In two-dimensional bilayer systems,twist-angle-dependent electronic and thermoelectric properties have garnered significant scientific interest in recent years.In this work,based on a combination of density functional...In two-dimensional bilayer systems,twist-angle-dependent electronic and thermoelectric properties have garnered significant scientific interest in recent years.In this work,based on a combination of density functional theory and nonequilibrium Green’s function method,we explore the electronic and thermoelectric properties in blue-phosphorene nanoribbon-based heterojunction(BPNRHJ)with and without blue-phosphorene nanoribbon(BPNR)stack.Our calculations find that the electronic conductance and power factor can be strongly enhanced by the BPNR stack,and their enhancements can be further observed with the twist between the layers.The main reason for this is the electronic hybridization between the layers can provide new transport channels,and the twist can modulate the strength of interlayer electronic hybridization,resulting in extremely violent fluctuations in electron transmission and hence an enhanced power factor.While the phonon thermal conductance exhibits very low dependence on the layer stack and twist.Combining these factors,our results reveal that the thermoelectric performance can be greatly modulated and enhanced in twist bilayer BPNRHJ:the figure of merit will be over 2.5 in 4-4-ZBPNR@ZGNR-AA-8.8∘at 500 K.展开更多
With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contex...With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contextual understanding,sequential dependencies,and/or data imbalance.This makes distinction between genuine and fabricated news a challenging task.To address this problem,we propose a novel hybrid architecture,T5-SA-LSTM,which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attentionenhanced(SA)Long Short-Term Memory(LSTM).The LSTM is trained using the Adam optimizer,which provides faster and more stable convergence compared to the Stochastic Gradient Descend(SGD)and Root Mean Square Propagation(RMSProp).The WELFake and FakeNewsPrediction datasets are used,which consist of labeled news articles having fake and real news samples.Tokenization and Synthetic Minority Over-sampling Technique(SMOTE)methods are used for data preprocessing to ensure linguistic normalization and class imbalance.The incorporation of the Self-Attention(SA)mechanism enables the model to highlight critical words and phrases,thereby enhancing predictive accuracy.The proposed model is evaluated using accuracy,precision,recall(sensitivity),and F1-score as performance metrics.The model achieved 99%accuracy on the WELFake dataset and 96.5%accuracy on the FakeNewsPrediction dataset.It outperformed the competitive schemes such as T5-SA-LSTM(RMSProp),T5-SA-LSTM(SGD)and some other models.展开更多
Opto-electronics is rooted in the effects and principles of light,photons,and even photonic quasiparticles interaction with matter such as electronics systems,focusing on the generation,transmission,detection,and mani...Opto-electronics is rooted in the effects and principles of light,photons,and even photonic quasiparticles interaction with matter such as electronics systems,focusing on the generation,transmission,detection,and manipulation of energy and information.This field drives innovation across diverse technological domains,including advanced materials,devices,methods,instruments,and equipment that empower humanity to overcome significant challenges in observation,communication,computing,data storage,display technologies,and sustainable energy solutions.展开更多
Despite great advancements in organic mixed ionic-electronic conductors(OMIECs),their applications remain predominantly restricted to three-electrode organic electro-chemical transistors(OECTs),which rely on an additi...Despite great advancements in organic mixed ionic-electronic conductors(OMIECs),their applications remain predominantly restricted to three-electrode organic electro-chemical transistors(OECTs),which rely on an additional electrolyte layer to balance ionic and electronic transport,resulting in indirect coupling of charge carriers.While direct coupling has the potential to greatly simplify device architectures,it remains underexplored in OMIECs due to the inherent imbalance between electronic and ionic conductivities.In this study,we introduce a straightforward approach to achieve balanced OMIECs and employ them as channel materials in two-electrode organic electrochemical memristors.These devices provide clear evidence of direct coupling between electronic and ionic carriers and exhibit exceptional performance in synaptic device applications.Our findings offer new insights into charge carrier transport mechanisms in OMIECs and establish organic electrochemical memristors as a promising new class of organic electronic devices for next-generation neuromorphic applications.展开更多
Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances a...Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems.展开更多
Reliable electricity infrastructure is critical for modern society,highlighting the importance of securing the stability of fundamental power electronic systems.However,as such systems frequently involve high-current ...Reliable electricity infrastructure is critical for modern society,highlighting the importance of securing the stability of fundamental power electronic systems.However,as such systems frequently involve high-current and high-voltage conditions,there is a greater likelihood of failures.Consequently,anomaly detection of power electronic systems holds great significance,which is a task that properly-designed neural networks can well undertake,as proven in various scenarios.Transformer-like networks are promising for such application,yet with its structure initially designed for different tasks,features extracted by beginning layers are often lost,decreasing detection performance.Also,such data-driven methods typically require sufficient anomalous data for training,which could be difficult to obtain in practice.Therefore,to improve feature utilization while achieving efficient unsupervised learning,a novel model,Densely-connected Decoder Transformer(DDformer),is proposed for unsupervised anomaly detection of power electronic systems in this paper.First,efficient labelfree training is achieved based on the concept of autoencoder with recursive-free output.An encoder-decoder structure with densely-connected decoder is then adopted,merging features from all encoder layers to avoid possible loss of mined features while reducing training difficulty.Both simulation and real-world experiments are conducted to validate the capabilities of DDformer,and the average FDR has surpassed baseline models,reaching 89.39%,93.91%,95.98%in different experiment setups respectively.展开更多
Flexible electronics is gaining prominence in modern technology,particularly in flexible displays,wearable electronics,and biomedical applications.Electrodes,as core components of flexible electronics,demand high cond...Flexible electronics is gaining prominence in modern technology,particularly in flexible displays,wearable electronics,and biomedical applications.Electrodes,as core components of flexible electronics,demand high conductivity,flexibility,and stretchability.However,traditional rigid conductive materials often generate interfacial slip with elastic substrates due to mismatched Young's modulus,adversely affecting device performance.Room-temperature liquid metals(LMs),with their high conductivity and stretchability,have emerged as ideal materials for stable and reliable flexible electronic devices.This review discusses the physical,chemical,and biocompatibility properties of LMs.Additionally,LM-based fabrication strategies including patterning and sintering for flexible electrodes are outlined.Applications in implantable medical devices,wearable electronics,and flexible energy storage are illustrated.Finally,the primary challenges and future research directions in LMs are identified.展开更多
The structural,relative stability,and electronic properties of two-dimensional AsP_(2)X_(6)(X=S,Se)were predicted and studied using the particle-swarm optimization method and first principles calculations.We proposed ...The structural,relative stability,and electronic properties of two-dimensional AsP_(2)X_(6)(X=S,Se)were predicted and studied using the particle-swarm optimization method and first principles calculations.We proposed two low energy structures with P312 and P-31m phases,both of which the structures are hexagonal in shape and show non-centrosymmetry for the P312 phase and centrosymmetry for the P-31m phase.According to our results,two structural phases are found to be stable thermally and dynamically.The P312 phase of AsP_(2)X_(6)(X=S,Se)are indirect semiconductors with band gaps of 2.44 eV(AsP2S6)and 2.18 eV(AsP2Se6)at the HSE06 level,and their absorption coefficients are predicted to reach the order of 10^(5)cm^(-1)from visible light to ultraviolet region,but the main absorption is manly in the ultraviolet region.The P-31m phase of AsP_(2)X_(6)(X=S,Se)exhibits metal character with the Fermi surface mainly occupied by the p orbital of S/Se.Remarkably,estimated by first principles calculations,the P-31m AsP2S6 is found to be an intrinsic phonon-mediated superconductor with a relatively high critical superconducting temperature of about 13.4 K,and the P-31m AsP2Se6 only has a superconducting temperature of 1.4 K,which suggest that the P-31m AsP2S6 may be a good candidate for a nanoscale superconductor.展开更多
The electronic structure,elasticity,and magnetic properties of the Mn_(2)XIn(X=Fe,Co)full-Heusler compounds are comprehensively investigated via first-principles calculations.The calculated elastic constants indicate ...The electronic structure,elasticity,and magnetic properties of the Mn_(2)XIn(X=Fe,Co)full-Heusler compounds are comprehensively investigated via first-principles calculations.The calculated elastic constants indicate that both Mn_(2)FeIn and Mn_(2)Co In possess ductility.At the optimal lattice constants,the magnetic moments are found to be 1.40μB/f.u.for Mn_(2)FeIn and 1.69μB/f.u.for Mn_(2)CoIn.Under the biaxial strain ranging from-2%to 5%,Mn_(2)FeIn demonstrates a remarkable variation in the spin polarization,spanning from-2%to 74%,positioning it as a promising candidate for applications in spintronic devices.Analysis of the electronic structure reveals that the change in spin polarization under strain is due to the shift of the spin-down states at the Fermi surface.Additionally,under biaxial strain,the magnetic anisotropy of Mn_(2)FeIn undergoes a transition of easy-axis direction.Utilizing second-order perturbation theory and electronic structure analysis,the variation in magnetic anisotropy with strain can be attributed to changes of d-orbital states near the Fermi surface.展开更多
Ultra-thin crystalline silicon stands as a cornerstone material in the foundation of modern micro and nano electronics.Despite the proliferation of various materials including oxide-based,polymer-based,carbon-based,an...Ultra-thin crystalline silicon stands as a cornerstone material in the foundation of modern micro and nano electronics.Despite the proliferation of various materials including oxide-based,polymer-based,carbon-based,and two-dimensional(2D)materials,crystal silicon continues to maintain its stronghold,owing to its superior functionality,scalability,stability,reliability,and uniformity.Nonetheless,the inherent rigidity of the bulk silicon leads to incompatibility with soft tissues,hindering the utilization amid biomedical applications.Because of such issues,decades of research have enabled successful utilization of various techniques to precisely control the thickness and morphology of silicon layers at the scale of several nanometres.This review provides a comprehensive exploration on the features of ultra-thin single crystalline silicon as a semiconducting material,and its role especially among the frontier of advanced bioelectronics.Key processes that enable the transition of rigid silicon to flexible form factors are exhibited,in accordance with their chronological sequence.The inspected stages span both prior and subsequent to transferring the silicon membrane,categorized respectively as on-wafer manufacturing and rigid-to-soft integration.Extensive guidelines to unlock the full potential of flexible electronics are provided through ordered analysis of each manufacturing procedure,the latest findings of biomedical applications,along with practical perspectives for researchers and manufacturers.展开更多
The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclus...The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclusively observed in thin films under atmospheric pressure,underscoring the critical role of the heterointerface.展开更多
Iron oxide nanoparticles(IONPs)with intrinsic peroxidase(POD)-mimic activity have gained significant attention as nanozymes.Reducing sizes of IONPs is the mostly applied strategy to boost their enzymatic activity due ...Iron oxide nanoparticles(IONPs)with intrinsic peroxidase(POD)-mimic activity have gained significant attention as nanozymes.Reducing sizes of IONPs is the mostly applied strategy to boost their enzymatic activity due to their high specific surface areas.Herein,we synthesized a series of uniformly sized IONPs ranging from3.17 to 21.2 nm,and found that POD activity of IONPs is not monotone increased by reducing their sizes,with the optimal size of 7.82 nm rather than smaller sized 3.17 nm.The reason for this unnormal phenomenon is that electronic structure also had great influence on POD activity,especially at the ultrasmall size region.Since Fe^(2+)are with higher enzymatic activity than Fe^(3+),3.17 nm IONPs although have the largest specific surface area,are prone to be oxidized,which reduced their iron content and ratio of Fe^(2+)to Fe^(3+),and consequently decreased their POD activity.By intentionally oxidized 7.82 nm IONPs in air,POD activity was obviously reduced,illustrating electronic structure cannot be overlooked.At the larger sized region ranging from 7.82 to 21.2 nm,oxidation degree of IONPs is similar,and surface electronic structure had a negligible effect on POD activity,and therefore,POD activity is predominantly influenced by specific surface area.By using the optimized 7.82 nm IONPs,tumor growth was obviously inhibited,demonstrating their potential in cancer therapeutics.Our results reveal that the designing of nanozymes should comprehensively balance their influence of surface electronic structure and specific surface area.展开更多
Two-dimensional Dion-Jacobson(DJ)perovskite has garnered significant attention due to its superior responsivity and operation stability.However,efforts are predominantly focused on discovering new organic spacer to sy...Two-dimensional Dion-Jacobson(DJ)perovskite has garnered significant attention due to its superior responsivity and operation stability.However,efforts are predominantly focused on discovering new organic spacer to synthesize novel perovskites,while material-form-associated light management,which is crucial for enhancing the photodetector’s efficiency,is largely overlooked.Herein,we introduced surface light management strategy into DJ-type perovskite system by synthesizing surface-patterned BDAPbBr4(BPB,BDA=NH_(3)(CH_(2))_(4)NH_(3))microplates(MPs)using template-assisted space-confined method,which was further elucidated by theoretical optical simulation.By leveraging surface-patterned MPs to enhance light absorption,the BPB-based photodetectors(PDs)achieved remarkable photoresponse in ultraviolet region,marked by a high on/off ratio(~5000),superior responsivity(2.24 A W^(-1)),along with large detectivity(~10^(13) Jones)and low detection limit(68.7 nW cm^(-2)).Additionally,the PDs showcased superior light communication and imaging capabilities even under weak-light illumination.Notably,the anisotropic nature of the surface-patterned MPs conferred excellent polarization sensitivity to the PD.These results represented the first demonstration of BPB perovskite in weak-light communication and imaging,as well as in polarized light detection.Our findings offer valuable insights into enhancing photodetector performance and optoelectronic applications through surface light management strategies.展开更多
The Cooling Storage Ring(CSR)external-target experiment(CEE)will be the first large-scale nuclear physics experiment at the Heavy Ion Research Facility in Lanzhou(HIRFL).A beam monitor has been developed to monitor th...The Cooling Storage Ring(CSR)external-target experiment(CEE)will be the first large-scale nuclear physics experiment at the Heavy Ion Research Facility in Lanzhou(HIRFL).A beam monitor has been developed to monitor the beam status and to improve the reconstruction resolution of the primary vertex.Custom-designed pixel charge sensors,named TopmetalCEEv1,are employed in the detector to locate the position of each particle.Readout electronics for the beam monitor were designed,including front-end electronics utilizing the Topmetal-CEEv1 sensors,as well as a readout and control unit that communicates with the DAQ,trigger,and clock systems.A series of tests were performed to validate the functionality and performance of the system,including basic electronic verifications and responses toαparticles and heavy-ion beams.The results show that all designed functions of the readout electronics system work well,and this system could be used for beam monitoring in the CEE experiment.展开更多
Soft electronics,which are designed to function under mechanical deformation(such as bending,stretching,and folding),have become essential in applications like wearable electronics,artificial skin,and brain-machine in...Soft electronics,which are designed to function under mechanical deformation(such as bending,stretching,and folding),have become essential in applications like wearable electronics,artificial skin,and brain-machine interfaces.Crystalline silicon is one of the most mature and reliable materials for high-performance electronics;however,its intrinsic brittleness and rigidity pose challenges for integrating it into soft electronics.Recent research has focused on overcoming these limitations by utilizing structural design techniques to impart flexibility and stretchability to Si-based materials,such as transforming them into thin nanomembranes or nanowires.This review summarizes key strategies in geometry engineering for integrating crystalline silicon into soft electronics,from the use of hard silicon islands to creating out-of-plane foldable silicon nanofilms on flexible substrates,and ultimately to shaping silicon nanowires using vapor-liquid-solid or in-plane solid-liquid-solid techniques.We explore the latest developments in Si-based soft electronic devices,with applications in sensors,nanoprobes,robotics,and brain-machine interfaces.Finally,the paper discusses the current challenges in the field and outlines future research directions to enable the widespread adoption of silicon-based flexible electronics.展开更多
The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(...The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.展开更多
High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human...High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human-machine interactions.However,despite the recent advances,the development of three-dimensional(3D)soft electronics with both high resolution and high integration is still challenging because of the lack of efficient manufacturing methods to guarantee interlayer alignment of the high-density vias and reliable interlayer electrical conductivity.Here,an advanced 3D laser printing pathway,based on femtosecond laser direct writing(FLDW),is demonstrated for preparing liquid metal(LM)-based any layer HDI soft electronics.FLDW technology,with the characteristics of high spatial resolution and high precision,allows the maskless fabrication of high-resolution embedded LM microchannels and high-density vertical interconnect accesses for 3D integrated circuits.High-aspect-ratio blind/through LM microstructures are formed inside the elastomer due to the supermetalphobicity induced during laser ablation.The LM-based HDI circuit featuring high resolution(~1.5μm)and high integration(10-layer electrical interconnection)is achieved for customized soft electronics,including various customized multilayer passive electric components,soft multilayer circuit,and cross-scale multimode sensors.The 3D laser printing method provides a versatile approach for developing chip-level soft electronics.展开更多
Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is...Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is explored by filling CNTs with one-dimensional(1D)-TM_(6)Te_(6) nanowires to form TM_(6)Te_(6)@CNT-(16,0) 1D van der Waals heterostructures(1D-vd WHs). The systematic first-principles studies on the electronic properties of 1D-vd WHs show that N-type doping CNTs can be formed by charge transfer from TM_(6)Te_(6) nanowires to CNTs, without introducing additional carrier scattering.Particularly, contribution from both T M(e.g., Sc and Y) and Te atoms strengthens the charge transfer. The outside CNTs further confine the dispersion of Te-p orbitals in nanowires that deforms the C-π states at the bottom of the conduction band to quasi sp^(3) hybridization. Our study provides an inner doping strategy that can effectively confine the charge polarity of CNTs and further broaden its applications in some novel nano-devices.展开更多
Flexible pressure sensors show great promise for applications in such fields as electronic skin,healthcare,and intelligent robotics.Traditional capacitive pressure sensors,however,face the problem of low sensitivity,w...Flexible pressure sensors show great promise for applications in such fields as electronic skin,healthcare,and intelligent robotics.Traditional capacitive pressure sensors,however,face the problem of low sensitivity,which limits their wider application.In this paper,a flexible capacitive pressure sensor with microstructured ionization layer is fabricated by a sandwich-type process,with a low-cost and simple process of inverted molding with sandpapers being used to form a thermoplastic polyurethane elastomer ionic film with double-sided microstructure as the dielectric layer of the sensor,with silver nanowires as electrodes.The operating mechanism of this iontronic pressure sensor is analyzed using a graphical method,and the sensor is tested on a pressure platform.The test results show that the sensor has ultrahigh pressure sensitivities of 3.744 and 1.689 kPa^(−1) at low(0-20 kPa)and high(20-800 kPa)pressures,respectively,as well as a rapid response time(100 ms),and it exhibits good stability and repeatability.The sensor can be used for sensitive monitoring of activities such as finger bending,and for facial expression(smile,frown)recognition,as well as speech recognition.展开更多
Metal vanadates garner significant interest because of their exceptional potential for use in diverse practical applications,which stems from their unique framework structures,bond strength heterogeneities,and strong ...Metal vanadates garner significant interest because of their exceptional potential for use in diverse practical applications,which stems from their unique framework structures,bond strength heterogeneities,and strong O^(2-)-V^(5+)charge-transfer bands.However,their optoelectronic properties have not yet been sufficiently explored.In this study,we synthesized three high-purity calcium vanadate compounds(Ca V_(2)O_(6),Ca_(2)V_(2)O_(7),and Ca_(3)V_(2)O_(8))and comprehensively investigated their optoelectronic properties via first-principles calculations and experimental characterizations.Ca V_(2)O_(6),Ca_(2)V_(2)O_(7),and Ca_(3)V_(2)O_(8) are indirect band gap semiconductors with band gaps of 2.5-3.4 e V.A comparative analysis between density functional theory(DFT)and DFT+U(local Coulomb interaction,U)calculations revealed that standard DFT was sufficient to accurately describe the lattice parameters and band gaps of these vanadates.Further luminescence studies revealed significant photo-and electro-luminescence properties within the visible light spectrum.Notably,the luminescence intensity of CaV_(2)O_(6) exhibited a remarkable 10-fold enhancement under a modest pressure of only 0.88 GPa,underscoring its exceptional potential for use in pressure-tunable optical applications.These findings provide deeper insight into the electronic structures and optical behaviors of vanadates and highlight their potential as strong candidates for application in phosphor materials and optoelectronic devices.展开更多
基金supported by the Key Projects of Department of Education of Hunan Province,China(Grant No.21A0167)the Natural Science Foundation of Hunan Province,China(Grant No.2019JJ40532)the Talent Introducing Foundation of Central South University of Forestry and Technology(Grant No.104-0160)。
文摘In two-dimensional bilayer systems,twist-angle-dependent electronic and thermoelectric properties have garnered significant scientific interest in recent years.In this work,based on a combination of density functional theory and nonequilibrium Green’s function method,we explore the electronic and thermoelectric properties in blue-phosphorene nanoribbon-based heterojunction(BPNRHJ)with and without blue-phosphorene nanoribbon(BPNR)stack.Our calculations find that the electronic conductance and power factor can be strongly enhanced by the BPNR stack,and their enhancements can be further observed with the twist between the layers.The main reason for this is the electronic hybridization between the layers can provide new transport channels,and the twist can modulate the strength of interlayer electronic hybridization,resulting in extremely violent fluctuations in electron transmission and hence an enhanced power factor.While the phonon thermal conductance exhibits very low dependence on the layer stack and twist.Combining these factors,our results reveal that the thermoelectric performance can be greatly modulated and enhanced in twist bilayer BPNRHJ:the figure of merit will be over 2.5 in 4-4-ZBPNR@ZGNR-AA-8.8∘at 500 K.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R195)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contextual understanding,sequential dependencies,and/or data imbalance.This makes distinction between genuine and fabricated news a challenging task.To address this problem,we propose a novel hybrid architecture,T5-SA-LSTM,which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attentionenhanced(SA)Long Short-Term Memory(LSTM).The LSTM is trained using the Adam optimizer,which provides faster and more stable convergence compared to the Stochastic Gradient Descend(SGD)and Root Mean Square Propagation(RMSProp).The WELFake and FakeNewsPrediction datasets are used,which consist of labeled news articles having fake and real news samples.Tokenization and Synthetic Minority Over-sampling Technique(SMOTE)methods are used for data preprocessing to ensure linguistic normalization and class imbalance.The incorporation of the Self-Attention(SA)mechanism enables the model to highlight critical words and phrases,thereby enhancing predictive accuracy.The proposed model is evaluated using accuracy,precision,recall(sensitivity),and F1-score as performance metrics.The model achieved 99%accuracy on the WELFake dataset and 96.5%accuracy on the FakeNewsPrediction dataset.It outperformed the competitive schemes such as T5-SA-LSTM(RMSProp),T5-SA-LSTM(SGD)and some other models.
文摘Opto-electronics is rooted in the effects and principles of light,photons,and even photonic quasiparticles interaction with matter such as electronics systems,focusing on the generation,transmission,detection,and manipulation of energy and information.This field drives innovation across diverse technological domains,including advanced materials,devices,methods,instruments,and equipment that empower humanity to overcome significant challenges in observation,communication,computing,data storage,display technologies,and sustainable energy solutions.
基金supported by the National Natural Science Foundation of China(4020969,62405044,and 52173156)Fund by Science Research Project of Hebei Education Department(HY2024050011)+1 种基金Natural Science Foundation of Sichuan Province(25NSFSC1287)Foundation of Yanshan University(1050030 and 8190299).
文摘Despite great advancements in organic mixed ionic-electronic conductors(OMIECs),their applications remain predominantly restricted to three-electrode organic electro-chemical transistors(OECTs),which rely on an additional electrolyte layer to balance ionic and electronic transport,resulting in indirect coupling of charge carriers.While direct coupling has the potential to greatly simplify device architectures,it remains underexplored in OMIECs due to the inherent imbalance between electronic and ionic conductivities.In this study,we introduce a straightforward approach to achieve balanced OMIECs and employ them as channel materials in two-electrode organic electrochemical memristors.These devices provide clear evidence of direct coupling between electronic and ionic carriers and exhibit exceptional performance in synaptic device applications.Our findings offer new insights into charge carrier transport mechanisms in OMIECs and establish organic electrochemical memristors as a promising new class of organic electronic devices for next-generation neuromorphic applications.
基金the National Key Research and Development Program of China(2021YFA0717900)National Natural Science Foundation of China(62471251,62405144,62288102,22275098,and 62174089)+1 种基金Basic Research Program of Jiangsu(BK20240033,BK20243057)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB402).
文摘Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems.
基金supported in part by the National Natural Science Foundation of China under Grant 62303090,U2330206in part by the Postdoctoral Science Foundation of China under Grant 2023M740516+1 种基金in part by the Natural Science Foundation of Sichuan Province under Grant 2024NSFSC1480in part by the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Reliable electricity infrastructure is critical for modern society,highlighting the importance of securing the stability of fundamental power electronic systems.However,as such systems frequently involve high-current and high-voltage conditions,there is a greater likelihood of failures.Consequently,anomaly detection of power electronic systems holds great significance,which is a task that properly-designed neural networks can well undertake,as proven in various scenarios.Transformer-like networks are promising for such application,yet with its structure initially designed for different tasks,features extracted by beginning layers are often lost,decreasing detection performance.Also,such data-driven methods typically require sufficient anomalous data for training,which could be difficult to obtain in practice.Therefore,to improve feature utilization while achieving efficient unsupervised learning,a novel model,Densely-connected Decoder Transformer(DDformer),is proposed for unsupervised anomaly detection of power electronic systems in this paper.First,efficient labelfree training is achieved based on the concept of autoencoder with recursive-free output.An encoder-decoder structure with densely-connected decoder is then adopted,merging features from all encoder layers to avoid possible loss of mined features while reducing training difficulty.Both simulation and real-world experiments are conducted to validate the capabilities of DDformer,and the average FDR has surpassed baseline models,reaching 89.39%,93.91%,95.98%in different experiment setups respectively.
基金supported by the National Key Research and Development Program of China(No.2021YFA1401100)the National Natural Science Foundation of China(Nos.61825403 and 61921005)
文摘Flexible electronics is gaining prominence in modern technology,particularly in flexible displays,wearable electronics,and biomedical applications.Electrodes,as core components of flexible electronics,demand high conductivity,flexibility,and stretchability.However,traditional rigid conductive materials often generate interfacial slip with elastic substrates due to mismatched Young's modulus,adversely affecting device performance.Room-temperature liquid metals(LMs),with their high conductivity and stretchability,have emerged as ideal materials for stable and reliable flexible electronic devices.This review discusses the physical,chemical,and biocompatibility properties of LMs.Additionally,LM-based fabrication strategies including patterning and sintering for flexible electrodes are outlined.Applications in implantable medical devices,wearable electronics,and flexible energy storage are illustrated.Finally,the primary challenges and future research directions in LMs are identified.
基金Funded by the National Natural Science Foundation of China(No.U1904612)the Natural Science Foundation of Henan Province(No.222300420506)。
文摘The structural,relative stability,and electronic properties of two-dimensional AsP_(2)X_(6)(X=S,Se)were predicted and studied using the particle-swarm optimization method and first principles calculations.We proposed two low energy structures with P312 and P-31m phases,both of which the structures are hexagonal in shape and show non-centrosymmetry for the P312 phase and centrosymmetry for the P-31m phase.According to our results,two structural phases are found to be stable thermally and dynamically.The P312 phase of AsP_(2)X_(6)(X=S,Se)are indirect semiconductors with band gaps of 2.44 eV(AsP2S6)and 2.18 eV(AsP2Se6)at the HSE06 level,and their absorption coefficients are predicted to reach the order of 10^(5)cm^(-1)from visible light to ultraviolet region,but the main absorption is manly in the ultraviolet region.The P-31m phase of AsP_(2)X_(6)(X=S,Se)exhibits metal character with the Fermi surface mainly occupied by the p orbital of S/Se.Remarkably,estimated by first principles calculations,the P-31m AsP2S6 is found to be an intrinsic phonon-mediated superconductor with a relatively high critical superconducting temperature of about 13.4 K,and the P-31m AsP2Se6 only has a superconducting temperature of 1.4 K,which suggest that the P-31m AsP2S6 may be a good candidate for a nanoscale superconductor.
基金Project supported by the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,China(Grant No.GK229909299001-05)Zhejiang Provincial Public Welfare Projects of China(Grant No.LGG22F030017)。
文摘The electronic structure,elasticity,and magnetic properties of the Mn_(2)XIn(X=Fe,Co)full-Heusler compounds are comprehensively investigated via first-principles calculations.The calculated elastic constants indicate that both Mn_(2)FeIn and Mn_(2)Co In possess ductility.At the optimal lattice constants,the magnetic moments are found to be 1.40μB/f.u.for Mn_(2)FeIn and 1.69μB/f.u.for Mn_(2)CoIn.Under the biaxial strain ranging from-2%to 5%,Mn_(2)FeIn demonstrates a remarkable variation in the spin polarization,spanning from-2%to 74%,positioning it as a promising candidate for applications in spintronic devices.Analysis of the electronic structure reveals that the change in spin polarization under strain is due to the shift of the spin-down states at the Fermi surface.Additionally,under biaxial strain,the magnetic anisotropy of Mn_(2)FeIn undergoes a transition of easy-axis direction.Utilizing second-order perturbation theory and electronic structure analysis,the variation in magnetic anisotropy with strain can be attributed to changes of d-orbital states near the Fermi surface.
基金support received from National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT)(RS-2024-00353768)the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT)(RS-2025-02217919)+1 种基金funded by the Yonsei Fellowshipfunded by Lee Youn Jae and the KIST Institutional Program Project No.2E31603-22-140 (KJY).
文摘Ultra-thin crystalline silicon stands as a cornerstone material in the foundation of modern micro and nano electronics.Despite the proliferation of various materials including oxide-based,polymer-based,carbon-based,and two-dimensional(2D)materials,crystal silicon continues to maintain its stronghold,owing to its superior functionality,scalability,stability,reliability,and uniformity.Nonetheless,the inherent rigidity of the bulk silicon leads to incompatibility with soft tissues,hindering the utilization amid biomedical applications.Because of such issues,decades of research have enabled successful utilization of various techniques to precisely control the thickness and morphology of silicon layers at the scale of several nanometres.This review provides a comprehensive exploration on the features of ultra-thin single crystalline silicon as a semiconducting material,and its role especially among the frontier of advanced bioelectronics.Key processes that enable the transition of rigid silicon to flexible form factors are exhibited,in accordance with their chronological sequence.The inspected stages span both prior and subsequent to transferring the silicon membrane,categorized respectively as on-wafer manufacturing and rigid-to-soft integration.Extensive guidelines to unlock the full potential of flexible electronics are provided through ordered analysis of each manufacturing procedure,the latest findings of biomedical applications,along with practical perspectives for researchers and manufacturers.
基金supported by the National Natural Science Foundation of China[52125307(to P.G.),12404192(to R.C.S),12274061(to L.Q.)]Key Research and Development Program from the Ministry of Science and Technology(2023YFA1406301)the support from the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclusively observed in thin films under atmospheric pressure,underscoring the critical role of the heterointerface.
基金financially supported by the Natural Science Foundation of Zhejiang Province(No.LR22E010001)the National Natural Science Foundation of China(No.52073258)+1 种基金the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.RF-B2022006)the R&D Program of Zhejiang University of Technology(No.KYY-HX-20190730)
文摘Iron oxide nanoparticles(IONPs)with intrinsic peroxidase(POD)-mimic activity have gained significant attention as nanozymes.Reducing sizes of IONPs is the mostly applied strategy to boost their enzymatic activity due to their high specific surface areas.Herein,we synthesized a series of uniformly sized IONPs ranging from3.17 to 21.2 nm,and found that POD activity of IONPs is not monotone increased by reducing their sizes,with the optimal size of 7.82 nm rather than smaller sized 3.17 nm.The reason for this unnormal phenomenon is that electronic structure also had great influence on POD activity,especially at the ultrasmall size region.Since Fe^(2+)are with higher enzymatic activity than Fe^(3+),3.17 nm IONPs although have the largest specific surface area,are prone to be oxidized,which reduced their iron content and ratio of Fe^(2+)to Fe^(3+),and consequently decreased their POD activity.By intentionally oxidized 7.82 nm IONPs in air,POD activity was obviously reduced,illustrating electronic structure cannot be overlooked.At the larger sized region ranging from 7.82 to 21.2 nm,oxidation degree of IONPs is similar,and surface electronic structure had a negligible effect on POD activity,and therefore,POD activity is predominantly influenced by specific surface area.By using the optimized 7.82 nm IONPs,tumor growth was obviously inhibited,demonstrating their potential in cancer therapeutics.Our results reveal that the designing of nanozymes should comprehensively balance their influence of surface electronic structure and specific surface area.
基金the Key Research and Development Program sponsored by the Ministry of Science and Technology of China(2024YFE0201800)the National Natural Science Foundation of China(Nos.12134010,12174290)the Natural Science Foundation of Hubei Province,China(Grant Nos.2023BAB102 and 2021CFB039).
文摘Two-dimensional Dion-Jacobson(DJ)perovskite has garnered significant attention due to its superior responsivity and operation stability.However,efforts are predominantly focused on discovering new organic spacer to synthesize novel perovskites,while material-form-associated light management,which is crucial for enhancing the photodetector’s efficiency,is largely overlooked.Herein,we introduced surface light management strategy into DJ-type perovskite system by synthesizing surface-patterned BDAPbBr4(BPB,BDA=NH_(3)(CH_(2))_(4)NH_(3))microplates(MPs)using template-assisted space-confined method,which was further elucidated by theoretical optical simulation.By leveraging surface-patterned MPs to enhance light absorption,the BPB-based photodetectors(PDs)achieved remarkable photoresponse in ultraviolet region,marked by a high on/off ratio(~5000),superior responsivity(2.24 A W^(-1)),along with large detectivity(~10^(13) Jones)and low detection limit(68.7 nW cm^(-2)).Additionally,the PDs showcased superior light communication and imaging capabilities even under weak-light illumination.Notably,the anisotropic nature of the surface-patterned MPs conferred excellent polarization sensitivity to the PD.These results represented the first demonstration of BPB perovskite in weak-light communication and imaging,as well as in polarized light detection.Our findings offer valuable insights into enhancing photodetector performance and optoelectronic applications through surface light management strategies.
基金supported by the National Natural Science Foundation of China(Nos.11927901,12105110,U2032209,12275105)the National Key Research and Development Program of China(Nos.2020YFE0202002,2022YFA1602103)the Fundamental Research Funds for the Central Universities(No.CCNU22QN005)。
文摘The Cooling Storage Ring(CSR)external-target experiment(CEE)will be the first large-scale nuclear physics experiment at the Heavy Ion Research Facility in Lanzhou(HIRFL).A beam monitor has been developed to monitor the beam status and to improve the reconstruction resolution of the primary vertex.Custom-designed pixel charge sensors,named TopmetalCEEv1,are employed in the detector to locate the position of each particle.Readout electronics for the beam monitor were designed,including front-end electronics utilizing the Topmetal-CEEv1 sensors,as well as a readout and control unit that communicates with the DAQ,trigger,and clock systems.A series of tests were performed to validate the functionality and performance of the system,including basic electronic verifications and responses toαparticles and heavy-ion beams.The results show that all designed functions of the readout electronics system work well,and this system could be used for beam monitoring in the CEE experiment.
基金the National Natural Science Foundation of China under granted No.62104100National Key Research Program of China under No.92164201+1 种基金National Natural Science Foundation of China for Distinguished Young Scholars under No.62325403National Natural Science Foundation of China under No.61934004.
文摘Soft electronics,which are designed to function under mechanical deformation(such as bending,stretching,and folding),have become essential in applications like wearable electronics,artificial skin,and brain-machine interfaces.Crystalline silicon is one of the most mature and reliable materials for high-performance electronics;however,its intrinsic brittleness and rigidity pose challenges for integrating it into soft electronics.Recent research has focused on overcoming these limitations by utilizing structural design techniques to impart flexibility and stretchability to Si-based materials,such as transforming them into thin nanomembranes or nanowires.This review summarizes key strategies in geometry engineering for integrating crystalline silicon into soft electronics,from the use of hard silicon islands to creating out-of-plane foldable silicon nanofilms on flexible substrates,and ultimately to shaping silicon nanowires using vapor-liquid-solid or in-plane solid-liquid-solid techniques.We explore the latest developments in Si-based soft electronic devices,with applications in sensors,nanoprobes,robotics,and brain-machine interfaces.Finally,the paper discusses the current challenges in the field and outlines future research directions to enable the widespread adoption of silicon-based flexible electronics.
基金supported by the National Natural Science Foundation of China (Nos. 12222512, 12375193, U2031206, U1831206, and U2032209)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (GJJSTD20210009)+1 种基金the CAS Pioneer Hundred Talent Programthe CAS Light of West China Program
文摘The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.
基金supported by the National Science Foundation of China under the Grant Nos.12127806 and 62175195the International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies。
文摘High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human-machine interactions.However,despite the recent advances,the development of three-dimensional(3D)soft electronics with both high resolution and high integration is still challenging because of the lack of efficient manufacturing methods to guarantee interlayer alignment of the high-density vias and reliable interlayer electrical conductivity.Here,an advanced 3D laser printing pathway,based on femtosecond laser direct writing(FLDW),is demonstrated for preparing liquid metal(LM)-based any layer HDI soft electronics.FLDW technology,with the characteristics of high spatial resolution and high precision,allows the maskless fabrication of high-resolution embedded LM microchannels and high-density vertical interconnect accesses for 3D integrated circuits.High-aspect-ratio blind/through LM microstructures are formed inside the elastomer due to the supermetalphobicity induced during laser ablation.The LM-based HDI circuit featuring high resolution(~1.5μm)and high integration(10-layer electrical interconnection)is achieved for customized soft electronics,including various customized multilayer passive electric components,soft multilayer circuit,and cross-scale multimode sensors.The 3D laser printing method provides a versatile approach for developing chip-level soft electronics.
基金Project supported by the National Natural Science Foundation of China (Grant No. 92477205)。
文摘Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is explored by filling CNTs with one-dimensional(1D)-TM_(6)Te_(6) nanowires to form TM_(6)Te_(6)@CNT-(16,0) 1D van der Waals heterostructures(1D-vd WHs). The systematic first-principles studies on the electronic properties of 1D-vd WHs show that N-type doping CNTs can be formed by charge transfer from TM_(6)Te_(6) nanowires to CNTs, without introducing additional carrier scattering.Particularly, contribution from both T M(e.g., Sc and Y) and Te atoms strengthens the charge transfer. The outside CNTs further confine the dispersion of Te-p orbitals in nanowires that deforms the C-π states at the bottom of the conduction band to quasi sp^(3) hybridization. Our study provides an inner doping strategy that can effectively confine the charge polarity of CNTs and further broaden its applications in some novel nano-devices.
基金supported by the Youth Project of the National Natural Science Foundation of China(Grant No.52105594)the Youth Project of the Applied Basic Research Program of Shanxi Province(Grant No.20210302124274)+4 种基金the Key Research and Development Program of Shanxi Province(Grant No.202102030201005)the Natural Youth Science Foundation of Shanxi Province(Grant Nos.202103021223005 and 202203021212015)the Fund for Shanxi 1331 Project,the Science and Technology Innovation Plan for Colleges and Universities in Shanxi Province(Grant No.2022L575)the Science and Technology Innovation Project in Higher Schools in Shanxi(Grant No.J2020383)Teaching Reform and Innovation Project of the Education Department of Shanxi Province(Grant No.J20221195).
文摘Flexible pressure sensors show great promise for applications in such fields as electronic skin,healthcare,and intelligent robotics.Traditional capacitive pressure sensors,however,face the problem of low sensitivity,which limits their wider application.In this paper,a flexible capacitive pressure sensor with microstructured ionization layer is fabricated by a sandwich-type process,with a low-cost and simple process of inverted molding with sandpapers being used to form a thermoplastic polyurethane elastomer ionic film with double-sided microstructure as the dielectric layer of the sensor,with silver nanowires as electrodes.The operating mechanism of this iontronic pressure sensor is analyzed using a graphical method,and the sensor is tested on a pressure platform.The test results show that the sensor has ultrahigh pressure sensitivities of 3.744 and 1.689 kPa^(−1) at low(0-20 kPa)and high(20-800 kPa)pressures,respectively,as well as a rapid response time(100 ms),and it exhibits good stability and repeatability.The sensor can be used for sensitive monitoring of activities such as finger bending,and for facial expression(smile,frown)recognition,as well as speech recognition.
基金supported by the National Natural Science Foundation of China(Nos.12404045 and 52371148)the National Key R&D Program of China(No.2018YFC 1900500)+1 种基金the Foundation of Chongqing Normal University,China(No.23XLB015)the Science and Technology Research Program of Chongqing Municipal Education Commission,China(No.KJQN-202400553)。
文摘Metal vanadates garner significant interest because of their exceptional potential for use in diverse practical applications,which stems from their unique framework structures,bond strength heterogeneities,and strong O^(2-)-V^(5+)charge-transfer bands.However,their optoelectronic properties have not yet been sufficiently explored.In this study,we synthesized three high-purity calcium vanadate compounds(Ca V_(2)O_(6),Ca_(2)V_(2)O_(7),and Ca_(3)V_(2)O_(8))and comprehensively investigated their optoelectronic properties via first-principles calculations and experimental characterizations.Ca V_(2)O_(6),Ca_(2)V_(2)O_(7),and Ca_(3)V_(2)O_(8) are indirect band gap semiconductors with band gaps of 2.5-3.4 e V.A comparative analysis between density functional theory(DFT)and DFT+U(local Coulomb interaction,U)calculations revealed that standard DFT was sufficient to accurately describe the lattice parameters and band gaps of these vanadates.Further luminescence studies revealed significant photo-and electro-luminescence properties within the visible light spectrum.Notably,the luminescence intensity of CaV_(2)O_(6) exhibited a remarkable 10-fold enhancement under a modest pressure of only 0.88 GPa,underscoring its exceptional potential for use in pressure-tunable optical applications.These findings provide deeper insight into the electronic structures and optical behaviors of vanadates and highlight their potential as strong candidates for application in phosphor materials and optoelectronic devices.