Centralized delivery has become the main operation mode under the scaled development of wind power.Transmission channels are usually the guarantee of out-delivered wind power for large-scale wind base.The configuratio...Centralized delivery has become the main operation mode under the scaled development of wind power.Transmission channels are usually the guarantee of out-delivered wind power for large-scale wind base.The configuration of transmission capacity,which has the features of low utilization and poor economy,is hardly matching correctly due to the volatility and low energy density of wind.The usage of energy storage can mitigate wind power fluctuations and reduce the requirement of out-delivery transmission capacity,but facing the issue of energy storage cost recovery.Therefore,it is necessary to optimize the allocation of energy storage while considering the problem of wind power transmission.This paper studies the joint optimization of large-scale wind power transmission capacity and energy storage,reveals the mechanism of energy storage in order to reduce the power fluctuation of wind power base and slow down the demand of transmission.Then,analyze the multi-functional cost-sharing mode of energy storage,improve the efficiency of energy storage cost recovery.Constructs the coordination optimization configuration model to deal with the problem of large-scale wind power transmission capacity and energy storage,and realizes the transmission capacity optimization coordination and optimization with energy storage.The proposed method is verified by a wind base located in Northeast China.展开更多
The extra-large scale multiple-input multiple-output(XL-MIMO)for the beyond fifth/sixth generation mobile communications is a promising technology to provide Tbps data transmission and stable access service.However,th...The extra-large scale multiple-input multiple-output(XL-MIMO)for the beyond fifth/sixth generation mobile communications is a promising technology to provide Tbps data transmission and stable access service.However,the extremely large antenna array aperture arouses the channel near-field effect,resulting in the deteriorated data rate and other challenges in the practice communication systems.Meanwhile,multi-panel MIMO technology has attracted extensive attention due to its flexible configuration,low hardware cost,and wider coverage.By combining the XL-MIMO and multi-panel array structure,we construct multi-panel XL-MIMO and apply it to massive Internet of Things(IoT)access.First,we model the multi-panel XL-MIMO-based near-field channels for massive IoT access scenarios,where the electromagnetic waves corresponding to different panels have different angles of arrival/departure(AoAs/AoDs).Then,by exploiting the sparsity of the near-field massive IoT access channels,we formulate a compressed sensing based joint active user detection(AUD)and channel estimation(CE)problem which is solved by AMP-EM-MMV algorithm.The simulation results exhibit the superiority of the AMP-EM-MMV based joint AUD and CE scheme over the baseline algorithms.展开更多
The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation....The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation. To model the alloys,16-atom supercells with the 2 × 2 × 2 dimensions are used and the dependency of the lattice parameter, bulk modulus,electronic structure, energy band gap, and optical bowing on the concentration x are analyzed. The results indicate that the ternary Tl_xGa_(1-x) As alloys have an average band gap bowing parameter of 4.48 eV for semiconductor alloys and 2.412 eV for semimetals. It is found that the band gap bowing strongly depends on composition and alloying a small Tl content with GaAs produces important modifications in the band structures of the alloys.展开更多
Biodiesel is a renewable fuel that can be made from vegetable oil and waste restaurant greases by catalysed transesterification reactions. Over 5 billion gallons of biodiesel was produced in 2010. The European Union a...Biodiesel is a renewable fuel that can be made from vegetable oil and waste restaurant greases by catalysed transesterification reactions. Over 5 billion gallons of biodiesel was produced in 2010. The European Union and United States are seeing the sigmoidal portion of the growth curve in biodiesel production. Economic analysis such as profitability and annualized worth (AW) of a biodiesel plant in Taiwan is presented. With the revenue from glycerine byproduct recovery and with lower raw material costs, biodiesel may be profitable especially during days of higher gasoline prices. Multiple reactions of the consecutive-competive type may be used to model the methonolysis of trigylcerides. The reaction rate constant ratios and residence time in the reactor are important parameters in determining higher selectivity of FAME, fatty acid methyl ester product yield over glycerol by-product production. Illustrations of higher FAME yield, higher glycerol yield and cross-over from FAME to glycerol are shown for some values of reaction rate constant ratios and reaction scheme from triglycerides to diglycerides, monoglycerides and glycerol along with formation of FAME in each step by addition of methanol and catalyst is shown. Product distribution curves are presented in Figures 2-5 for different values or reaction rate constant ratios.展开更多
On the basis of first principles calculations using density functional theory, we explore the structural and electronic properties of two binaries: CaO and MgO in rock salt structures. Structural properties of the sem...On the basis of first principles calculations using density functional theory, we explore the structural and electronic properties of two binaries: CaO and MgO in rock salt structures. Structural properties of the semiconductor CaχMg1-χO alloys are derived from total-energy minimization within the General Gradient Approximation. The band gap bowing parameters dependence is very powerful Calcium composition. The results offer that an average bowing parameter of CaχMg1-χO alloys is b = ~0.583$ eV. We analyzed the volume deformation, charge transfer and structural relaxation effects of the CaχMg1-χO alloys.展开更多
It is due to the need to ensure the security and integrity of equipment, that the non-destructive tests have been increasingly used in the industrial sector. Among these, the ultrasonic pulse echo technique is the mos...It is due to the need to ensure the security and integrity of equipment, that the non-destructive tests have been increasingly used in the industrial sector. Among these, the ultrasonic pulse echo technique is the most used in industry, mainly for its simplicity and efficiency. With one transducer only, it is possible to emit the ultrasonic and receive the echo pulse. The ANNs (artificial neural networks) are artificial intelligence techniques that, when properly trained, align themselves to inspection tests becoming a powerful tool in the detection and fault identification. In this work, the echo pulse technique was used to detect discontinuities in welds, where ANNs were fed from the information obtained by digital signal processing techniques (Fourier transform), to identify and classify three distinct classes of defects. Results showed that with the combination of feature extraction by Fourier transformation and classification with neural networks, it is possible to obtain an automatic defect detection system in welded joints with average efficiency.展开更多
基金supported by the National Key Research and Development Program(2016YFB0900100)。
文摘Centralized delivery has become the main operation mode under the scaled development of wind power.Transmission channels are usually the guarantee of out-delivered wind power for large-scale wind base.The configuration of transmission capacity,which has the features of low utilization and poor economy,is hardly matching correctly due to the volatility and low energy density of wind.The usage of energy storage can mitigate wind power fluctuations and reduce the requirement of out-delivery transmission capacity,but facing the issue of energy storage cost recovery.Therefore,it is necessary to optimize the allocation of energy storage while considering the problem of wind power transmission.This paper studies the joint optimization of large-scale wind power transmission capacity and energy storage,reveals the mechanism of energy storage in order to reduce the power fluctuation of wind power base and slow down the demand of transmission.Then,analyze the multi-functional cost-sharing mode of energy storage,improve the efficiency of energy storage cost recovery.Constructs the coordination optimization configuration model to deal with the problem of large-scale wind power transmission capacity and energy storage,and realizes the transmission capacity optimization coordination and optimization with energy storage.The proposed method is verified by a wind base located in Northeast China.
基金supported by National Key Research and Development Program of China under Grants 2021YFB1600500,2021YFB3201502,and 2022YFB3207704Natural Science Foundation of China(NSFC)under Grants U2233216,62071044,61827901,62088101 and 62201056+1 种基金supported by Shandong Province Natural Science Foundation under Grant ZR2022YQ62supported by Beijing Nova Program,Beijing Institute of Technology Research Fund Program for Young Scholars under grant XSQD-202121009.
文摘The extra-large scale multiple-input multiple-output(XL-MIMO)for the beyond fifth/sixth generation mobile communications is a promising technology to provide Tbps data transmission and stable access service.However,the extremely large antenna array aperture arouses the channel near-field effect,resulting in the deteriorated data rate and other challenges in the practice communication systems.Meanwhile,multi-panel MIMO technology has attracted extensive attention due to its flexible configuration,low hardware cost,and wider coverage.By combining the XL-MIMO and multi-panel array structure,we construct multi-panel XL-MIMO and apply it to massive Internet of Things(IoT)access.First,we model the multi-panel XL-MIMO-based near-field channels for massive IoT access scenarios,where the electromagnetic waves corresponding to different panels have different angles of arrival/departure(AoAs/AoDs).Then,by exploiting the sparsity of the near-field massive IoT access channels,we formulate a compressed sensing based joint active user detection(AUD)and channel estimation(CE)problem which is solved by AMP-EM-MMV algorithm.The simulation results exhibit the superiority of the AMP-EM-MMV based joint AUD and CE scheme over the baseline algorithms.
文摘The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation. To model the alloys,16-atom supercells with the 2 × 2 × 2 dimensions are used and the dependency of the lattice parameter, bulk modulus,electronic structure, energy band gap, and optical bowing on the concentration x are analyzed. The results indicate that the ternary Tl_xGa_(1-x) As alloys have an average band gap bowing parameter of 4.48 eV for semiconductor alloys and 2.412 eV for semimetals. It is found that the band gap bowing strongly depends on composition and alloying a small Tl content with GaAs produces important modifications in the band structures of the alloys.
文摘Biodiesel is a renewable fuel that can be made from vegetable oil and waste restaurant greases by catalysed transesterification reactions. Over 5 billion gallons of biodiesel was produced in 2010. The European Union and United States are seeing the sigmoidal portion of the growth curve in biodiesel production. Economic analysis such as profitability and annualized worth (AW) of a biodiesel plant in Taiwan is presented. With the revenue from glycerine byproduct recovery and with lower raw material costs, biodiesel may be profitable especially during days of higher gasoline prices. Multiple reactions of the consecutive-competive type may be used to model the methonolysis of trigylcerides. The reaction rate constant ratios and residence time in the reactor are important parameters in determining higher selectivity of FAME, fatty acid methyl ester product yield over glycerol by-product production. Illustrations of higher FAME yield, higher glycerol yield and cross-over from FAME to glycerol are shown for some values of reaction rate constant ratios and reaction scheme from triglycerides to diglycerides, monoglycerides and glycerol along with formation of FAME in each step by addition of methanol and catalyst is shown. Product distribution curves are presented in Figures 2-5 for different values or reaction rate constant ratios.
文摘On the basis of first principles calculations using density functional theory, we explore the structural and electronic properties of two binaries: CaO and MgO in rock salt structures. Structural properties of the semiconductor CaχMg1-χO alloys are derived from total-energy minimization within the General Gradient Approximation. The band gap bowing parameters dependence is very powerful Calcium composition. The results offer that an average bowing parameter of CaχMg1-χO alloys is b = ~0.583$ eV. We analyzed the volume deformation, charge transfer and structural relaxation effects of the CaχMg1-χO alloys.
文摘It is due to the need to ensure the security and integrity of equipment, that the non-destructive tests have been increasingly used in the industrial sector. Among these, the ultrasonic pulse echo technique is the most used in industry, mainly for its simplicity and efficiency. With one transducer only, it is possible to emit the ultrasonic and receive the echo pulse. The ANNs (artificial neural networks) are artificial intelligence techniques that, when properly trained, align themselves to inspection tests becoming a powerful tool in the detection and fault identification. In this work, the echo pulse technique was used to detect discontinuities in welds, where ANNs were fed from the information obtained by digital signal processing techniques (Fourier transform), to identify and classify three distinct classes of defects. Results showed that with the combination of feature extraction by Fourier transformation and classification with neural networks, it is possible to obtain an automatic defect detection system in welded joints with average efficiency.