This article describes an Internet based laboratory (NETLAB) developed at Zhejiang University for electrical engi- neering education. A key feature of the project is the use of real experimental systems rather than si...This article describes an Internet based laboratory (NETLAB) developed at Zhejiang University for electrical engi- neering education. A key feature of the project is the use of real experimental systems rather than simulation or virtual reality. NELTAB provides remote access to a wide variety of experiments, including not only basic electrical and electronic experiments but also many innovative control experiments. Students can effectively use the laboratory at any time and from anywhere. NETLAB has been in operation since July 2003.展开更多
The project analyzes the student's participation in complementary activities such as Education Tutorial Program, Junior Company and Academic Center. These organizations have the goal to improve, expand and connect kn...The project analyzes the student's participation in complementary activities such as Education Tutorial Program, Junior Company and Academic Center. These organizations have the goal to improve, expand and connect knowledge learned during classes with several practical activities. They can provide a huge integration between the students and the professors in order to achieve better results in the pedagogical, structural and organizational parts of an engineering major degree. Therefore, the project goes through the impact of each entity in the student's life and the advantages to professional future, focusing the presence of these organizations in the Electrical Engineering Course of Federal University of Rio Grande do Norte.展开更多
The paper has introduced the Journal 'Advanced Technology of Electrical Engineering and Energy',presented its main journal evaluation indexes. The result indicates that the journal has made great progress in r...The paper has introduced the Journal 'Advanced Technology of Electrical Engineering and Energy',presented its main journal evaluation indexes. The result indicates that the journal has made great progress in recent years. It gives much info. about the journal to authors.展开更多
The paper presented the statistics and analysis on papers published on the journal 'Advanced Technology of Electrical Engineering and Energy' from 1996 to 2008: the paper acceptance rate,the paper category,the...The paper presented the statistics and analysis on papers published on the journal 'Advanced Technology of Electrical Engineering and Energy' from 1996 to 2008: the paper acceptance rate,the paper category,the first author's affiliations,the top 7 first authors,the top 10 coauthors and also the journal evaluation indexes of the journal.It offers details of the journal to anyone interested,especially to our editorial board and our broad readers.展开更多
The paper has introduced the journals on electrical engineering in China in detail, presented its publication year, the distributions for all elec. eng. journals and its core journals, the position and level of the jo...The paper has introduced the journals on electrical engineering in China in detail, presented its publication year, the distributions for all elec. eng. journals and its core journals, the position and level of the journals, its main journal evaluation indexes, its core journal proportion and inclusion info. by famous international database. The paper offers much information about the journals on electrical engineering in China to readers, and also points out present problems and gives suggestion.展开更多
The human brain is asymmetrical in function, with each of its two hemispheres being somewhat responsible for distinct cognitive and motor tasks, to include writing. It stands to reason that engineering students who ha...The human brain is asymmetrical in function, with each of its two hemispheres being somewhat responsible for distinct cognitive and motor tasks, to include writing. It stands to reason that engineering students who have established entrance into their upper-division programs will have demonstrated cognitive proficiency in math and logical operations, abstract and analytical reasoning and language usage, to include writing. In this study the question was asked: is there a correlation between an upper-division electrical engineering students’ analytical reasoning ability and their descriptive writing ability? Descriptive writing is taken here to mean a students’ ability to identify key physical aspects of a mathematical model and to express—in words—a concise and well-balanced description that demonstrates a deep conceptual understanding of the model. This includes more than a description of the variables or the particular application to an engineering problem;it includes a demonstrated recognition of the basic physics that govern the model, certain limitations (idealizations) inherent in the model, and an understanding of how to make practical experimental measurements to verify the governing physics in the model. A student at this level may demonstrate proficiency in their analytical reasoning skills and hence be capable of correctly solving a given problem. However, this does not guarantee that the same student is skilled in associating equations with their physical meaning on a deep conceptual level or in understanding physical limitations of the equation. Consequently, such a student may demonstrate difficulty in mapping their comprehension of the model into written language that demonstrates a sound conceptual understanding of the governing physics. The findings represent a sample of two independent class sections of Electrical and Computer Engineering junior’s first course in Microe-lectronic Devices and Circuits during fall semesters 2012 and 2013 at a private mid-size university in NW Oregon. A total of three exams were administered to each of the 2012/2013 groups. Correlations between exam scores that students achieved on their descriptive writing of microelectronics phenomena and their analytical problem-solving abilities were examined and found to be quite significant.展开更多
This paper takes the integrated construction of cold water machine room in Wenquan Avenue Station of Chengdu Metro Line 17 as an example, and introduces in detail the application of BIM deepening design, model decompo...This paper takes the integrated construction of cold water machine room in Wenquan Avenue Station of Chengdu Metro Line 17 as an example, and introduces in detail the application of BIM deepening design, model decomposition, prefabrication, error elimination and other technologies in the integrated construction of refrigeration machine room. By combining BIM technology with digital prefabrication and secondary prefabrication between modules, a series of problems caused by construction site processing and installation are solved, and a new idea and method are provided for construction management of subway electromechanical installation engineering.展开更多
In the current era of rapid development of AI and Big Data,utilizing these emerging technologies to empower learning in specialized higher education courses in the electrical engineering discipline has become a hot to...In the current era of rapid development of AI and Big Data,utilizing these emerging technologies to empower learning in specialized higher education courses in the electrical engineering discipline has become a hot topic among scholars.This paper constructs a ternary graph comprising knowledge,issue,and competency layers,based on knowledge graphs.Combining knowledge graphs with the instructional design of flipped classrooms and double closed-loop teaching designs,students’learning enthusiasm and efficiency can be fully unleashed.In the practical teaching of fundamentals of electrical engineering course,students’learning abilities,innovative thinking skills,and interpersonal coordination competencies significantly improved.展开更多
With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenu...With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.展开更多
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ...Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends.展开更多
Compared with Cu/Al_(2)O_(3)composites,high-strength Cu/Al_(2)O_(3)composites usually exhibit obviously deteriorated electrical conductivity.A chemical and mechanical alloying-based strategy was adopted to fabricate u...Compared with Cu/Al_(2)O_(3)composites,high-strength Cu/Al_(2)O_(3)composites usually exhibit obviously deteriorated electrical conductivity.A chemical and mechanical alloying-based strategy was adopted to fabricate ultrafine composite powders with lowcontent reinforcement and constructed a combined structure of Cu ultrafine powders covered with in-situ Al_(2)O_(3)nanoparticles.After consolidation at a relatively lower sintering temperature of 550℃,high-volume-fraction ultrafine grains were introduced into the Cu/Al_(2)O_(3)composite,and many in-situ Al_(2)O_(3)nanoparticles with an average size of 11.7±7.5 nm were dispersed homogeneously in the Cu grain.Results show that the composite demonstrates an excellent balance of high tensile strength(654±1 MPa)and high electrical conductivity(84.5±0.1%IACS),which is ascribed to the synergistic strengthening effect of ultrafine grains,dislocations,and in-situ Al_(2)O_(3)nanoparticles.This approach,which utilizes ultrafine composite powder with low-content reinforcement as a precursor and employs low-temperature and high-pressure sintering subsequently,may hold promising potential for large-scale industrial production of high-performance oxide dispersion strengthened alloys.展开更多
Higher education is at the top of the educational hierarchy.With the booming development of the economy and society in China,its scale is also expanding greatly.Professional course teaching is a key component of highe...Higher education is at the top of the educational hierarchy.With the booming development of the economy and society in China,its scale is also expanding greatly.Professional course teaching is a key component of higher education,and it plays a vital role in cultivating professionalism and even the overall level of students.According to several problems existing in the current teaching practice of professional courses at our universities,in order to improve the teaching quality to meet the requirements in the emerging engineering era,related strategies and approaches for teaching reform are proposed as follows.Firstly,we advance the traditional classroom teaching into the modern one with equal double-subjects of teachers and students to cultivate the active and comprehensive learning ability of students.Secondly,the scientific research practice-oriented teaching method is introduced,and it contributes to connecting theory with engineering practice for students.Thirdly,the diversified course assessment system is explored,and a closed-loop quality control strategy is discussed on the basis of a questionnaire survey and face-to-face interview.By questionnaires and final assessments,it is clear that teaching qualities of related professional courses are satisfactory in recent years,and the methods and strategies can be widely applied to the teaching practice of other courses.展开更多
To address the issue of disturbance compensation deviation in linear active disturbance rejection control(LADRC),a linear active disturbance rejection control method with reference to the integral chain model(LADRC-R)...To address the issue of disturbance compensation deviation in linear active disturbance rejection control(LADRC),a linear active disturbance rejection control method with reference to the integral chain model(LADRC-R)is proposed.By constructing an ideal control reference model,a dynamic correlation between output deviation and uncompensated disturbances is established,and a dual-loop compensation mechanism is designed.Based on theoretical analysis and frequency-domain characteristics of typical first/second-order systems,this method maintains the parameter-tuning advantages of LADRC while reducing disturbance effects by 50%and introducing no phase lag during low-frequency disturbance suppression.Simulations on second-order systems verify its robustness under parameter perturbations,gain mismatch,and complex disturbances,and an optimized design scheme for the deviation compensator is proposed to suppress discontinuous measurement noise interference.Finally,the engineering effectiveness of this method in precision motion control is validated on an electromagnetic suspension platform,providing a new approach to improving the control performance of LADRC in environments with uncertain disturbances.展开更多
As technologies related to power equipment fault diagnosis and infrared temperature measurement continue to advance,the classification and identification of infrared temperature measurement images have become crucial ...As technologies related to power equipment fault diagnosis and infrared temperature measurement continue to advance,the classification and identification of infrared temperature measurement images have become crucial in effective intelligent fault diagnosis of various electrical equipment.In response to the increasing demand for sufficient feature fusion in current real-time detection and low detection accuracy in existing networks for Substation fault diagnosis,we introduce an innovative method known as Gather and Distribution Mechanism-You Only Look Once(GD-YOLO).Firstly,a partial convolution group is designed based on different convolution kernels.We combine the partial convolution group with deep convolution to propose a new Grouped Channel-wise Spatial Convolution(GCSConv)that compensates for the information loss caused by spatial channel convolution.Secondly,the Gather and Distribute Mechanism,which addresses the fusion problem of different dimensional features,has been implemented by aligning and sharing information through aggregation and distribution mechanisms.Thirdly,considering the limitations in current bounding box regression and the imbalance between complex and simple samples,Maximum Possible Distance Intersection over Union(MPDIoU)and Adaptive SlideLoss is incorporated into the loss function,allowing samples near the Intersection over Union(IoU)to receive more attention through the dynamic variation of the mean Intersection over Union.The GD-YOLO algorithm can surpass YOLOv5,YOLOv7,and YOLOv8 in infrared image detection for electrical equipment,achieving a mean Average Precision(mAP)of 88.9%,with accuracy improvements of 3.7%,4.3%,and 3.1%,respectively.Additionally,the model delivers a frame rate of 48 FPS,which aligns with the precision and velocity criteria necessary for the detection of infrared images in power equipment.展开更多
The disorganized lithium dendrites and unstable solid electrolyte interphase(SEI)severely impede the practical application of lithium metal batteries(LMBs).Herein,the N-Zn-F coordinated triazine-based covalent organic...The disorganized lithium dendrites and unstable solid electrolyte interphase(SEI)severely impede the practical application of lithium metal batteries(LMBs).Herein,the N-Zn-F coordinated triazine-based covalent organic framework(TTA-COF-ZnF_(2))is fabricated for the first time as an artificial SEI layer on the surface of lithium metal anodes(LMAs)to handle these issues.Zn-N coordination in onedimensional(1D)ordered COF can increase lithiophilic sites,reduce the Li-nucleation barrier,and regulate the Li+local coordination environment by optimizing surface charge density around the Zn metal.The electron-rich state induced by strong electron-withdrawing F-groups constructs electronegative nanochannels,which trigger efficient Li+desolvation.These beneficial attributes boost Li^(+)transfer,and homogenize Li^(+)flux,leading to uniform Li deposition.Besides,the lithiophilic triazine ring polar groups in TTA-COF-ZnF_(2)further facilitate the Li^(+)migration.The latent working mechanism of adjusting Li deposition behaviors and stabilizing LMAs for TTA-COF-ZnF_(2)is illustrated by detailed in-situ/ex-situ characterizations and density functional theory(DFT)calculations.As expected,TTA-COF-ZnF_(2)-modified Li|Cu half cells deliver a higher Coulombic efficiency(CE)of 98.4% over 250 cycles and lower nucleation overpotential(11 mV)at 1 mA cm^(-2),while TTA-COF-ZnF_(2)@Li symmetric cells display a long lifespan over3785 h at 2 mA cm^(-2).The TTA-COF-ZnF_(2)@Li|S full cells exert ultra high capacity retention of 81%(837 mA h g^(-1))after 600 cycles at 1C.Besides,the TTA-COF-ZnF_(2)@Li|LFP full cells with a high loading of 7.1 mg cm^(-2)exert ultrahigh capacity retention of 89%(108 mAh g^(-1))after 700 cycles at 5C.This synergistic strategy in N-Zn-F coordinated triazine-based COF provides a new insight to regulate the uniform platins/stripping behaviors for developing ultra-stable and dendrite-free LMBs.展开更多
Semiconducting transition-metal dichalcogenides(TMDs)have garnered significant interest due to their unique structures and properties,positioning them as promising candidates for novel electronic and optoelectronic de...Semiconducting transition-metal dichalcogenides(TMDs)have garnered significant interest due to their unique structures and properties,positioning them as promising candidates for novel electronic and optoelectronic devices.However,the performance of TMDs-based devices is hampered by the suboptimal quality of metal electrodes contacting the atomically thin TMDs layers.Understanding the mechanisms that influence contact quality is crucial for advancing TMDs devices.In this study,we investigated the conductive properties of tungsten selenide(WSe_(2))-based devices with different film thicknesses.Using the transmission line method,a negative correlation between contact resistance and film thickness in multi-electrode devices was revealed.Additionally,repeatability tests conducted at varied temperatures indicated enhanced device stability with increasing film thickness.Theoretical analysis,supported by thermionic emission theory and thermal simulations,suggests that the degradation in electrical properties is primarily due to the thermal effect at the contact interface.Furthermore,we found that van der Waals contacts could mitigate the thermal effect through a metal transfer method.Our findings elucidate the critical role of contact resistance in the electronic performance of 2D material-based field-effect transistors(FETs),which further expands their potential in the next generation of electronic and optoelectronic devices.展开更多
Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evo...Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.展开更多
The electrically assisted(EA)deformation process has received considerable attention in recent years,ac-companied by research on current-induced deformation mechanisms.However,there are still challenges in eliminating...The electrically assisted(EA)deformation process has received considerable attention in recent years,ac-companied by research on current-induced deformation mechanisms.However,there are still challenges in eliminating thermal effects,which have prevented a comprehensive understanding of the underlying current-induced mechanisms.Opting for a single crystal(SC)in research provides advantages in decou-pling the nonthermal effect of electric current at smaller scales and eliminating the complex interactions that exist in polycrystalline materials.Therefore,the innovation of this work lies in decoupling the non-thermal effect of electric current and conducting a comprehensive analysis of anisotropic deformation and mechanisms within a Ni-based SC with different crystallographic axes and various current directions dur-ing electrically assisted tensile simulation.A significant tension axis direction in the SC during EA tension was induced by the combination of a higher current direction factor(|cosθ|)and a dimensionless factor for the current density(|J^(α)/J_(0)^(α)|)along the[100]axis.The stress drop within the SC due to the nonthermal effect of electric current generally increased with increasing current direction.This was attributed to the increased dislocation density differences and decreased temperature.The increased stress anisotropy of the SC at a current direction of 45°was attributed to fewer activated(111)slip systems and the pinning effect of more dislocations within these systems.This study advances our understanding of the thermal and nonthermal effects of electric current and offers valuable insights for the informed application of EA deformations in industrial and aerospace settings with SC superalloys.展开更多
This special issue of Deep Underground Science and Engineering(DUSE)showcases pioneering research on the transformative role of machine learning(ML)and Big Data in deep underground engineering.Edited by vip editors ...This special issue of Deep Underground Science and Engineering(DUSE)showcases pioneering research on the transformative role of machine learning(ML)and Big Data in deep underground engineering.Edited by vip editors Prof.Asoke Nandi(Brunel University of London,UK),Prof.Ru Zhang(Sichuan University,China),Prof.Tao Zhao(Chinese Academy of Sciences,China),and Prof.Tao Lei(Shaanxi University of Science and Technology,China),this issue highlights the innovative applications of ML technique in reshaping structural safety,tunneling operations,and geotechnical investigations.展开更多
The effects of drawing strain during intermediate annealing on the microstructure and properties of Cu-20 wt%Fe alloy wires while maintaining constant total deformation were investigated.Intermediate annealing effecti...The effects of drawing strain during intermediate annealing on the microstructure and properties of Cu-20 wt%Fe alloy wires while maintaining constant total deformation were investigated.Intermediate annealing effectively removes work hardening in both the Cu matrix and Fe fibers,restoring their plastic deformation capacity and preserving fiber continuity during subsequent redrawing.The process also refines the Fe phase,leading to a more uniform size distribution and straighter,better-aligned Cu/Fe phase interfaces,thereby enhancing the comprehensive properties of the alloy.The magnitude of drawing strain during intermediate annealing plays a critical role in balancing the mechanical strength and electrical conductivity of redrawn wires.A lower initial drawing strain requires greater redrawing strain,leading to excessive hardening of the Fe fibers,which negatively impacts the electrical conductivity and tensile plasticity.Conversely,a higher initial drawing strain can result in insufficient work hardening during the redrawing deformation process,yielding minimal strength improvements.Among the tested alloys,H/3.5 wires show a slight reduction in strength and hardness compared to W and H/4.5 wires but exhibit a significant increase in tensile elongation and electrical conductivity.The tensile strength was 755 MPa,and the electrical conductivity was 47%international-annealed copper standard(IACS).The optimal performance is attributed to the formation of a high-density,ultrafine Fe fiber structure-aligned parallel to the drawing direction,which is achieved through a suitable combination of the drawing process and intermediate annealing.展开更多
基金Project supported by the Promising Project Foundation of Zheji-ang University, China
文摘This article describes an Internet based laboratory (NETLAB) developed at Zhejiang University for electrical engi- neering education. A key feature of the project is the use of real experimental systems rather than simulation or virtual reality. NELTAB provides remote access to a wide variety of experiments, including not only basic electrical and electronic experiments but also many innovative control experiments. Students can effectively use the laboratory at any time and from anywhere. NETLAB has been in operation since July 2003.
文摘The project analyzes the student's participation in complementary activities such as Education Tutorial Program, Junior Company and Academic Center. These organizations have the goal to improve, expand and connect knowledge learned during classes with several practical activities. They can provide a huge integration between the students and the professors in order to achieve better results in the pedagogical, structural and organizational parts of an engineering major degree. Therefore, the project goes through the impact of each entity in the student's life and the advantages to professional future, focusing the presence of these organizations in the Electrical Engineering Course of Federal University of Rio Grande do Norte.
文摘The paper has introduced the Journal 'Advanced Technology of Electrical Engineering and Energy',presented its main journal evaluation indexes. The result indicates that the journal has made great progress in recent years. It gives much info. about the journal to authors.
文摘The paper presented the statistics and analysis on papers published on the journal 'Advanced Technology of Electrical Engineering and Energy' from 1996 to 2008: the paper acceptance rate,the paper category,the first author's affiliations,the top 7 first authors,the top 10 coauthors and also the journal evaluation indexes of the journal.It offers details of the journal to anyone interested,especially to our editorial board and our broad readers.
文摘The paper has introduced the journals on electrical engineering in China in detail, presented its publication year, the distributions for all elec. eng. journals and its core journals, the position and level of the journals, its main journal evaluation indexes, its core journal proportion and inclusion info. by famous international database. The paper offers much information about the journals on electrical engineering in China to readers, and also points out present problems and gives suggestion.
文摘The human brain is asymmetrical in function, with each of its two hemispheres being somewhat responsible for distinct cognitive and motor tasks, to include writing. It stands to reason that engineering students who have established entrance into their upper-division programs will have demonstrated cognitive proficiency in math and logical operations, abstract and analytical reasoning and language usage, to include writing. In this study the question was asked: is there a correlation between an upper-division electrical engineering students’ analytical reasoning ability and their descriptive writing ability? Descriptive writing is taken here to mean a students’ ability to identify key physical aspects of a mathematical model and to express—in words—a concise and well-balanced description that demonstrates a deep conceptual understanding of the model. This includes more than a description of the variables or the particular application to an engineering problem;it includes a demonstrated recognition of the basic physics that govern the model, certain limitations (idealizations) inherent in the model, and an understanding of how to make practical experimental measurements to verify the governing physics in the model. A student at this level may demonstrate proficiency in their analytical reasoning skills and hence be capable of correctly solving a given problem. However, this does not guarantee that the same student is skilled in associating equations with their physical meaning on a deep conceptual level or in understanding physical limitations of the equation. Consequently, such a student may demonstrate difficulty in mapping their comprehension of the model into written language that demonstrates a sound conceptual understanding of the governing physics. The findings represent a sample of two independent class sections of Electrical and Computer Engineering junior’s first course in Microe-lectronic Devices and Circuits during fall semesters 2012 and 2013 at a private mid-size university in NW Oregon. A total of three exams were administered to each of the 2012/2013 groups. Correlations between exam scores that students achieved on their descriptive writing of microelectronics phenomena and their analytical problem-solving abilities were examined and found to be quite significant.
文摘This paper takes the integrated construction of cold water machine room in Wenquan Avenue Station of Chengdu Metro Line 17 as an example, and introduces in detail the application of BIM deepening design, model decomposition, prefabrication, error elimination and other technologies in the integrated construction of refrigeration machine room. By combining BIM technology with digital prefabrication and secondary prefabrication between modules, a series of problems caused by construction site processing and installation are solved, and a new idea and method are provided for construction management of subway electromechanical installation engineering.
基金supported by the 2024 Provincial Teaching Reform Research Program of Hubei Undergraduate Colleges and Universities(Artificial Intelligence–AI Teaching Assistant–Knowledge Graph Empowerment in New Engineering Education Design and Innovation:A Case Study of the Fundamentals of Electrical Engineering Course)China’s Ministry of Education Equipment Renewal Project for the Digital and Intelligent Education and Teaching Platform(Grant No.2406-000000-05-03-583551).
文摘In the current era of rapid development of AI and Big Data,utilizing these emerging technologies to empower learning in specialized higher education courses in the electrical engineering discipline has become a hot topic among scholars.This paper constructs a ternary graph comprising knowledge,issue,and competency layers,based on knowledge graphs.Combining knowledge graphs with the instructional design of flipped classrooms and double closed-loop teaching designs,students’learning enthusiasm and efficiency can be fully unleashed.In the practical teaching of fundamentals of electrical engineering course,students’learning abilities,innovative thinking skills,and interpersonal coordination competencies significantly improved.
基金Supported by Beijing Municipal Natural Science Foundation of China(Grant No.24JL002)China Postdoctoral Science Foundation(Grant No.2024M754054)+2 种基金National Natural Science Foundation of China(Grant No.52120105008)Beijing Municipal Outstanding Young Scientis Program of Chinathe New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.
基金supported by the National Key R&D Plan of China(No.2022YFB3705603)the National Natural Science Foundation of China(No.52101046)+1 种基金the Excellent Youth Overseas Project of National Science and Natural Foundation of China,the Baowu Special Metallurgy Cooperation Limited(No.22H010101336)the Medicine-Engineering Interdisciplinary Project of Shanghai Jiao Tong University(No.YG2022QN076).
文摘Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends.
基金Foundation of Northwest Institute for Non-ferrous Metal Research(YK2020-9,ZZXJ2203)Capital Projects of Financial Department of Shaanxi Province(YK22C-12)+4 种基金National Natural Science Foundation of China(62204207)Innovation Capability Support Plan in Shaanxi Province of China(2022KJXX-82,2023KJXX-083)Natural Science Foundation of Shaanxi Province(2022JQ-332)Shaanxi Innovative Research Team for Key Science and Technology(2023-CX-TD-46)Key Research and Development Projects of Shaanxi Province(2024GX-YBXM-351)。
文摘Compared with Cu/Al_(2)O_(3)composites,high-strength Cu/Al_(2)O_(3)composites usually exhibit obviously deteriorated electrical conductivity.A chemical and mechanical alloying-based strategy was adopted to fabricate ultrafine composite powders with lowcontent reinforcement and constructed a combined structure of Cu ultrafine powders covered with in-situ Al_(2)O_(3)nanoparticles.After consolidation at a relatively lower sintering temperature of 550℃,high-volume-fraction ultrafine grains were introduced into the Cu/Al_(2)O_(3)composite,and many in-situ Al_(2)O_(3)nanoparticles with an average size of 11.7±7.5 nm were dispersed homogeneously in the Cu grain.Results show that the composite demonstrates an excellent balance of high tensile strength(654±1 MPa)and high electrical conductivity(84.5±0.1%IACS),which is ascribed to the synergistic strengthening effect of ultrafine grains,dislocations,and in-situ Al_(2)O_(3)nanoparticles.This approach,which utilizes ultrafine composite powder with low-content reinforcement as a precursor and employs low-temperature and high-pressure sintering subsequently,may hold promising potential for large-scale industrial production of high-performance oxide dispersion strengthened alloys.
基金Undergraduate Education Reform Project of Dalian Maritime University(BJG-C2024072)Postgraduate Education Reform Project of Liaoning Province([2022]249-209)+1 种基金Education Reform Project of Dalian Minzu University(YB202547,YJS2024JG55,B2109)First-Class Undergraduate Courses of Liaoning Province([2022]302-1433,[2022]302-1452)。
文摘Higher education is at the top of the educational hierarchy.With the booming development of the economy and society in China,its scale is also expanding greatly.Professional course teaching is a key component of higher education,and it plays a vital role in cultivating professionalism and even the overall level of students.According to several problems existing in the current teaching practice of professional courses at our universities,in order to improve the teaching quality to meet the requirements in the emerging engineering era,related strategies and approaches for teaching reform are proposed as follows.Firstly,we advance the traditional classroom teaching into the modern one with equal double-subjects of teachers and students to cultivate the active and comprehensive learning ability of students.Secondly,the scientific research practice-oriented teaching method is introduced,and it contributes to connecting theory with engineering practice for students.Thirdly,the diversified course assessment system is explored,and a closed-loop quality control strategy is discussed on the basis of a questionnaire survey and face-to-face interview.By questionnaires and final assessments,it is clear that teaching qualities of related professional courses are satisfactory in recent years,and the methods and strategies can be widely applied to the teaching practice of other courses.
基金supported by the National Natural Science Foundation of China(Nos.62063009,52262050)the National Key Research and Development Program during the 14th 5-Year Plan(No.2023YFB4302100)the Major Science and Technology Research and Development Special Project in Jiangxi Province(No.20232ACE01011).
文摘To address the issue of disturbance compensation deviation in linear active disturbance rejection control(LADRC),a linear active disturbance rejection control method with reference to the integral chain model(LADRC-R)is proposed.By constructing an ideal control reference model,a dynamic correlation between output deviation and uncompensated disturbances is established,and a dual-loop compensation mechanism is designed.Based on theoretical analysis and frequency-domain characteristics of typical first/second-order systems,this method maintains the parameter-tuning advantages of LADRC while reducing disturbance effects by 50%and introducing no phase lag during low-frequency disturbance suppression.Simulations on second-order systems verify its robustness under parameter perturbations,gain mismatch,and complex disturbances,and an optimized design scheme for the deviation compensator is proposed to suppress discontinuous measurement noise interference.Finally,the engineering effectiveness of this method in precision motion control is validated on an electromagnetic suspension platform,providing a new approach to improving the control performance of LADRC in environments with uncertain disturbances.
基金Science and Technology Department of Jilin Province(No.20200403075SF)Education Department of Jilin Province(No.JJKH20240148KJ).
文摘As technologies related to power equipment fault diagnosis and infrared temperature measurement continue to advance,the classification and identification of infrared temperature measurement images have become crucial in effective intelligent fault diagnosis of various electrical equipment.In response to the increasing demand for sufficient feature fusion in current real-time detection and low detection accuracy in existing networks for Substation fault diagnosis,we introduce an innovative method known as Gather and Distribution Mechanism-You Only Look Once(GD-YOLO).Firstly,a partial convolution group is designed based on different convolution kernels.We combine the partial convolution group with deep convolution to propose a new Grouped Channel-wise Spatial Convolution(GCSConv)that compensates for the information loss caused by spatial channel convolution.Secondly,the Gather and Distribute Mechanism,which addresses the fusion problem of different dimensional features,has been implemented by aligning and sharing information through aggregation and distribution mechanisms.Thirdly,considering the limitations in current bounding box regression and the imbalance between complex and simple samples,Maximum Possible Distance Intersection over Union(MPDIoU)and Adaptive SlideLoss is incorporated into the loss function,allowing samples near the Intersection over Union(IoU)to receive more attention through the dynamic variation of the mean Intersection over Union.The GD-YOLO algorithm can surpass YOLOv5,YOLOv7,and YOLOv8 in infrared image detection for electrical equipment,achieving a mean Average Precision(mAP)of 88.9%,with accuracy improvements of 3.7%,4.3%,and 3.1%,respectively.Additionally,the model delivers a frame rate of 48 FPS,which aligns with the precision and velocity criteria necessary for the detection of infrared images in power equipment.
基金financially supported by the National Natural Science Foundation of China(52472093,52176185)the Department of Science and Technology of Hubei Province of China(2022CFA069,2022BAA086)。
文摘The disorganized lithium dendrites and unstable solid electrolyte interphase(SEI)severely impede the practical application of lithium metal batteries(LMBs).Herein,the N-Zn-F coordinated triazine-based covalent organic framework(TTA-COF-ZnF_(2))is fabricated for the first time as an artificial SEI layer on the surface of lithium metal anodes(LMAs)to handle these issues.Zn-N coordination in onedimensional(1D)ordered COF can increase lithiophilic sites,reduce the Li-nucleation barrier,and regulate the Li+local coordination environment by optimizing surface charge density around the Zn metal.The electron-rich state induced by strong electron-withdrawing F-groups constructs electronegative nanochannels,which trigger efficient Li+desolvation.These beneficial attributes boost Li^(+)transfer,and homogenize Li^(+)flux,leading to uniform Li deposition.Besides,the lithiophilic triazine ring polar groups in TTA-COF-ZnF_(2)further facilitate the Li^(+)migration.The latent working mechanism of adjusting Li deposition behaviors and stabilizing LMAs for TTA-COF-ZnF_(2)is illustrated by detailed in-situ/ex-situ characterizations and density functional theory(DFT)calculations.As expected,TTA-COF-ZnF_(2)-modified Li|Cu half cells deliver a higher Coulombic efficiency(CE)of 98.4% over 250 cycles and lower nucleation overpotential(11 mV)at 1 mA cm^(-2),while TTA-COF-ZnF_(2)@Li symmetric cells display a long lifespan over3785 h at 2 mA cm^(-2).The TTA-COF-ZnF_(2)@Li|S full cells exert ultra high capacity retention of 81%(837 mA h g^(-1))after 600 cycles at 1C.Besides,the TTA-COF-ZnF_(2)@Li|LFP full cells with a high loading of 7.1 mg cm^(-2)exert ultrahigh capacity retention of 89%(108 mAh g^(-1))after 700 cycles at 5C.This synergistic strategy in N-Zn-F coordinated triazine-based COF provides a new insight to regulate the uniform platins/stripping behaviors for developing ultra-stable and dendrite-free LMBs.
基金supported by the Science and Technology Innovation Council of Shenzhen(No.KQTD20170810105439418)the National Key R&D Project from Minister of Science and Technology,China(No.2021YFB3200304)+2 种基金National Natural Science Foundation of China(Nos.6237129,52125205,U20A20166,61805015 and 61804011)the Natural Science Foundation of Beijing Municipality(No.Z180011)the Fundamental Research Funds for the Central Universities.
文摘Semiconducting transition-metal dichalcogenides(TMDs)have garnered significant interest due to their unique structures and properties,positioning them as promising candidates for novel electronic and optoelectronic devices.However,the performance of TMDs-based devices is hampered by the suboptimal quality of metal electrodes contacting the atomically thin TMDs layers.Understanding the mechanisms that influence contact quality is crucial for advancing TMDs devices.In this study,we investigated the conductive properties of tungsten selenide(WSe_(2))-based devices with different film thicknesses.Using the transmission line method,a negative correlation between contact resistance and film thickness in multi-electrode devices was revealed.Additionally,repeatability tests conducted at varied temperatures indicated enhanced device stability with increasing film thickness.Theoretical analysis,supported by thermionic emission theory and thermal simulations,suggests that the degradation in electrical properties is primarily due to the thermal effect at the contact interface.Furthermore,we found that van der Waals contacts could mitigate the thermal effect through a metal transfer method.Our findings elucidate the critical role of contact resistance in the electronic performance of 2D material-based field-effect transistors(FETs),which further expands their potential in the next generation of electronic and optoelectronic devices.
基金National Natural Science Foundation of China(Grant No.22005318,22379152)Western Young Scholars Foundations of Chinese Academy of Sciences+4 种基金Lanzhou Youth Science and Technology Talent Innovation Project(Grant No.2023-NQ-86,No.2023-QN-96)Lanzhou Chengguan District Science and Technology Plan Project(Grant No.2023-rc-4,2022-rc-4)Collaborative Innovation Alliance Fund for Young Science and Technology Worker(Grant No.HZJJ23-7)National Nature Science Foundations of Gansu Province(Grant No.21JR11RA020)Fundamental Research Funds for the Central Universities(Grant No.31920220073,31920230128)。
文摘Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.
基金National Science Fund for Distinguished Young Scholars(No.52225505)the National Sci-ence and Technology Major Project(No.J2019-VII-0014-0154)+1 种基金the National Natural Science Foundation of China(No.52005412)the Tianjin Natural Science Foundation of China-Multi-input key projects(No.22JCZDJC00650)for financial supports given to this research.
文摘The electrically assisted(EA)deformation process has received considerable attention in recent years,ac-companied by research on current-induced deformation mechanisms.However,there are still challenges in eliminating thermal effects,which have prevented a comprehensive understanding of the underlying current-induced mechanisms.Opting for a single crystal(SC)in research provides advantages in decou-pling the nonthermal effect of electric current at smaller scales and eliminating the complex interactions that exist in polycrystalline materials.Therefore,the innovation of this work lies in decoupling the non-thermal effect of electric current and conducting a comprehensive analysis of anisotropic deformation and mechanisms within a Ni-based SC with different crystallographic axes and various current directions dur-ing electrically assisted tensile simulation.A significant tension axis direction in the SC during EA tension was induced by the combination of a higher current direction factor(|cosθ|)and a dimensionless factor for the current density(|J^(α)/J_(0)^(α)|)along the[100]axis.The stress drop within the SC due to the nonthermal effect of electric current generally increased with increasing current direction.This was attributed to the increased dislocation density differences and decreased temperature.The increased stress anisotropy of the SC at a current direction of 45°was attributed to fewer activated(111)slip systems and the pinning effect of more dislocations within these systems.This study advances our understanding of the thermal and nonthermal effects of electric current and offers valuable insights for the informed application of EA deformations in industrial and aerospace settings with SC superalloys.
文摘This special issue of Deep Underground Science and Engineering(DUSE)showcases pioneering research on the transformative role of machine learning(ML)and Big Data in deep underground engineering.Edited by vip editors Prof.Asoke Nandi(Brunel University of London,UK),Prof.Ru Zhang(Sichuan University,China),Prof.Tao Zhao(Chinese Academy of Sciences,China),and Prof.Tao Lei(Shaanxi University of Science and Technology,China),this issue highlights the innovative applications of ML technique in reshaping structural safety,tunneling operations,and geotechnical investigations.
基金support provided by the National Natural Science Foundation of China(Nos.52405364,and 52171110)the Jiangsu Funding Program for Excellent Postdoctoral Talent.W.Huo acknowledges the support from the European Union Horizon 2020 Research and Innovation Program(No.857470)+1 种基金from the European Regional Development Fund via the Foundation for Polish Science International Research Agenda PLUS Program(No.MAB PLUS/2018/8)The publication was partly created within the framework of the project of the Minister of Science and Higher Education"Support for the activities of Centers of Excellence established in Poland under Horizon 2020"(No.MEiN/2023/DIR/3795).
文摘The effects of drawing strain during intermediate annealing on the microstructure and properties of Cu-20 wt%Fe alloy wires while maintaining constant total deformation were investigated.Intermediate annealing effectively removes work hardening in both the Cu matrix and Fe fibers,restoring their plastic deformation capacity and preserving fiber continuity during subsequent redrawing.The process also refines the Fe phase,leading to a more uniform size distribution and straighter,better-aligned Cu/Fe phase interfaces,thereby enhancing the comprehensive properties of the alloy.The magnitude of drawing strain during intermediate annealing plays a critical role in balancing the mechanical strength and electrical conductivity of redrawn wires.A lower initial drawing strain requires greater redrawing strain,leading to excessive hardening of the Fe fibers,which negatively impacts the electrical conductivity and tensile plasticity.Conversely,a higher initial drawing strain can result in insufficient work hardening during the redrawing deformation process,yielding minimal strength improvements.Among the tested alloys,H/3.5 wires show a slight reduction in strength and hardness compared to W and H/4.5 wires but exhibit a significant increase in tensile elongation and electrical conductivity.The tensile strength was 755 MPa,and the electrical conductivity was 47%international-annealed copper standard(IACS).The optimal performance is attributed to the formation of a high-density,ultrafine Fe fiber structure-aligned parallel to the drawing direction,which is achieved through a suitable combination of the drawing process and intermediate annealing.