期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Phase Behavior of Rare Earth Manganites 被引量:5
1
作者 NaokiKamegashira HiromiNakano +1 位作者 GangChen JianMeng 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第5期582-585,共4页
Among complex oxides containing rare earth and manganese BaLn_2Mn_2O_7 (Ln=rare earth) with the layered perovskite type and Ln_2(Mn, M)O_7 with pyrochlore-related structure were studied since these compounds show many... Among complex oxides containing rare earth and manganese BaLn_2Mn_2O_7 (Ln=rare earth) with the layered perovskite type and Ln_2(Mn, M)O_7 with pyrochlore-related structure were studied since these compounds show many kinds of phases and unique phase transitions. In BaLn_2Mn_2O_7 there appear many phases, depending on the synthetic conditions for each rare earth. The tetragonal phase of so-called Ruddlesden-Popper type is the fundamental structure and many kinds of deformed modification of this structure are obtained. For BaEu_2Mn_2O_7 at least five phases have been identified from the results of X-ray diffraction analysis with the space group P4_2/mnm, Fmmm, Immm and A2/m in addition to the fundamental tetragonal I4/mmm phase. In the pyrochlore-related type compounds, Ln_2Mn_(2-x)M_xO_7 (M=Ta, Nb, W etc), there also appear several phases with different crystal structures. With regard to every rare earth, Ln_2MnTaO_7 phase is stable only for excess Ta and can be obtained under high oxygen partial pressure process. This group has trigonal structure with zirkelite type (P3_121 space group). On the other hand Ln_2Mn_(2/3)Nb_(4/3)O_7 phase has monoclinic (C2/c space group) and zirconolite type structure. All of these structural models have the fundamental structure based on HTB (hexagonal tungsten bronze) layers formed by the arrangement of oxygen octahedra. 展开更多
关键词 phase behavior layered perovskite pyrochlore-related structure rare earth manganese oxide
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部