Accurately reconstructing the intricate structure of natural organisms is the long-standing goal of 3-dimensional(3D)bioprinting.Projection-based 3D printing boasts the highest resolution-to-manufacturing time ratio a...Accurately reconstructing the intricate structure of natural organisms is the long-standing goal of 3-dimensional(3D)bioprinting.Projection-based 3D printing boasts the highest resolution-to-manufacturing time ratio among all 3D-printing technologies,rendering it a highly promising technique in this field.However,achieving standardized,high-fidelity,and high-resolution printing of composite structures using bioinks with diverse mechanical properties remains a marked challenge.The root of this challenge lies in the long-standing neglect of multi-material printability research.Multi-material printing is far from a simple physical assembly of different materials;rather,effective control of material interfaces is a crucial factor that governs print quality.The current research gap in this area substantively hinders the widespread application and rapid development of multi-material projection-based 3D bioprinting.To bridge this critical gap,we developed a multi-material projection-based 3D bioprinter capable of simultaneous printing with 6 materials.Building upon this,we established a fundamental framework for multi-material printability research,encompassing its core logic and essential process specifications.Furthermore,we clarified several critical issues,including the cross-linking behavior of multicomponent bioinks,mechanical mismatch and interface strength in soft-hard composite structures,the penetration behavior of viscous bioinks within hydrogel polymer networks,liquid entrapment and adsorption phenomena in porous heterogeneous structures,and error source analysis along with resolution evaluation in multi-material printing.This study offers a solid theoretical foundation and guidance for the quantitative assessment of multi-material projection-based 3D bioprinting,holding promise to advance the field toward higher precision and the reconstruction of more intricate biological structures.展开更多
基金supported by the National Natural Science Foundation of China(grant numbers:52235007,T2121004,52325504,and 2021YFC2501800)the Key R&D Program of Zhejiang(2024SSYS0027).
文摘Accurately reconstructing the intricate structure of natural organisms is the long-standing goal of 3-dimensional(3D)bioprinting.Projection-based 3D printing boasts the highest resolution-to-manufacturing time ratio among all 3D-printing technologies,rendering it a highly promising technique in this field.However,achieving standardized,high-fidelity,and high-resolution printing of composite structures using bioinks with diverse mechanical properties remains a marked challenge.The root of this challenge lies in the long-standing neglect of multi-material printability research.Multi-material printing is far from a simple physical assembly of different materials;rather,effective control of material interfaces is a crucial factor that governs print quality.The current research gap in this area substantively hinders the widespread application and rapid development of multi-material projection-based 3D bioprinting.To bridge this critical gap,we developed a multi-material projection-based 3D bioprinter capable of simultaneous printing with 6 materials.Building upon this,we established a fundamental framework for multi-material printability research,encompassing its core logic and essential process specifications.Furthermore,we clarified several critical issues,including the cross-linking behavior of multicomponent bioinks,mechanical mismatch and interface strength in soft-hard composite structures,the penetration behavior of viscous bioinks within hydrogel polymer networks,liquid entrapment and adsorption phenomena in porous heterogeneous structures,and error source analysis along with resolution evaluation in multi-material printing.This study offers a solid theoretical foundation and guidance for the quantitative assessment of multi-material projection-based 3D bioprinting,holding promise to advance the field toward higher precision and the reconstruction of more intricate biological structures.