Developing high-efficient flame-retardant coatings is crucial for fire safety polymer and battery fields.Traditional intumescent coatings and ceramifiable coatings struggle to provide immediate and prolonged protectio...Developing high-efficient flame-retardant coatings is crucial for fire safety polymer and battery fields.Traditional intumescent coatings and ceramifiable coatings struggle to provide immediate and prolonged protection simultaneously,which limits the applicability.To address this,an innovative bi-layered coating with organic/nano-inorganic additives is inspired by differential response behaviors,enabling relay response effect with both fast-acting and extended protection.Specifically,two layers function continuously in the form of a relay.With a mere 320 microns,the bi-layered coating withstands fire temperatures of up to 1400℃for at least 900 s.Consequently,the coating effective prevented burn through in aluminum plates and glass fabric-reinforced epoxy resin,which otherwise were burned through in 135 and 173 s,respectively.Meanwhile,the bi-layered coating suppressed the formation and decomposition of solid interface layer in lithium soft-package batteries,leading to prolonged electrochemical stability and fire safety.Additionally,the bi-layered coating with a fast response endows polyurethane foam with rapid self-extinguishing,preventing ignition even under exposure to strong fire of 1400℃.Shortly,our work offers new insights into the design and development of thin,high-performance,and multi-application flame-retardant coatings.展开更多
High flammability of polymers has become a major issue which has restricted its applications.Recently,highly crystalline materials and metal–organic frameworks(MOFs),which consisted of metal ions and organic linkers,...High flammability of polymers has become a major issue which has restricted its applications.Recently,highly crystalline materials and metal–organic frameworks(MOFs),which consisted of metal ions and organic linkers,have been intensively employed as novel fire retardants(FRs)for a variety of polymers(MOF/polymer).The MOFs possessed abundant transition metal species,fire-retardant elements and potential carbon source accompanied with the facile tuning of the structure and property,making MOF,its derivatives and MOF hybrids promising for fire retardancy research.The recent progress and strategies to prepare MOF-based FRs are emphasized and summarized.The fire retardancy mechanisms of MOF/polymer composites are explained,which may guide the future design for efficient MOF-based FRs.Finally,the challenges and prospects related to different MOFbased FRs are also discussed and aim to provide a fast and holistic overview,which is beneficial for researchers to quickly get up to speed with the latest development in this field.展开更多
This study presents the mass concentrations of PM(2.5),O3,SO2 and NOxat one urban,one suburban and two rural locations in the Changchun region from September 25 to October 272013. Major chemical components of PM(2....This study presents the mass concentrations of PM(2.5),O3,SO2 and NOxat one urban,one suburban and two rural locations in the Changchun region from September 25 to October 272013. Major chemical components of PM(2.5)at the four sites were daily sampled and analyzed. Most of daily concentrations of SO2(7–82 μg/m^3),O3(27–171 μg/m^3) and NOx(14–213 μg/m^3) were below the limits of the National Ambient Air Quality Standard(NAAQS)in China. However,PM(2.5)concentrations(143–168 μg/m^3) were 2-fold higher than NAAQS.Higher PM(2.5)concentrations(~ 150 μg/m^3) were measured during the pre-harvest and harvest at the urban site,while PM(2.5)concentrations significantly increased from 250 to400 μg m^(-3) at suburban and rural sites with widespread biomass burning. At all sites,PM(2.5)components were dominated by organic carbon(OC) and followed by soluble component sulfate(SO4^(2-)),ammonium(NH4~+) and nitrate(NO3^-). Compared with rural sites,urban site had a higher mineral contribution and lower potassium(K~+and K) contribution to PM(2.5).Severe atmospheric haze events that occurred from October 21 to 23 were attributed to strong source emissions(e.g.,biomass burning) and unfavorable air diffusion conditions.Furthermore,coal burning originating from winter heating supply beginning on October 18 increased the atmospheric pollutant emissions. For entire crop harvest period,the Positive Matrix Factorization(PMF) analysis indicated five important emission contributors in the Changchun region,as follows: secondary aerosol(39%),biomass burning(20%),supply heating(18%),soil/road dust(14%) and traffic(9%).展开更多
In this study,we investigate the solar cycle dependence of the sunrise ionospheric zonal electric fields at the equator under geomagnetically quiet conditions.Simulations using the Thermosphere–Ionosphere–Electrodyn...In this study,we investigate the solar cycle dependence of the sunrise ionospheric zonal electric fields at the equator under geomagnetically quiet conditions.Simulations using the Thermosphere–Ionosphere–Electrodynamics General Circulation Model(TIEGCM)reveal that the equatorial eastward electric field at sunrise decreases with the increase in solar activity,independent of longitude,season,and lower atmospheric tides.The solar cycle dependence of the sunrise zonal electric field is mainly related to the zonal wind dynamo.Moreover,this solar cycle dependence of sunrise electric fields at the equator is dominated by the corresponding variation in the F-region dynamo because the response of conductivity and neutral winds near sunrise to increasing solar flux is stronger in the F-region than in the E-region,although the sunrise eastward enhancement of electric fields is mainly driven by the E-region zonal wind dynamo.Specifically,the westward gradient of low-latitude F-region neutral winds near the dawn terminator tends to produce westward electric fields in the equatorial region that are more pronounced at solar maximum,whereas the midlatitude E-region dynamo induces an eastward enhancement of sunrise electric fields at the equator that decreases slightly with increasing solar activity.This study also reveals that the reason the eastward enhancement of equatorial zonal electric fields near dawn and dusk terminators show opposite solar cycle dependence is because of their different generation mechanisms.展开更多
This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven second...This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.展开更多
We investigate the spatial and temporal correlations of hot-electron generation in high-intensity laser interaction with massive and thin copper targets under conditions relevant to inertial confinement fusion.Using K...We investigate the spatial and temporal correlations of hot-electron generation in high-intensity laser interaction with massive and thin copper targets under conditions relevant to inertial confinement fusion.Using Ka time-resolved imaging,it is found that in the case of massive targets,the hot-electron generation follows the laser pulse intensity with a short delay needed for favorable plasma formation.Conversely,a significant delay in the x-ray emission compared with the laser pulse intensity profile is observed in the case of thin targets.Theoretical analysis and numerical simulations suggest that this is related to radiation preheating of the foil and the increase in hot-electron lifetime in a hot expanding plasma.展开更多
The interaction of high-power laser pulses with undercritical foams produced by different techniques but with the same average density is studied at the PALS laser facility.The spatial-temporal evolution of X-ray emis...The interaction of high-power laser pulses with undercritical foams produced by different techniques but with the same average density is studied at the PALS laser facility.The spatial-temporal evolution of X-ray emission is observed using an X-ray streak camera,electron and ion temperatures are measured by X-ray spectroscopy,and hot-electron production is characterized by monochromatic X-ray imaging.Transmission of a femtosecond laser probe pulse through foams is observed in the near and far fields.In spite of large differences in pore size and foam structure,the velocity of ionization front propagation is quite similar for all the foams studied and is slower than that in a homogeneous material of the same average density.The ion temperature in the plasma behind the ionization front is a few times higher than the electron temperature.Hot-electron production in plastic foams with small pores is strongly suppressed compared with that in solid targets,whereas in foams produced by additive manufacturing,it is significantly increased to the level observed in bare copper foil targets.展开更多
Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of supr...Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of suprathermal hot electrons under interaction conditions envisaged for direct-drive schemes for inertial confinement fusion.Nonetheless,SSRS remains to date one of the least understood parametric instabilities.Here,we report the first angularly and spectrally resolved measurements of scattered light at laser intensities relevant for the shock ignition scheme(I×10^(16)W/cm^(2)),showing significant SSRS growth in the direction perpendicular to the laser polarization.Modification of the focal spot shape and orientation,obtained by using two different random phase plates,and of the density gradient of the plasma,by utilizing exploding foil targets of different thicknesses,clearly reveals a different dependence of backward SRS(BSRS)and SSRS on experimental parameters.While convective BSRS scales with plasma density scale length,as expected by linear theory,the growth of SSRS depends on the spot extension in the direction perpendicular to laser polarization.Our analysis therefore demonstrates that under current experimental conditions,with density scale lengths L_(n)≈60–120μm and spot sizes FWHM≈40–100μm,SSRS is limited by laser beam size rather than by the density scale length of the plasma.展开更多
Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential a...Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential applications:as an alternative to deuterium-tritium for fusion energy production,astrophysics studies,and alpha-particle generation for medical treatment.One possible scheme for laser-driven p-^(11)B reactions is to direct a beam of laser-accelerated protons onto a boron(B)sample(the so-called“pitcher-catcher”scheme).This technique has been successfully implemented on large high-energy lasers,yielding hundreds of joules per shot at low repetition.We present here a complementary approach,exploiting the high repetition rate of the VEGA III petawatt laser at CLPU(Spain),aiming at accumulating results from many interactions at much lower energy,to provide better control of the parameters and the statistics of the measurements.Despite a moderate energy per pulse,our experiment allowed exploration of the laser-driven fusion process with tens(up to hundreds)of laser shots.The experiment provided a clear signature of the reactions involved and of the fusion products,accumulated over many shots,leading to an improved optimization of the diagnostics for experimental campaigns of this type.In this paper,we discuss the effectiveness of laser-driven p-11B fusion in the pitcher-catcher scheme,at a high repetition rate,addressing the challenges of this experimental scheme and highlighting its critical aspects.Our proposed methodology allows evaluation of the performance of this scheme for laser-driven alpha particle production and can be adapted to high-repetition-rate laser facilities with higher energy and intensity.展开更多
A large number of anomalous extension twins,with low or even negative twinning Schmid factors,were found to nucleate and grow in a strongly textured Mg-1Al alloy during tensile deformation along the extruded direction...A large number of anomalous extension twins,with low or even negative twinning Schmid factors,were found to nucleate and grow in a strongly textured Mg-1Al alloy during tensile deformation along the extruded direction.The deformation mechanisms responsible for this behaviour were investigated through in-situ electron back-scattered diffraction,grain reference orientation deviation,and slip trace-modified lattice rotation.It was found that anomalous extension twins nucleated mainly at the onset of plastic deformation at or near grain boundary triple junctions.They were associated with the severe strain incompatibility between neighbour grains as a result from the differentbasal slip-induced lattice rotations.Moreover,the anomalous twins were able to grow with the applied strain due to the continuous activation ofbasal slip in different neighbour grains,which enhanced the strain incompatibility.These results reveal the complexity of the deformation mechanisms in Mg alloys at the local level when deformed along hard orientations.展开更多
In this work,the coatings used phosphorylated chitosan(PCS)and GP-108 via the dip-coating method presented exceptional flame retardancy and antibacterial properties for flexible polyurethane foams(FPUF).PCS/GP@FPUF wi...In this work,the coatings used phosphorylated chitosan(PCS)and GP-108 via the dip-coating method presented exceptional flame retardancy and antibacterial properties for flexible polyurethane foams(FPUF).PCS/GP@FPUF with 35%weight gain of PCS/GP can receive the UL-94 V-0 rating and obtain a 32%reduction of peak heat release rate value compared with that of FPUF,and it remains relatively dense char residues.The effective heat of combustion of PCS/GP@FPUF is 21.6 kJ/g,presenting a 22%decrease compared with that of FPUF.Meanwhile,the PCS/GP coatings mainly have the condensed-phase flame-retardant mechanism associated with the analysis of char residues and the volatile products released through the thermal degradation process.X-ray photoelectron spectroscopy results confirm that the char residues of PCS/GP@FPUF consist of highly-graphitized carbon and it formed P-N-Si synergistic char lay-ers.In addition,the antibacterial rates of PCS/GP@FPUF against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)are 99.99%,and the incorporation of GP-108 does not influence the antibacterial proper-ties of PCS.Importantly,the resiliency of FPUFs has been slightly influenced.Briefly,the flame-retardant and antibacterial FPUFs with wonderful resiliency are hopeful to be applied as filler materials for vehicle seats and obtain longer service lives.展开更多
Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of lo...Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.展开更多
The aim of this work was to improve the thermal conductivity and electromagnetic shielding of the leakage proof phase change materials(PCMs),in which a polyrotaxane(PLR)was used as a support material to encapsulate PE...The aim of this work was to improve the thermal conductivity and electromagnetic shielding of the leakage proof phase change materials(PCMs),in which a polyrotaxane(PLR)was used as a support material to encapsulate PEG 1k or PEG 6k and MXene as multi-functional filler.The PCMs can be processed conveniently by a hot press and the PEG 1k containing samples showed excellent flexibility.We conducted a systematic evaluation of the phase transition behavior of the material,thermal conductivity and electromagnetic shielding performance tests.Notably,the PCMs achieved a high enthalpy values(123.9–159.6 J/g).The PCMs exhibited an increase of 44.3%,and 137.5%in thermal conductivity values with higher MXene content(5 wt%)for PLR-PEG6k and PLR-PEG1k,respectively,and show high shape stability and no leakage during and after phase transition.The introduction of MXene can significantly improve the electromagnetic shielding performance of PCM composites.Typically,higher conductive samples(samples which contain high MXene contents)offer a higher EMI SE shielding,reaching a maximum of 4.67 dB at 5.6 GHz for PLR-1K-MX5.These improvements solve the main problems of organic PEG based PCMs,thus making PLR-PEG-MXene based PCMs good candidates for thermoregulators of both solid-state disks and smart phone.It is worth pointing out that the sample PLR-1k-MX5 can decrease 4.3C of the reference temperature during cellphone running.Moreover,the temperature of the protecting sheet in the simulated solid state disk with PCM was significantly lower(showing a decreasing of 7.9℃)compared with the blank sample.展开更多
This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems...This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.展开更多
Porous materials offer unique possibilities for the production of plasmas with controlled density profiles for experiments on laser–matter interaction.They are of growing relevance to many applications,such as inerti...Porous materials offer unique possibilities for the production of plasmas with controlled density profiles for experiments on laser–matter interaction.They are of growing relevance to many applications,such as inertial confinement fusion,fundamental research,and secondary sources.Understanding the processes of transformation of a porous solid into a plasma is of fundamental interest and is needed for producing materials with desired properties.展开更多
An analytical model of current propagation in a helical coil with varying geometry is developed.It can be used for post-acceleration and post-focusing of ions produced via laser-driven target normal sheath acceleratio...An analytical model of current propagation in a helical coil with varying geometry is developed.It can be used for post-acceleration and post-focusing of ions produced via laser-driven target normal sheath acceleration and generation of electromagnetic pulses.We calculate the current that propagates in a helical coil and suggest a method for improving its dispersion properties using a screening tube and with pitch and radius variation.The electromagnetic fields calculated with the analytical model are in agreement with particle-in-cell simulations.The model provides insights into the physics of current propagation in helical coils with varying geometries and enables a numerical implementation for rapid proton spectrum computations,which facilitate the design of such coils for future experiments.展开更多
Bacterial meningitis is a serious and potentially life-threatening infection that affects the protective layers surrounding the brain and spinal cord,known as the meninges.Several types of bacteria,including Streptoco...Bacterial meningitis is a serious and potentially life-threatening infection that affects the protective layers surrounding the brain and spinal cord,known as the meninges.Several types of bacteria,including Streptococcus pneumoniae,Neisseria meningitidis,and Haemophilus influenzae,can cause this condition.Certain populations,such as infants,children,immunocompromised adults,and the elderly,are particularly vulnerable to these pathogens.Symptoms of bacterial meningitis can manifest suddenly and may include high fever,severe and persistent headache,stiff neck,vomiting,sensitivity to light,and confusion or changes in mental state[1,2].Identifying these symptoms in infants can be more challenging and may lead to long-term disability or death[3].Despite the effectiveness of vaccines,it is crucial to understand how bacteria invade the brain and how our innate immune system responds to infection(Fig.1).展开更多
The scarcity of highly effective and economical catalysts is a major impediment to the widespread adop-tion of electrochemical water splitting for the generation of hydrogen.MoS_(2),a low-cost candidate,suffers from i...The scarcity of highly effective and economical catalysts is a major impediment to the widespread adop-tion of electrochemical water splitting for the generation of hydrogen.MoS_(2),a low-cost candidate,suffers from inefficient catalytic activity.Nonetheless,a captivating strategy has emerged,which involves the en-gineering of heteroatom doping to enhance electrochemical proficiency.This investigation demonstrates a successful implementation of the strategy by combining ultrathin MoS_(2) nanosheets with Co and Ni dual single multi-atoms(DSMAs)grown directly on 2D N-doped carbon nanosheets(CoNi-MoS_(2)/NCNs)for the purpose of improving hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).With the aid of a dual-atom doped bifunctional electrocatalyst,effective water splitting has been achieved across a broad pH range in electrolytes.The double doping of Co and Ni strengthens their interactions,thereby altering the electromagnetic composition of the host MoS_(2) and ultimately leading to improved electrocat-alytic activity.Additionally,the synergistic effect between NCNs and MoS_(2) nanosheets provided efficient electron transport channels for ions and an ample surface area with open voids for ion diffusion.Con-sequently,the CoNi-MoS_(2)/NCNs catalysts demonstrated exceptional stability and activity,producing low degree overpotentials of 180.5,124.9,and 196.4 mV for HER and 200,203,and 207 mV for OER in neu-tral,alkaline,and acidic mediums,respectively,while also exhibiting outstanding overall water-splitting performance,durability,and stability when used as an electrolyzer at universal pH.展开更多
The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometer...The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers.Protons with energies of tens of MeV can be accelerated using,for instance,target normal sheath acceleration and focused on secondary targets.Under such conditions,nuclear reactions can occur,with the production of radioisotopes suitable for medical application.The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators.In this paper,we study the production of^(67)Cu,^(63)Zn,^(18)F,and^(11)C,which are currently used in positron emission tomography and other applications.At the same time,we study the reactions^(10)B(p,α)^(7)Be and^(70)Zn(p,4n)^(67)Ga to put further constraints on the proton distributions at different angles,as well as the reaction^(11)B(p,α)^(8)Be relevant for energy production.The experiment was performed at the 1 PW laser facility at VegaⅢin Salamanca,Spain.Angular distributions of radioisotopes in the forward(with respect to the laser direction)and backward directions were measured using a high purity germanium detector.Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera[Nucl.Instrum.Methods Phys.Res.,Sect.A 637,164–170(2011)].展开更多
基金the support by the National Natural Science Foundation of China(grant numbers 52273048 and 51973006)the Beijing Natural Science Foundation of China(grant number 2222052)the financial support of this work by BIOFIRESAFE(PID2020-117274RB-I00)funded by MINECO,Spain。
文摘Developing high-efficient flame-retardant coatings is crucial for fire safety polymer and battery fields.Traditional intumescent coatings and ceramifiable coatings struggle to provide immediate and prolonged protection simultaneously,which limits the applicability.To address this,an innovative bi-layered coating with organic/nano-inorganic additives is inspired by differential response behaviors,enabling relay response effect with both fast-acting and extended protection.Specifically,two layers function continuously in the form of a relay.With a mere 320 microns,the bi-layered coating withstands fire temperatures of up to 1400℃for at least 900 s.Consequently,the coating effective prevented burn through in aluminum plates and glass fabric-reinforced epoxy resin,which otherwise were burned through in 135 and 173 s,respectively.Meanwhile,the bi-layered coating suppressed the formation and decomposition of solid interface layer in lithium soft-package batteries,leading to prolonged electrochemical stability and fire safety.Additionally,the bi-layered coating with a fast response endows polyurethane foam with rapid self-extinguishing,preventing ignition even under exposure to strong fire of 1400℃.Shortly,our work offers new insights into the design and development of thin,high-performance,and multi-application flame-retardant coatings.
基金This research is partly supported by the scholarship from China Scholarship Council under the Grant CSC(201608060071).
文摘High flammability of polymers has become a major issue which has restricted its applications.Recently,highly crystalline materials and metal–organic frameworks(MOFs),which consisted of metal ions and organic linkers,have been intensively employed as novel fire retardants(FRs)for a variety of polymers(MOF/polymer).The MOFs possessed abundant transition metal species,fire-retardant elements and potential carbon source accompanied with the facile tuning of the structure and property,making MOF,its derivatives and MOF hybrids promising for fire retardancy research.The recent progress and strategies to prepare MOF-based FRs are emphasized and summarized.The fire retardancy mechanisms of MOF/polymer composites are explained,which may guide the future design for efficient MOF-based FRs.Finally,the challenges and prospects related to different MOFbased FRs are also discussed and aim to provide a fast and holistic overview,which is beneficial for researchers to quickly get up to speed with the latest development in this field.
基金financially supported by the National Natural Science Foundation of China(Nos.41205106,41275158)
文摘This study presents the mass concentrations of PM(2.5),O3,SO2 and NOxat one urban,one suburban and two rural locations in the Changchun region from September 25 to October 272013. Major chemical components of PM(2.5)at the four sites were daily sampled and analyzed. Most of daily concentrations of SO2(7–82 μg/m^3),O3(27–171 μg/m^3) and NOx(14–213 μg/m^3) were below the limits of the National Ambient Air Quality Standard(NAAQS)in China. However,PM(2.5)concentrations(143–168 μg/m^3) were 2-fold higher than NAAQS.Higher PM(2.5)concentrations(~ 150 μg/m^3) were measured during the pre-harvest and harvest at the urban site,while PM(2.5)concentrations significantly increased from 250 to400 μg m^(-3) at suburban and rural sites with widespread biomass burning. At all sites,PM(2.5)components were dominated by organic carbon(OC) and followed by soluble component sulfate(SO4^(2-)),ammonium(NH4~+) and nitrate(NO3^-). Compared with rural sites,urban site had a higher mineral contribution and lower potassium(K~+and K) contribution to PM(2.5).Severe atmospheric haze events that occurred from October 21 to 23 were attributed to strong source emissions(e.g.,biomass burning) and unfavorable air diffusion conditions.Furthermore,coal burning originating from winter heating supply beginning on October 18 increased the atmospheric pollutant emissions. For entire crop harvest period,the Positive Matrix Factorization(PMF) analysis indicated five important emission contributors in the Changchun region,as follows: secondary aerosol(39%),biomass burning(20%),supply heating(18%),soil/road dust(14%) and traffic(9%).
基金supported by the National Natural Science Foundation of China (Grant Nos. 42188101 and 41974181)the B-type Strategic Priority Program of the Chinese Academy of Sciences (CAS, Grant No. XDB41000000)+3 种基金the Project of Stable Support for Youth Team in Basic Research Field, CAS (Grant No. YSBR-018)the preresearch project on Civil Aerospace Technologies (Grant No. D020105) funded by China’s National Space Administrationthe International Partnership Program of CAS (Grant No. 183311KYSB20200003)The National Center for Atmospheric Research is sponsored by the National Science Foundation.
文摘In this study,we investigate the solar cycle dependence of the sunrise ionospheric zonal electric fields at the equator under geomagnetically quiet conditions.Simulations using the Thermosphere–Ionosphere–Electrodynamics General Circulation Model(TIEGCM)reveal that the equatorial eastward electric field at sunrise decreases with the increase in solar activity,independent of longitude,season,and lower atmospheric tides.The solar cycle dependence of the sunrise zonal electric field is mainly related to the zonal wind dynamo.Moreover,this solar cycle dependence of sunrise electric fields at the equator is dominated by the corresponding variation in the F-region dynamo because the response of conductivity and neutral winds near sunrise to increasing solar flux is stronger in the F-region than in the E-region,although the sunrise eastward enhancement of electric fields is mainly driven by the E-region zonal wind dynamo.Specifically,the westward gradient of low-latitude F-region neutral winds near the dawn terminator tends to produce westward electric fields in the equatorial region that are more pronounced at solar maximum,whereas the midlatitude E-region dynamo induces an eastward enhancement of sunrise electric fields at the equator that decreases slightly with increasing solar activity.This study also reveals that the reason the eastward enhancement of equatorial zonal electric fields near dawn and dusk terminators show opposite solar cycle dependence is because of their different generation mechanisms.
基金funding from the European Union’s Horizon 2020 research and innovation program through the European IMPULSE project under Grant Agreement No.871161from LASERLAB-EUROPE V under Grant Agreement No.871124+6 种基金from the Grant Agency of the Czech Republic(Grant No.GM23-05027M)Grant No.PDC2021120933-I00 funded by MCIN/AEI/10.13039/501100011033by the European Union Next Generation EU/PRTRsupported by funding from the Ministerio de Ciencia,Innovación y Universidades in Spain through ICTS Equipment Grant No.EQC2018-005230-Pfrom Grant No.PID2021-125389O A-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Unionfrom grants of the Junta de Castilla y León with Grant Nos.CLP263P20 and CLP087U16。
文摘This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.
基金funding via EUROfusion Enabling research Project No.AWP21-ENR-01-CEA-02“Advancing Shock Ignition for Direct-Drive Inertial Fusion,”the framework of the EUROfusion Consortium,funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No.101052200-EUROfusion)+2 种基金the Czech Ministry of Education,Youth and Sports (CMEYS) for funding the operation of the PALS facility (Grant No.LM2023068)the EuroHPC Joint Undertaking for awarding access to Karolina at IT4Innovations (VSB-TU),Czechia under Project No.EHPC-REG-2023R02-006(DD-23-157)the Ministry of Education,Youth and Sports of the Czech Republic through e-INFRA CZ (Grant No.ID:90140)
文摘We investigate the spatial and temporal correlations of hot-electron generation in high-intensity laser interaction with massive and thin copper targets under conditions relevant to inertial confinement fusion.Using Ka time-resolved imaging,it is found that in the case of massive targets,the hot-electron generation follows the laser pulse intensity with a short delay needed for favorable plasma formation.Conversely,a significant delay in the x-ray emission compared with the laser pulse intensity profile is observed in the case of thin targets.Theoretical analysis and numerical simulations suggest that this is related to radiation preheating of the foil and the increase in hot-electron lifetime in a hot expanding plasma.
基金supported by the Center of Advanced Applied Sciences(CAAS)Project No.(CZ.02.1.01/0.0/0.0/16019/0000778)from the European Regional Development Fundalso supported in part by the Czech Technical University in Prague Project No.SGS22/184/OHK4/3T/14+1 种基金partial funding via EUROfusion Enabling Research Project No.AWP24-ENR-03-CEA-02“Foams as a pathway to energy from high gain direct drive ignition,”within the framework of the EUROfusion Consortium,funded by the European Union via the Euratom Research and Training Program(Grant Agreement No.101052200-EUROfusion)the Czech Ministry of Education,Youth and Sports(CMEYS)for funding the operation of the PALS facility(Grant No.LM2023068)。
文摘The interaction of high-power laser pulses with undercritical foams produced by different techniques but with the same average density is studied at the PALS laser facility.The spatial-temporal evolution of X-ray emission is observed using an X-ray streak camera,electron and ion temperatures are measured by X-ray spectroscopy,and hot-electron production is characterized by monochromatic X-ray imaging.Transmission of a femtosecond laser probe pulse through foams is observed in the near and far fields.In spite of large differences in pore size and foam structure,the velocity of ionization front propagation is quite similar for all the foams studied and is slower than that in a homogeneous material of the same average density.The ion temperature in the plasma behind the ionization front is a few times higher than the electron temperature.Hot-electron production in plastic foams with small pores is strongly suppressed compared with that in solid targets,whereas in foams produced by additive manufacturing,it is significantly increased to the level observed in bare copper foil targets.
基金financial support from the LASERLAB-EUROPE Access to Research Infrastructure Activity (Application No. 23068)carried out within the framework of EUROfusion Enabling Research Projects AWP21-ENR-01-CEA02 and AWP24-ENR-IFE-02-CEA-02+3 种基金received funding from Euratom Research and Training Programme 2021–2025 under Grant No. 633053supported by the Ministry of Youth and Sports of the Czech Republic [Project No. LM2023068 (PALS RI)]by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25030200 and XDA25010100)supported by COST (European Cooperation in Science and Technology) through Action CA21128 PROBONO (PROton BOron Nuclear Fusion: from energy production to medical applicatiOns)
文摘Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of suprathermal hot electrons under interaction conditions envisaged for direct-drive schemes for inertial confinement fusion.Nonetheless,SSRS remains to date one of the least understood parametric instabilities.Here,we report the first angularly and spectrally resolved measurements of scattered light at laser intensities relevant for the shock ignition scheme(I×10^(16)W/cm^(2)),showing significant SSRS growth in the direction perpendicular to the laser polarization.Modification of the focal spot shape and orientation,obtained by using two different random phase plates,and of the density gradient of the plasma,by utilizing exploding foil targets of different thicknesses,clearly reveals a different dependence of backward SRS(BSRS)and SSRS on experimental parameters.While convective BSRS scales with plasma density scale length,as expected by linear theory,the growth of SSRS depends on the spot extension in the direction perpendicular to laser polarization.Our analysis therefore demonstrates that under current experimental conditions,with density scale lengths L_(n)≈60–120μm and spot sizes FWHM≈40–100μm,SSRS is limited by laser beam size rather than by the density scale length of the plasma.
基金Natural Science Foundation of China(No.51871244)Hunan Provincial Innovation Foundation for Postgraduate,China(No.CX20200172)Fundamental Research Funds for the Central Universities of Central South University,China(No.1053320190103)。
基金funded by the European Union via the Euratom Research and Training Program(Grant Agreement No.101052200-EUROfusion)funding from LASERLAB-EUROPE(Grant Agreement No.871124,European Union’s Horizon 2020 Research and Innovation Program)+5 种基金supported in part by the United States Department of Energy under Grant No.DE-FG02-93ER40773We also acknowledge support from Grant No.PID2021-125389OA-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Union and Unidad de Investigación Consolidada of Junta de Castilla y León UIC 167supported in part by the National Natural Science Foundation of China under Grant No.12375125the Fundamental Research Funds for the Central Universitiesthe support of the Czech Science Foundation through Grant No.GACR24-11398S.
文摘Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential applications:as an alternative to deuterium-tritium for fusion energy production,astrophysics studies,and alpha-particle generation for medical treatment.One possible scheme for laser-driven p-^(11)B reactions is to direct a beam of laser-accelerated protons onto a boron(B)sample(the so-called“pitcher-catcher”scheme).This technique has been successfully implemented on large high-energy lasers,yielding hundreds of joules per shot at low repetition.We present here a complementary approach,exploiting the high repetition rate of the VEGA III petawatt laser at CLPU(Spain),aiming at accumulating results from many interactions at much lower energy,to provide better control of the parameters and the statistics of the measurements.Despite a moderate energy per pulse,our experiment allowed exploration of the laser-driven fusion process with tens(up to hundreds)of laser shots.The experiment provided a clear signature of the reactions involved and of the fusion products,accumulated over many shots,leading to an improved optimization of the diagnostics for experimental campaigns of this type.In this paper,we discuss the effectiveness of laser-driven p-11B fusion in the pitcher-catcher scheme,at a high repetition rate,addressing the challenges of this experimental scheme and highlighting its critical aspects.Our proposed methodology allows evaluation of the performance of this scheme for laser-driven alpha particle production and can be adapted to high-repetition-rate laser facilities with higher energy and intensity.
基金supported by the project(MAD2DCM)-IMDEA Materials funded by Comunidad de Madrid and by the Recovery,Transformation and Resilience Plan and by NextGenerationEU from the European Union,and by the María de Maeztu seal of excellence from the Spanish Research Agency(CEX2018-000800-M)Mr.B.Yang wishes to express his gratitude for the support of the China Scholarship Council(202106370122).
文摘A large number of anomalous extension twins,with low or even negative twinning Schmid factors,were found to nucleate and grow in a strongly textured Mg-1Al alloy during tensile deformation along the extruded direction.The deformation mechanisms responsible for this behaviour were investigated through in-situ electron back-scattered diffraction,grain reference orientation deviation,and slip trace-modified lattice rotation.It was found that anomalous extension twins nucleated mainly at the onset of plastic deformation at or near grain boundary triple junctions.They were associated with the severe strain incompatibility between neighbour grains as a result from the differentbasal slip-induced lattice rotations.Moreover,the anomalous twins were able to grow with the applied strain due to the continuous activation ofbasal slip in different neighbour grains,which enhanced the strain incompatibility.These results reveal the complexity of the deformation mechanisms in Mg alloys at the local level when deformed along hard orientations.
基金support by the National Natural Science Foundation of China(Nos.51991354 and 51991350)supported by the State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University),No.ZDKT202107.
文摘In this work,the coatings used phosphorylated chitosan(PCS)and GP-108 via the dip-coating method presented exceptional flame retardancy and antibacterial properties for flexible polyurethane foams(FPUF).PCS/GP@FPUF with 35%weight gain of PCS/GP can receive the UL-94 V-0 rating and obtain a 32%reduction of peak heat release rate value compared with that of FPUF,and it remains relatively dense char residues.The effective heat of combustion of PCS/GP@FPUF is 21.6 kJ/g,presenting a 22%decrease compared with that of FPUF.Meanwhile,the PCS/GP coatings mainly have the condensed-phase flame-retardant mechanism associated with the analysis of char residues and the volatile products released through the thermal degradation process.X-ray photoelectron spectroscopy results confirm that the char residues of PCS/GP@FPUF consist of highly-graphitized carbon and it formed P-N-Si synergistic char lay-ers.In addition,the antibacterial rates of PCS/GP@FPUF against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)are 99.99%,and the incorporation of GP-108 does not influence the antibacterial proper-ties of PCS.Importantly,the resiliency of FPUFs has been slightly influenced.Briefly,the flame-retardant and antibacterial FPUFs with wonderful resiliency are hopeful to be applied as filler materials for vehicle seats and obtain longer service lives.
基金supported by the Czech Academy of Sciences(Mobility Plus Project No.CNRS-23-12)A.M.F.was supported by the Russian Science Foundation(Grant No.20-12-00077).
文摘Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.
基金supported by both BIOFIRESAFE(No.:PID2020-117274RB-I00)and NEWSAFE(No.:PID2022-143324NA-I00)Projects funded by Ministerio De Ciencia E Innovacion(MINECO,Spain)supported by the Agencia Estatal de Investigacion of Spanish Government[PROJECTS TED2021-131102B-C21 and PID2022-138496OB-I00].
文摘The aim of this work was to improve the thermal conductivity and electromagnetic shielding of the leakage proof phase change materials(PCMs),in which a polyrotaxane(PLR)was used as a support material to encapsulate PEG 1k or PEG 6k and MXene as multi-functional filler.The PCMs can be processed conveniently by a hot press and the PEG 1k containing samples showed excellent flexibility.We conducted a systematic evaluation of the phase transition behavior of the material,thermal conductivity and electromagnetic shielding performance tests.Notably,the PCMs achieved a high enthalpy values(123.9–159.6 J/g).The PCMs exhibited an increase of 44.3%,and 137.5%in thermal conductivity values with higher MXene content(5 wt%)for PLR-PEG6k and PLR-PEG1k,respectively,and show high shape stability and no leakage during and after phase transition.The introduction of MXene can significantly improve the electromagnetic shielding performance of PCM composites.Typically,higher conductive samples(samples which contain high MXene contents)offer a higher EMI SE shielding,reaching a maximum of 4.67 dB at 5.6 GHz for PLR-1K-MX5.These improvements solve the main problems of organic PEG based PCMs,thus making PLR-PEG-MXene based PCMs good candidates for thermoregulators of both solid-state disks and smart phone.It is worth pointing out that the sample PLR-1k-MX5 can decrease 4.3C of the reference temperature during cellphone running.Moreover,the temperature of the protecting sheet in the simulated solid state disk with PCM was significantly lower(showing a decreasing of 7.9℃)compared with the blank sample.
基金the EU for providing support to these activities through the EU projects DECADE(862030),EPOCH(101070976)and SCOPE(810182)。
文摘This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.
基金This work has been funded by the European Union via the Euratom Research and Training Programme(Grant Agreement No 101052200-EUROfusion).
文摘Porous materials offer unique possibilities for the production of plasmas with controlled density profiles for experiments on laser–matter interaction.They are of growing relevance to many applications,such as inertial confinement fusion,fundamental research,and secondary sources.Understanding the processes of transformation of a porous solid into a plasma is of fundamental interest and is needed for producing materials with desired properties.
基金supported by the CEA/DAM Laser Plasma Experiments Validation Projectthe CEA/DAM Basic Technical and Scientific Studies Project+4 种基金supported by the National Sciences and Engineering Research Council of Canada(NSERC)(Grant Nos.RGPIN-2023-05459 and ALLRP 556340-20)Compute Canada(Job pve-323-ac)the Canada Foundation for Innovation(CFI)financial support by the IdEx University of Bordeaux/Grand Research Program“GPR LIGHT”the Graduate Program on Light Sciences and Technologies of the University of Bordeaux。
文摘An analytical model of current propagation in a helical coil with varying geometry is developed.It can be used for post-acceleration and post-focusing of ions produced via laser-driven target normal sheath acceleration and generation of electromagnetic pulses.We calculate the current that propagates in a helical coil and suggest a method for improving its dispersion properties using a screening tube and with pitch and radius variation.The electromagnetic fields calculated with the analytical model are in agreement with particle-in-cell simulations.The model provides insights into the physics of current propagation in helical coils with varying geometries and enables a numerical implementation for rapid proton spectrum computations,which facilitate the design of such coils for future experiments.
文摘Bacterial meningitis is a serious and potentially life-threatening infection that affects the protective layers surrounding the brain and spinal cord,known as the meninges.Several types of bacteria,including Streptococcus pneumoniae,Neisseria meningitidis,and Haemophilus influenzae,can cause this condition.Certain populations,such as infants,children,immunocompromised adults,and the elderly,are particularly vulnerable to these pathogens.Symptoms of bacterial meningitis can manifest suddenly and may include high fever,severe and persistent headache,stiff neck,vomiting,sensitivity to light,and confusion or changes in mental state[1,2].Identifying these symptoms in infants can be more challenging and may lead to long-term disability or death[3].Despite the effectiveness of vaccines,it is crucial to understand how bacteria invade the brain and how our innate immune system responds to infection(Fig.1).
基金National Natural Science Foundation of China(Nos.52170157 and 52111530188)Natural Science Foundation of Shenzhen(No.JCYJ20220531095408020)+3 种基金Major Program of Jiangxi Provincial Department of Science and Technology(No.2022KSG01004)University-Industry Collaborative Education Program(No.220902016150653)Natural Science Foundation of Shenzhen(No.GXWD20201230155427003-20200802110025006)Start-up Grant Harbin Institute of Technology(Shenzhen)(Nos.IA45001007 and HA11409066).
文摘The scarcity of highly effective and economical catalysts is a major impediment to the widespread adop-tion of electrochemical water splitting for the generation of hydrogen.MoS_(2),a low-cost candidate,suffers from inefficient catalytic activity.Nonetheless,a captivating strategy has emerged,which involves the en-gineering of heteroatom doping to enhance electrochemical proficiency.This investigation demonstrates a successful implementation of the strategy by combining ultrathin MoS_(2) nanosheets with Co and Ni dual single multi-atoms(DSMAs)grown directly on 2D N-doped carbon nanosheets(CoNi-MoS_(2)/NCNs)for the purpose of improving hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).With the aid of a dual-atom doped bifunctional electrocatalyst,effective water splitting has been achieved across a broad pH range in electrolytes.The double doping of Co and Ni strengthens their interactions,thereby altering the electromagnetic composition of the host MoS_(2) and ultimately leading to improved electrocat-alytic activity.Additionally,the synergistic effect between NCNs and MoS_(2) nanosheets provided efficient electron transport channels for ions and an ample surface area with open voids for ion diffusion.Con-sequently,the CoNi-MoS_(2)/NCNs catalysts demonstrated exceptional stability and activity,producing low degree overpotentials of 180.5,124.9,and 196.4 mV for HER and 200,203,and 207 mV for OER in neu-tral,alkaline,and acidic mediums,respectively,while also exhibiting outstanding overall water-splitting performance,durability,and stability when used as an electrolyzer at universal pH.
文摘The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers.Protons with energies of tens of MeV can be accelerated using,for instance,target normal sheath acceleration and focused on secondary targets.Under such conditions,nuclear reactions can occur,with the production of radioisotopes suitable for medical application.The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators.In this paper,we study the production of^(67)Cu,^(63)Zn,^(18)F,and^(11)C,which are currently used in positron emission tomography and other applications.At the same time,we study the reactions^(10)B(p,α)^(7)Be and^(70)Zn(p,4n)^(67)Ga to put further constraints on the proton distributions at different angles,as well as the reaction^(11)B(p,α)^(8)Be relevant for energy production.The experiment was performed at the 1 PW laser facility at VegaⅢin Salamanca,Spain.Angular distributions of radioisotopes in the forward(with respect to the laser direction)and backward directions were measured using a high purity germanium detector.Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera[Nucl.Instrum.Methods Phys.Res.,Sect.A 637,164–170(2011)].