1,are employed in the detector to locate the position of each particle.Readout electronics for the beam monitor were designed,including front-end electronics utilizing the Topmetal-CEEv1 sensors,as well as a readout and control unit that communicates with the DAQ,trigger,and clock systems.A series of tests were performed to validate the functionality and performance of the system,including basic electronic verifications and responses toαparticles and heavy-ion beams.The results show that all designed functions of the readout electronics system work well,and this system could be used for beam monitoring in the CEE experiment.
基金supported by the National Natural Science Foundation of China(Grant Nos.62174016,12474047,12204202,and 11974355)the Basic Research Program of Jiangsu(Grant No.BK20220679)+1 种基金the Fund for Shanxi“1331Project”the Research Project Supported by Shanxi Scholarship Council of China.
文摘The presence of a van Hove singularity(vHS)at the Fermi level can trigger magnetic instability by mediating a spontaneous transition from paramagnetic to magnetically ordered states.While electrostatic doping(typically achieved via ionic gating)to shift the vHS to the Fermi level provides a general mechanism for engineering such magnetism,its volatile nature often leads to the collapse of induced states upon gate field removal.Here,a novel scheme is presented for non-volatile magnetic control by utilizing ferroelectric heterostructures to achieve reversible magnetism switching.Using two-dimensional VSiN_(3),a nonmagnetic material with Mexican-hat electronic band dispersions hosting vHSs,as a prototype,it is preliminarily demonstrated that both electron and hole doping can robustly induce magnetism.Further,by interfacing VSiN_(3)with ferroelectric Sc_(2)CO_(2),reversible switching of its magnetic state via polarization-driven heterointerfacial charge transfer is achieved.This mechanism enables a dynamic transition between insulating and half-metallic phases in VSiN_(3),establishing a pathway to design multiferroic tunnel junctions with giant tunneling electroresistance or magnetoresistance.This work bridges non-volatile ferroelectric control with vHS-enhanced magnetism,opening opportunities for energy-efficient and high-performance spintronic devices and non-volatile memory devices.
文摘In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach.
基金Supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+1 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi ProvinceIntelligent Optoelectronic Sensing Application Technology Innovation Center and Shanxi Province Optoelectronic Information Science and TechnologyLaboratory,Yuncheng University.
文摘In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.
基金supported by The University of Hong Kong,China(109000487,109001694,204610401,and 204610519)National Natural Science Foundation of China(82402225)(to JH).
文摘Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.
基金the financial support from the National Key R&D Program of China(2021YFF0500500)the National Natural Science Foundation of China(62474131,62274132,and 62204189)。
文摘Ambient-air,moisture-assisted annealing is widely used in fabricating perovskite solar cells(PSCs).However,the inherent sensitivity of perovskite intermediate-phase to moisture—due to fast and spontaneous intermolecular exchange reaction—requires strict control of ambient humidity and immediate thermal annealing treatment,raising manufacturing costs and causing fast nucleation of perovskite films.We report herein a self-buffered molecular migration strategy to slow down the intermolecular exchange reaction by introducing a n-butylammonium bromide shielding layer,which limits moisture diffusion into intermediate-phase film.This further endows the notably wide nucleation time and humidity windows for perovskite crystallization in ambient air.Consequently,the optimized 1.68 e V-bandgap n-i-p structured PSC reaches a record-high reverse-scan(RS)PCE of 22.09%.Furthermore,the versatility and applicability of as-proposed self-buffered molecular migration strategy are certified by employing various shielding materials and 1.53 eV-/1.77 eV-bandgap perovskite materials.The n-i-p structured PSCs based on 1.53 eV-and 1.77 eV-bandgap perovskite films achieve outstanding RS PCEs of 25.23%and 19.09%,respectively,both of which are beyond of the state-of-the-art ambient-air processed PSCs.
基金financially supported by the National Natural Science Foundation of China(Grant No.52377206,52307237)Natural Science Foundation of Heilongjiang Province of China(YQ2024E046)Postdoctoral Science Foundation of Heilongjiang Province of China(LBH-TZ2413,LBH-Z23198)。
文摘Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Although organic additives can enhance the antifreeze properties of electrolytes,their weak polarity diminishes ionic conductivity,and their flammability poses safety concerns,undermining the inherent advantages of aqueous systems.Herein,we present a cost-effective and highly stable Na_(2)SO_(4)additive introduced into a Zn(ClO_(4))2-based electrolyte to create an organic-free antifreeze electrolyte.Through Raman spectroscopy,in situ optical microscopy,densityfunctional theory computations,and molecular dynamics simulations,we demonstrate that Na+ions improve low-temperature electrolyte performance and mitigate dendrite formation by regulating uniform Zn^(2+)deposition through preferential adsorption and electrostatic interactions.As a result,the Zn||Zn cells using this electrolyte achieve a remarkable cycling life of 360 h at-40℃ with 61% depth of discharge,and the Zn||PANI cells retained an ultrahigh capacity retention of 91%even after 8000 charge/discharge cycles at-40℃.This work proposes a cost-effective and practical approach for enhancing the long-term operational stability of AZMBs in low-temperature environments.
基金supported by the Basic Science Research Program(2023R1A2C3004336,RS-202300243807)&Regional Leading Research Center(RS-202400405278)through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)。
文摘Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.
基金National Natural Science Foundation of China (60904090)
文摘The ZDPS-1A pico-satellites are the first satellites in China within the 1-10 kg mass range that are successfully operated on orbit. Unlike common pico-satellites, they are designed to be "larger but stronger" with more powerful platforms and unique payloads so as to bear a better promise for real applications. Through their space flight mission, the functionality and perform- ance of the two flight models are tested on orbit and validated to be mostly normal and in consistency with design and ground tests with only several inconforming occasions. Moreover, they have worked properly on orbit for one year so far, well exceed- ing their life expectancy of three months. Therefore, the space flight mission has reached all its goals, and verified that the design concept and the engineering process of the pico-satellites are sufficient in allowing them the desired functionality and perform- ance in, and the adaption to the launch procedure and the low-Earth orbit space environment. In the foreseeable future, the plat- form together with the design concept and the engineering process of the pico-satellites are expected to be applied to more com- plicated real space applications.
基金partially supported by the National Natural Science Foundation of China(62003097,62121004,62033003,62073019)the Local Innovative and Research Teams Project of Guangdong Special Support Program(2019BT02X353)+2 种基金the Key Area Research and Development Program of Guangdong Province(2021B0101410005)the Joint Funds of Guangdong Basic and Applied Basic Research Foundation(2019A1515110505)。
文摘The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability possesses the better control performance and disturbance rejection property. Different from the finite-time stability, the fixed-time stability has a faster convergence speed and the upper bound of the settling time can be estimated. Moreover, the convergent time does not rely on the initial information.This work aims at presenting an overview of the finite/fixed-time stabilization and tracking control and its applications in engineering systems. Firstly, several fundamental definitions on the finite/fixed-time stability are recalled. Then, the research results on the finite/fixed-time stabilization and tracking control are reviewed in detail and categorized via diverse input signal structures and engineering applications. Finally, some challenging problems needed to be solved are presented.
基金supported by the National Natural Science Foundation of China(No.21676065 and No.52373262)China Postdoctoral Science Foundation(2021MD703944,2022T150782).
文摘Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.
基金supported by the National Natural Science Foundation of China(Grant No.11205154)
文摘The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly consists of two parts,i.e.,an analog electronics section(including a pre-amplifier,a signal shaper and filter,a constant fraction timing circuit,and a peak hold circuit)and a digital electronics section(including an ADC and a TDC).Test results with X-ray sources show that an energy dynamic range of 1-10 keV with an integral nonlinearity of less than 0.1%can be achieved,and the energy resolution is better than 160 eV @ 5.9 keV FWHM.Using a waveform generator,test results also indicate that time resolution of the electronics system is about 3.7 ns,which is much less than the transit time spread of SDD(<100 ns)and satisfies the requirements of future applications.